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Abstract. We consider the problem of modifying the edge lengths of a tree at minimum cost such that a
prespecified vertex become an ordered 1-median of the perturbed tree. We call this problem the inverse
ordered 1-median problem on trees. Gassner showed in 2012 that the inverse ordered 1-median problem
on trees is, in general, NP-hard. We, however, address some situations, where the corresponding inverse
1-median problem is polynomially solvable. For the problem on paths with n vertices, we develop an O(n3)
algorithm based on a greedy technique. Furthermore, we prove the NP-hardness of the inverse ordered 1-
median problem on star graphs and propose a quadratic algorithm that solves the inverse ordered 1-median
problem on unweighted stars.

1. Introduction

In a non-inverse location problem we want to find optimal locations of new facilities. For reference,
readers may refer to Eiselt and Marianov [10], Hamacher [16]. While objective functions concerning
classical location problem are often median or center functions, the decision maker sometimes chooses
other objective functions as the k-centrum function [29] or the center-median function [15]. Therefore, it
raises a need to study a universal approach of location theory, i.e., algorithms and methods can be applied
to solve the location problem with a class of objective functions. To unify the classical location problem,
Nickel and Puerto [19] introduced the so-called ordered median function that generalizes most of known
objective functions.

Recently, the inverse location problem has become an interesting topic in operations research. Here, we
want to modify the parameters at minimum total cost so that the prespecified facilities become optimal with
respect to the new parameters. In what follows we review some previous results, which were classified
according to the objective function.

For the inverse 1-median problems, Burkard et al. [7] were the first who proposed the inverse models
for the 1-median problem on trees and the 1-median problem on the plane with Manhattan norm. They
also solved these problems in O(n log n) time. Then Galavii [11] improved the complexity of the inverse
1-median problem on trees to linear time. Additionally, the inverse 1-median problem on trees under
uncertain costs was investigated and solved by Nguyen and Chi [27]. Nguyen [26] generalized the inverse
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1-median problem on trees to the corresponding problem on block graphs. He applied the convexity of
the cost function to develop an algorithm that solve the problem in O(n log n) time. Furthermore, Burkard
et al. [8] developed an O(n2) algorithm that solves the inverse 1-median problem on a cycle based on the
concavity of the corresponding linear programmming constraints. Burkard et al. [6] solved the inverse
Fermat-Weber problem in O(n log n) time, where the input points are not colinear. Otherwise, this problem
can be formulated as a convex program. For the inverse location problem with serveral facilities, Bonab
et al. [4] showed that the inverse p-median problem on networks with variable edge lengths is NP-hard.
However, the inverse 2-median problem on a tree can be solved in polynomial time. Additionally, the
problem is solvable in linear time if the underlying tree is a star. Sepasian and Rahbarnia [28] investigated
the inverse 1-median problem on trees with both vertex weight and edge length modification. They solved
the problem in O(n log n) time. While most recent papers concern the inverse 1-median problem under
linear cost functions, Guan and Zhang [14] solved the inverse 1-median problem on trees under Chebyshev
norm and Hamming distance by a binary search algorithm in linear time.

For the inverse center problems, Cai et al. [9] was the first who showed the NP-hardness of the inverse
1-center problem on networks, whereas the non-inverse 1-center problem can be solved in polynomial
time. Therefore, it is interesting to focus on some special cases of the inverse 1-center problem, which can
be solved in polynomial time. Alizadeh and Burkard [1, 2] investigated the inverse 1-center problem on
unweighted trees and solved it efficiently. Moreover, Nguyen [20, 25] solved the reverse 1-center problem
on a weighted tree in quadratic time and applied the proposed method to solve the inverse 1-center problem
on weighted trees in polynomial time. Nguyen and Chassein [21] showed the NP-hardness for the inverse
1-center problem on a simple generalization of tree graphs, the cactus graphs. Furthermore, Nguyen and
Sepasian [24] solved the inverse 1-center problem on trees under Chebyshev norm and Hamming distance
in O(n log n) time if there is no topology change during the modification. Otherwise, the problem is solvable
in quadratic time.

