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Abstract. In this paper, we established a stability result for fixed point sets associated with a sequence of
multivalued mappings which belong to class of functions obtained by a multivalued extension of certain
generalized contraction mapping. Certain other aspects of these mappings are already studied in the
existing literatures. We also construct an illustrative example.

1. Introduction and Preliminaries

The concept of stability is associated with the investigation of limiting behaviors. It is not a single
notion. Several concepts of stability appear corresponding to the various situations arising in the studies of
both continuous and discrete dynamical systems[15, 17]. Our purpose in this paper is to establish a stability
result for fixed point sets associated with a sequence of uniformly convergent multivalued mappings. Such
a sequence of fixed point sets is said to be stable when it converges to the corresponding fixed point set of
the limiting function. This convergence is understood with respect to the Hausdorff metric.

When a fixed point for a mapping exists, it need not be unique. In this sense the fixed point sets are
naturally associated with mappings and their study falls in the domain of multivalued analysis. Also
the multivalued mappings often have more fixed points. As an instance, we can mention the case of
Nadler’s theorem[13, 14] which is the setvalued extension of the Banach contraction mapping principle.
Unlike the Banach’s result, the fixed point of Nadler’s contraction is not unique. The consideration of
multivalued mappings provide us normally with a larger fixed point sets which sometimes have very
interesting structures. Stability result of fixed point sets for multivalued mapping have appeared in a large
number of papers[3, 9, 10, 12, 16]. Such stability was also discussed in the paper of Nadler[13, 14]. More
recent references are[4–7]. It may be mentioned that there are other interesting studies related to the limits
of sequence of mappings, as, for instance, the preservance of chaotic properties in the limit under uniform
convergence has been discussed in [2]. In this paper we consider α∗ −ψ contractive multivalued mappings
which are defined by Asl et al[1] as a multivalued extensions of a generalized contraction known as α − ψ
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contraction [8] . There is a good number of works on α − ψ contractions and its generalizations[4, 6]. We
show that a uniformly convergent sequence of α∗ − ψ multivalued contractions has stable fixed point sets.
The result is supported with an example.

Let (X, d) be a metric space and CL(X) be the family of all nonempty closed subsets of X. The Hausdorff
metric H induced by d is defined by

H(A,B) = max
{

sup
x∈B

d(x,A), sup
x∈B

d(x,B)
}
,

where A,B ∈ CL(X) and d(x,B) = inf
y∈B

d(x, y).

Note that H is a metric on CB(X) (the family of all closed and bounded subsets of X). On CL(X), H
satisfies all the properties of the metric except that H(A,B) can be infinite if either A or B is unbounded.

Let T : X→ CL(X) be a multivalued mapping. A point z ∈ X is a fixed point of T if z ∈ Tz.

Definition 1.1. [1]. Let (X, d) be a metric space and T : X→ CL(X) a mapping. The mapping T is called an α∗ − ψ
contractive multivalued mapping if for all x, y ∈ X

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ(d(x, y)). (1.1)

where

1. α∗ : 2X
× 2X

→ [0,∞) be any function defined as α∗(A,B) = inf{α(x, y) : x ∈ A and y ∈ B};
Therefore, α∗(Tx,Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.
and

2. ψ : [0,∞)→ [0,∞) be a nondecreasing continuous function with
∑
ψn(t) < ∞ and ψ(t) < t for each t > 0, in

which α : X × X→ [0,∞) is any function.

Definition 1.2. [1]. Let (X, d) be a metric space and T : X → CL(X) be a mapping. The mapping T is called an
α∗-admissible if α(x, y) ≥ 1 =⇒ α∗(Tx,Ty) ≥ 1. Where α : X × X→ [0,∞) be any function and α∗ is defined above.

Recently, Asl et al.[1] obtained the following theorem.

Theorem 1.1. Let (X, d) be a metric space and T : X → CL(X) α∗-admissible and α∗ − ψ contractive multivalued
mapping. Suppose that there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. Assume that if {xn} is a sequence in
X such that α(xn, xn+1) ≥ 1 for all n ∈N and xn → x as n→∞, then α(xn, x) ≥ 1 for all n ∈N. Then T has a fixed
point.

2. Main Results

We begin with the following lemma.