Concerning the inverse location problem with ordered median objective function, Gassner [13] showed
that the inverse convex ordered 1-median problem on trees with variable edge lengths is NP-hard in both
cases, the inverse ordered 1-median problem on unweighted trees and the inverse k-centrum problem on
weighted trees. Moreover, the inverse k-centrum problem on unweighted trees can be solved in O(n3k2)
time by a dynamic programming algorithm. Nguyen and Anh [23] investigated the inverse k-centrum
problem on trees with variable vertex weights and showed that the problem in NP-hard. The inverse
1-center problem on trees, a special case of the inverse k-centrum problem with k = 1, is however solvable
in quadratic time. Also, the inverse convex ordered 1-median problem on trees under Chebyshev norm
and Hamming distance was solved in O(n2 log n) time, based on a binary search algorithm and a special
property of the objective function; see Nguyen and Chassein [22].

This paper considers the inverse ordered 1-median problem on trees with variable edge lengths. Espe-
cially, we focus on some special cases in which the problem can be solved in polynomial time. The paper
is organized as follows. Section 3 solves the uniform-cost inverse convex ordered 1-median problem on a
path in O(n3) time by a greedy algorithm. Then we solve the inverse k-centrum problem on paths in linear
time. We prove in Section 4 that the inverse k-centrum problem on a star is NP-hard. However, if the
underlying star is unweighted, we develop an O(n2) algorithm.

2. Problem Definition and Optimality Criterion

We now repeat the definition of ordered median problem on a network; see [19]. Given a network
G = (V,E), |V| = n, each vertex v ∈ V is associated with a nonnegative weight wv and each edge e ∈ E has
a nonnegative length `e. If all vertices in G have equal weights, say 1, we get an unweighted network. A
point in G is either a vertex or lies on an edge of the network. We further denote by A(G) the set of all points
in G. The distance d(a, b) between two points a and b is the length of the shortest path connecting them.
Assume that the vertices in G are numbered as v1, v2, . . . , vn. For a vector of multipliers λ = (λ1, λ2, . . . , λn),
the ordered 1-median function at ρ ∈ A(G) is
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fλ(ρ) =

n∑
i=1

λiw(i)d(ρ, v(i)).

Here, the operator (.) is a permutation of {1, 2, . . . ,n} so that the weighted distances to the point ρ are sorted
nondecreasingly, i.e.,

w(1)d(ρ, v(1)) ≤ w(2)d(ρ, v(2)) ≤ . . . ≤ w(n)d(ρ, v(n)).

The permutation (.) is called a feasible permutation. We further denote the set of all feasible permutations
by Π. Additionally, a point ρ∗ is, by definition, an ordered 1-median of G if

fλ(ρ∗) ≤ fλ(ρ)

for all ρ in A(G).
If the multipliers are nondecreasing, i.e., λ1 ≤ λ2 ≤ . . . λn, and the underlying graph is a tree, the ordered

1-median function is convex along each simple path of the tree. Also, if λ = (0, . . . , 0, 1, . . . , 1) with k 1′s, the
corresponding objective function is called the k-centrum function.

Given a tree network T = (V,E) and a prespecified vertex v∗. Denote by T (v∗) the set of all subtrees
induced by deleting v∗ and its incident edges from T. We revisit the optimality criterion for a vertex to be a
1-median on a tree T as follows.

Theorem 2.1. (Optimality criterion, see [13, 18])
Given a tree T = (V,E) and a vector of multipliers λ ∈ Rn

+ such that λ1 ≤ λ2 ≤ . . . ≤ λn. Then the prespecified
vertex v∗ is an ordered 1-median of T if and only if for each subtree Tsub

∈ T (v∗) there exists a feasible permutation
σsub (w.r.t. Tsub) such that ∑

vσsub(i)∈T
sub

λiwσsub(i) ≤
∑

vσsub (i)<Tsub

λiwσsub(i).

In the rest of this section, we formally define the so-called inverse ordered 1-median problem. Given a
tree T = (V,E), a prespecified vertex v∗, and a vector of multipliers λ ∈ Rn

+. The length of each edge e can
be increased or reduced by pe or qe. Moreover, we assume that the modifications are limited within certain
bounds, i.e., 0 ≤ pe ≤ p̄e and 0 ≤ qe ≤ q̄e for e ∈ E. It means the modified length of e is ˜̀e := `e + pe − qe and it
is assumed to be nonnegative. The cost to increase or decrease one unit length of e is c+

e or c−e , respectively.
The inverse ordered 1-median problem on T is stated as follows.

1. The prespecified vertex v∗ becomes an ordered 1-median of the perturbed tree.
2. The cost function

∑
e∈E(c+

e pe + c−e qe) is minimized.
3. Modifications are feasible, i.e., 0 ≤ pe ≤ p̄e and 0 ≤ qe ≤ q̄e.

The inverse location problem can be applied in network design, evacuation planning, etc. For real-life
applications of the inverse combinatorial optimization problem, we refer to the survey of Heuberger [17].

3. The Inverse Convex Ordered 1-median Problem on Unweighted Paths

3.1. Uniform-cost Convex Case
We consider the uniform-cost inverse ordered 1-median problem on an unweighted path graph P =

(V,E), i.e., the cost to modify one unit length of each edge e ∈ E is c+
e = c−e = 1. For a given prespecified

vertex v∗, we denote by L and R the left and right part of P induced by deleting v∗. Assume in this section
that λ = (λ1, λ2, . . . , λn) satisfies λ1 ≤ λ2 ≤ . . . ≤ λn, i.e., the ordered 1-median function on P is convex. By
Theorem 2.1, we derive the following result on a path.

Corollary 3.1. (Optimality criterion for path graphs)
Given an unweighted path graph P = (v1, v2, . . . , vn) and a prespecified vertex v∗. Then v∗ is an ordered median of P
if and only if there exist feasible permutations σL and σR such that:∑

vσL(i)∈L

λi ≤
∑

vσL(i)<L

λi and
∑

vσR(i)∈R

λi ≤
∑

vσR(i)<R

λi.
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Denote by ΛL and ΛR the minimum ordered weighted sum of all vertices on the left and right of v∗,
respectively. Here, all weights are 1. We can write

ΛL = min
σ∈Π

∑
vσ(i)∈L

λi and ΛR = min
σ∈Π

∑
vσ(i)∈R

λi.

We can find ΛL in O(n log n) time by sorting all vertices vi with respect to d(v∗, vi) and breaking all ties such
that all vertices in L are preferred. This means that, if two vertices v ∈ L and v′ ∈ P\L have the same distance
to v∗, then v gets a smaller index as v′ in the ordering. For ΛR, we apply the similar approach.

Assume that σ∗ ∈ Π satisfies ΛL =
∑

vσ∗(i)∈L λi, we denote by Λ′L =
∑

vσ∗ (i)<L λi. We can check that
Λ′L =

∑n
i=1 λi − ΛL. Similarly, we also define Λ′R =

∑n
i=1 λi − ΛR. The Corollary 3.1 can be reformulated as

follows.

Corollary 3.2. (Optimality criterion)
Given a path P and a prespecified point v∗ ∈ P. Then, v∗ is an ordered 1-median of P if and only if ΛL ≤ Λ′L and
ΛR ≤ Λ′R.

If v∗ is not an ordered 1-median of the path, we get either ΛL > Λ′L or ΛR > Λ′R. Without loss of
generality, we can assume that ΛL > Λ′L. Then we have to decrease the gap G = ΛL − Λ′L > 0 until the
optimality criterion in Corollary 3.2 holds. Assume that the edge lengths are always positive thoughout
the modification, i.e., the set of vertex in L and R does not change. We obtain the following property of the
modification.

Proposition 3.3. In an optimal solution of the problem, we increase the lengths of edges in R and decrease the lengths
of edges in L.

By Proposition 3.3, we set pe := 0 (qe := 0) for e ∈ L (e ∈ R) without changing the optimal solution of the
problem. One can rewrite the cost function as

∑
e∈E

xe where xe := pe if e ∈ R and xe := qe otherwise. Here, the

upper bound is x̄e := q̄e (x̄e = p̄e) if e ∈ L (e ∈ R). Now, modifying the length of an edge e means to increase
or decrease its length if e ∈ R or e ∈ L, respectively. In what follows we consider the relation of the gap G
and the optimality of v∗.