Lemma 2.1. Let X be a metric space and α : X × X→ [0,∞) such that

α(xn, yn) ≥ 1⇒ α(a, b) ≥ 1, whenever xn → a and yn → b as n→∞. (2.1)

Suppose {Tn} is a sequence of α∗ −ψ contractive multivalued mapping on X which are α∗-admissible with the same α
and ψ. If Tn → T as n→ ∞ uniformly then the limit mapping T is α∗-admissible where α and ψ are the same as for
the sequence {Tn}.
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Proof. Let α(x, y) ≥ 1, for some x, y ∈ X. Suppose a ∈ Tx and b ∈ Ty be arbitrary. Since Tn → T uniformly,
there exist two sequences {xn} in {Tnx} and {yn} in {Tny} such that xn → a and yn → b as n→∞.

Since α(x, y) ≥ 1 and each Tn is α∗-admissible, it follows from Definition 1.1 that

α∗(Tnx,Tny) ≥ 1.

Hence α(xn, yn) ≥ 1 for all n ∈N by (2.1), α(a, b) ≥ 1. Thus we have,

α(x, y) ≥ 1⇒ α(a, b) ≥ 1 for all a ∈ Tx and for all b ∈ Ty.

Hence, α(x, y) ≥ 1 implies that α∗(Tx,Ty) ≥ 1. Hence the limit mapping T is α∗-admissible.

Now onwards, ψ : [0,∞) → [0,∞) is a strictly increasing mapping, with the additional condition that
Φ(t) =

∑
ψn(t) < ∞with Φ(t)→ 0 as t→ 0.

Theorem 2.1. Let X be a complete metric space and Ti : X → CB(X), i = 1, 2, be α∗ − ψ contractive multivalued
mapping and α∗-admissible with the same α and ψ. Suppose that the following conditions hold:

(i) For any x ∈ F(T1), we have α(x, y) ≥ 1 whenever y ∈ T2x, and for any x ∈ F(T2), we have α(x, y) ≥ 1 whenever
y ∈ T1x;

(ii) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈N and xn → x as n→∞, then α(xn, x) ≥ 1 for all
n ∈N, where xn+1 ∈ Tixn, i = 1, 2.

Then H(F(T1),F(T2)) ≤ Φ(ψ(k)) where k = supx∈X H(T1x,T2x).

Proof. By Theorem 1.1, F(T1) and F(T2) are nonempty. Let q > 1 be any number. Pick x0 ∈ F(T1). We choose
x1 ∈ T2x0 such that d(x0, x1) ≤ qk. Since T2 is α∗-admissible α(x0, x1) ≥ 1 implies that α∗(T2x0,T2x1) ≥ 1. Let
q0 > 1 be any number, choose x2 ∈ T2x1 such that

d(x1, x2) ≤ q0H(T2x0,T2x1) ≤ q0α∗(T2x0,T2x1)H(T2x0,T2x1) ≤ q0ψ(d(x0, x1)) ≤ q0ψ(qk).

Since α∗(T2x0,T2x1) ≥ 1, therefore α(x1, x2) ≥ 1 and α∗-admissibility of the mapping T2 implies that
α∗(T2x1,T2x2) ≥ 1.

Since ψ is strictly increasing function, we have ψ(d(x1, x2)) < ψ(q0ψ(qk)). Set q1 =
ψ(q0ψ(qk))
ψ(d(x1, x2))

. For x2 ∈ T2x1,

we choose x3 ∈ T2x2 such that

d(x2, x3) ≤ q1H(T2x1,T2x2) ≤ q1α∗(T2x1,T2x2)H(T2x1,T2x2) ≤ q1ψ(d(x1, x2)) ≤ ψ(q0ψ(qk)).

Now α∗(T2x1,T2x2) ≥ 1, therefore α(x2, x3) ≥ 1. Again α∗-admissibility of T2 is implies that α∗(T2x2,T2x3) ≥ 1.
Again, since ψ is strictly increasing function, we get

ψ(d(x2, x3)) < ψ2(q0ψ(qk)).

Set q2 =
ψ2(q0ψ(qk))
ψ(d(x1, x2))

. Now, for x3 ∈ T2x2, we choose x4 ∈ T2x3 such that

d(x3, x4) ≤ q2H(T2x2,T2x3) ≤ q2α∗(T2x2,T2x3)H(T2x2,T2x3) ≤ q2ψ(d(x2, x3)) ≤ ψ2(q0ψ(qk)).

Continuing in this manner we construct a sequence {xn} such that

d(xn, xn+1) ≤ ψn−1(q0ψ(qk)),

where xn+1 ∈ T2xn and α∗(T2xn,T2xn+1) ≥ 1.
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Let m > n > 1. By the triangle inequality

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

ψi−1(q0ψ(qk)) < ∞,

and {xn} is a Cauchy sequence in X. Since X is complete xn → z ∈ X for some z ∈ X. Since α(xn, yn) ≥ 1 and
xn → z by the hypothesis α(xn, z) ≥ 1. Thus α∗(T2xn,T2z) ≥ 1. Now,

d(xn+1,T2z) ≤ α∗(T2xn, z)H(T2xn,T2z) ≤ ψ(d(xn, z)).