Proposition 3.4. The minimum cost to make G ≤ 0 is also the optimal cost so that v∗ becomes an ordered 1-median
of P.

Proof. Assume that the modification (x∗e)e∈E with the corresponding cost C∗ being minimum to make G ≤ 0.
Then we consider the following cases.

• If v∗ is not an ordered 1-median of the path, we get ΛR > Λ′R. Let σ′ be a feasible permutation such
that σ′ = ar1maxσ∈Π

∑
vσ(i)∈L λi, we get ∑

vσ′ (i)∈L

λi <
∑

vσ′ (i)<L

λi.

For an edge e with x∗e > 0, we set x′e := x∗e − ε for a sufficient small ε. The new modification costs C′

with C′ < C∗, and the gap G ≤ 0 as σ′ is still a feasible permutation. This contradicts to the optimality
of cost C∗.

• If v∗ is an ordered 1-median of P, we get G ≤ 0. Assume that there exists another modification such
that the corresponding cost C′ is strictly less than C∗ but v∗ is still an ordered 1-median of the path.
Then G ≤ 0 because of the optimality criterion. This is also a contradiction.

Shortly, C∗ is also the optimal cost such that v∗ becomes an ordered median of the path.
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By Proposition 3.4, we aim to decrease the gap G until it becomes nonpositive with minimum cost in
order to obtain an optimal solution. We can check the feasibility of the problem by modifying all edges
in L and R by their upper bounds and recompute G in O(n log n) time. Assume from now on that, the
uniform-cost inverse convex ordered 1-median problem on P is feasible.

Let σ be a feasible permutation such that ΛL =
∑

vσ(i)∈L λi. A vertex vi is closer to v∗ than v j if σ−1(i) < σ−1( j).
Furthermore, an edge e = (v′, v) with d(v∗, v′) < d(v∗, v) is, by definition, the edge corresponding to v. An
edge e is closer to v∗ than e′ if e corresponds to a closer vertex to v∗ than e′. We can easily observe that any
modification of edge lengths can be switched to the edge near the root node v∗ first. To do that, we do not
only change the cost but also decrease the gap G as much as possible. Therefore, the idea of the solution
approach is to modify the edge, which is possible to be modified and closest to v∗ in each step. We stop if
the gap G becomes nonpositive.

Observe that, the gap G can be reduced if there exist v′ ∈ R and v′′ ∈ L such that d(v∗, v′) < d(v∗, v′′)
but d̃(v∗, v′) = d̃(v∗, v′′) after the modification. Consider an edge e closest to v∗ with x̄e > 0. If e ∈ L, we
represent the modified distance from each vertex v ∈ L, where e corresponds to a vertex closer than v, to
v∗ as d̃(v, v∗) = d(v, v∗) − xe. To compute the minimum cost such that the gap can be reduced, we have to
compute the minimum modification xe such that there exist a pair of vertices in L and R changing their
orders. It can be done in linear time by first searching a vertex v′ ∈ R with the largest order and smaller
than the order of the vertex v, for each v ∈ L mentioned previously. Then we compute each amount such
that the orders of v and v′ changes. Finally, we choose the minimizer of the smallest amount and x̄e. For
the case e ∈ R, we can use the similar approach.

Now we apply the previous observation to develop Algorithm 1 that solves the problem.

Algorithm 1 Solves the uniform-cost inverse convex ordered 1-median problem on paths.
Input: An instance of the problem
Check the optimality criterion. If it satisfies, then v∗ is an ordered 1-median of the path. Otherwise, we
consider the gap G := ΛL −Λ′L > 0.
Set Val := 0.
while G > 0 do

Take an edge e corresponding to the closest vertex to v∗ with x̄e > 0.
Find the smallest modification te of e such that the gap G can be reduced.
Modify the length of e by xe := min{te, x̄e}.
Update Val := Val + xe.
Update x̄e := x̄e − xe.

end while
Output: An optimal solution of the problem and the optimal cost Val.

In each iteration, we find the minimum amount such that the gap G can be decreased in linear time.
There are at most O(n2) times, in which the orders of vertices change. Therefore, the algorithm runs in O(n3)
time. Moreover, the correctness of the algorithm holds as in each iteration the gap is reduced as much as
possible for a given cost.

Theorem 3.5. The uniform-cost inverse convex ordered 1-median problem on unweighted paths can be solved in
O(n3) time, for the paths with n vertices.

We illustrate the algorithm to solve the inverse convex ordered 1-median problem on paths in the following
example.

Example 3.6. Given an unweighted path P as in Figure 1. The vector of multipliers is λ = (0, 1, 2, 3, 5) and v1 is
the prespecified vertex. On each edge, a pair (`e, x̄e) is given, where `e is the length and x̄e is the upper bound of
modification of the edge e.
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v1

(`e, x̄e) = (3, 2)
v2

(4, 2)
v3

(1, 1)
v4

(2, 2)
v5

Figure 1: An instance of inverse convex ordered 1-median problem.

The left part is L = {v1, v2} with ΛL = 8 > Λ′L = 3 corresponds to the feasible permutation σ = (1, 4, 5, 2, 3). As
the optimality criterion does not hold, we solve the problem in these following iterations.
Iteration 1. Take the edge (v1, v4) and increase its length by 1. The orders of vertex does not change.
Iteration 2. Take (v1, v2) and reduce its length by 1. Then σ = (1, 2, 4, 5, 3) is the feasible permutation corresponding
to ΛL. The gap G = 1 is still positive.
Iteration 3. The length of (v1, v2) can be further reduced by 1 and the orders of vertex does not change.
Iteration 4. We increase the length of (v4, v5) by 1 and get the corresponding permutation σ = (1, 2, 4, 3, 5). As the
gap G = ΛL − Λ′L = −3 is nonpositive, we stop and yield the path with optimal solution as in Figure 2. The optimal
cost is 4.

v1

(1, 0)
v2

(4, 2)
v3

(2, 0)
v4

(3, 1)
v5

Figure 2: The path corresponding to the optimal solution.

3.2. k-centrum case
We consider the inverse k-centrum problem on an unweighted path, i.e., vector of multipliers is

λ = (0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1︸        ︷︷        ︸
k 1’s

),

with k < n. We further investigate in this section the general cost coefficients. Thus, the cost function can
be written as ∑

e∈E

(c+
e pe + c−e qe).

Recall that L (R) is the left (right) part of P. Rename the vertices in L by u1,u2, . . . ,ul and vertices in R
by v1, v2, . . . , vm such that the indices are sorted according to the distances of corresponding vertices to v∗ as
given in Figure 3.

v∗u1u2ul v1 v2 vm

Figure 3: The path P with the renamed vertices.

Let k′ = b k+1
2 c and assume that m, l ≥ k′ − 1. We can derive necessary and sufficient conditions for a

vertex to be the k-centrum of P as follows.

Theorem 3.7. (Optimality criterion, Nickel and Puerto [19]) Given an unweighted path P. A prespecified vertex v∗

is the k-centrum of the path P, k < n, if and only if v∗ is the midpoint of ul−k′+1 and vm−k′+1.

By Theorem 3.7, the vertices ul,ul−1, . . . ,ul−k′+2 and vm,um−1, . . . ,um−k′+2 play no role in the optimality of v∗.
Thus, we can delete these corresponding vertices from P.

Remark 3.8. The inverse k-centrum problem on path graph is infeasible if l < k′ − 1 or m < k′ − 1.
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Therefore, we assume that m, l ≥ k′−1. Then we delete all vertices ul,ul−1, . . . ,ul−k′+2 and vm,um−1, . . . ,um−k′+2
and their incident edges from P to get the new path P′. The deletion costs O(k) time. Rename the vertices
in P′ as V = {a1, a2, . . . , as}, where there are at most O(n − k) vertices in P′. We get the following result.

Corollary 3.9. The prespecified vertex v∗ is the k-centrum of the path P if and only if v∗ is the midpoint of the path
P′.

Then we trivially have the relation.

Lemma 3.10. The inverse k-centrum problem on P is equivalent to the inverse 1-center problem on P′.

By Lemma 3.10, we focus on dealing with the inverse 1-center problem on P′ in order to solve (InvkP). If
v∗ is not the k-centrum of path P, then v∗ is not the midpoint of path P′. We modify the edge lengths of P′

such that
d̃(v∗, a1) = d̃(v∗, as).