Making n→∞, we get d(z,T2z) ≤ ψ(0). By the definition of ψ we have ψ(0) = 0. Hence z ∈ F(T2).

Again, by the triangle inequality

d(x0, z) ≤
n∑

i=0

d(xi, xi+1) + d(xn+1, z)

≤

∞∑
i=0

d(xi, xi+1)

≤

∞∑
i=0

ψi−1(q0ψ(qk))

≤

∞∑
i=0

ψn−1(q0ψ(qk)) = Φ(q0ψ(qk)).

Thus, given arbitrary x0 ∈ F(T1), we can find z ∈ F(T2) for which

d(x0, z) ≤ Φ(q0ψ(qk)).

Reversing the roles of T1 and T2, we conclude that for each y0 ∈ F(T2), there exists y1 ∈ T1y0 and w ∈ F(T1)
such that, d(y0,w) ≤ Φ(q0ψ(qk)). Hence

H(F(T1),F(T2)) ≤ Φ(q0ψ(qk)).

Letting q0 → 1, q1 → 1 we get the required result.

Now we present our stability result.

Theorem 2.2. Let X be a complete metric space. Let {Tn} be a sequence of α∗ −ψ contractive multivalued mappings,
uniformly convergent to a α∗ − ψ contractive multivalued mappings T. Suppose that the following hold:

(i) α(xn, yn) ≥ 1⇒ α(x, y) ≥ 1, whenever xn → x and yn → y as n→∞;

(ii) For all n ≥ 1, for any x ∈ F(Tn), we have α(x, y) > 1 whenever y ∈ Tx and for any x ∈ F(T), we have α(x, y) > 1
whenever y ∈ Tnx.

Then

lim
n→∞

H(F(Tn),F(T)) = 0,

that is, the fixed point sets of Tn are stable.

Proof. By Lemma 2.1, T is α∗-admissible. Let kn = supx∈X H(Tnx,Tx). Since {Tn} converges to T uniformly on
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X,

lim
n→∞

kn = lim
n→∞

sup
x∈X

H(Tnx,Tx) = 0.

Now, from Theorem 2.1, we get

H(F(Tn),F(T)) ≤ Φ(ψ(kn))

Since ψ(t) and Φ(t)→ 0 as t→ 0, we have.

lim
n→∞

H(F(Tn),F(T)) ≤ lim
n→∞

Φ(ψ(kn)) = 0.

This proves the theorem.

Example 2.1. Let X = R. d(x, y) = |x − y|. Define Tn : R→ CL(R) by

Tnx =


{1 + 1

n ,
1

4x + 1
n }, if x > 1;

{
1
n ,

1
n + x

16 }, if 0 < x ≤ 1;
{0}, if x = 0;
{2, 3}, otherwise.

Let the mapping α : R ×R→ [0,∞) be given by

α(x, y) =

2, if x, y ∈ (0, 1];
0, otherwise.

By the definition of α∗ we said that each Tn is α∗−admissible. Tn → T as n→∞. The T is given by

Tx =


{1, 1

4x }, if x > 1;
{0, x

16 }, if 0 < x ≤ 1;
{2, 3}, otherwise.

T is α∗−admissible. We define ψ : [0,∞)→ [0,∞) by

ψ(t) =
1
2

t.

Each Tn is α∗ − ψ contraction, and T is also α∗ − ψ contraction. Let x, y ∈ (0, 1];

H(Tnx,Tny) = max{sup
x∈Tx

d(x,Ty), sup
y∈Ty

d(y,Tx)}

= max{inf{|
x

16
|, |

x
16
−

y
16
|}, inf{|

y
16
|, |

y
16
−

x
16
|}}

= |
x

16
−

y
16
|.

Therefore α∗(x, y)H(Tnx,Tny) ≤ ψ(d(x, y)).

F(T1) = {0, 1} and F(Tn) = {0} for n ≥ 2. F(T) = {0}. Hence

H(F(Tn),F(T))→ 0 as n→∞.
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3. Conclusion

We obtain the result here under the assumption of uniform convergence. The proof of the theorem
necessarily uses this concept. It remains to be seen whether the requirement of uniform convergence can
be relaxed. This can be treated as an open problem.
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