Here, d̃(u, v) is the distance between two vertices u, v in P′ with respect to the modified edge lengths. By
deleting v∗ and its incident edges from P′ to get the left part L′ and right part R′. Moreover, denote by
L̂′, R̂′ the subpath of P′ induced by L′ ∪ {v∗}, R′ ∪ {v∗}, respectively. Assume that d(v∗, a1) > d(v∗, as), the
modification of edge lengths in P′ satisfies the conditions as follows.

Proposition 3.11. In the optimal solution of the inverse 1-center problem on P′, it is sufficient to reduce the lengths
of edges in L̂′ and increase the lengths of edges in R̂′.

By Proposition 3.11, we can set pe := 0 for e ∈ L̂′ and qe := 0 for e ∈ R̂′. Let b := d(v∗, a1)− d(v∗, as), the inverse
1-center problem on P′ can be formulated as

min
∑
e∈L̂′

(c−e qe +
∑
e∈R̂′

c+
e pe)

s.t.
∑
e∈L̂′

qe +
∑
e∈R̂′

pe = b,

0 ≤ pe ≤ p̄e, ∀e ∈ R̂′,

0 ≤ qe ≤ q̄e, ∀e ∈ L̂′.

(1)

Let us number the edges of P′ as e1, e2, . . . , es−1. Then we represent variables and cost coefficients of (1) as
xi := pei , x̄i = p̄ei , ci = c+

ei
if ei ∈ R̂′ and xi := qei , x̄i = q̄ei , ci = c−ei

if ei ∈ L̂′. Problem (1) can be reformulated as:

min
s−1∑
i=1

cixi

s.t.
s−1∑
i=1

xi = b,

0 ≤ xi ≤ x̄i, ∀i = 1, . . . , s − 1.

(2)

Problem (2) is a continuous knapsack problem and it can be solved in O(s) = O(n − k) time by using the
algorithm of Balas and Zemmel [3]. In short, as 1 < k ≤ n,O(max(k; n − k)) = O(n) we get the following
result.

Theorem 3.12. The inverse k-centrum problem on an unweighted path (with general positive cost coefficients) can
be solved in linear time.

4. The Inverse Ordered Median Problem on Star Graph

In this section we consider a star graph S = (V,E), where v0 is the central vertex and vi for i = 1, . . . ,n
are the leaf vertices. If e = (v0, v), we denote by `v the length of edge e. Additionally, if the vertices are
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numbered as v1, v2, . . . , vn, we denote the length of edge (v0, vi) by `i for i = 1, . . . ,n, respectively. In the
inverse ordered 1-median problem on a star graph, we modify the edge lengths at minimum cost such
that the central vertex v0 becomes an ordered 1-median. Star graphs are special cases of trees, where there
are |V| − 1 leaves. Therefore, we can derive an optimality criterion for the convex case as in the following
theorem.

Corollary 4.1. (Optimality criterion, S. Nickel [19])
Assume that the vector of multipliers λ satisfies 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn. Then v0 is an ordered 1-median of S if and
only if for each vi , v0 there exists a feasible permutation σ so that

λσ−1(i)wi ≤
∑
σ( j),i

λ jwσ( j).

We can easily observe that, if v0 is not an ordered 1-median of S, there exists exactly one vertex vi0 which
contradicts the optimality criterion, i.e., we get:

λσ−1(i0)wi0 >
∑
σ( j),i0

λ jwσ( j).

Gassner [13] showed that the inverse k-centrum problem on trees is NP-hard. We further strengthen
this result by proving that, NP-hardness also holds for the inverse k-centrum problem on stars.

Theorem 4.2. The inverse k-centrum problem on general weighted star graphs is NP-hard.

Proof. We consider an instance (I) of the k′≤-partition problem as follows: Given a set S = {a1, a2, . . . , an} ⊂N
with 1 ≤ a1 ≤ a2 ≤ . . . ≤ an and

∑n
i=1 ai = 2B. We can assume that B > 1. Does there exists S′ ⊂ S such that

|S′| ≤ k′ and
∑

ai∈S′ ai = B? The k′≤-partition problem is NP-hard, see [12].
The decision version of inverse k-centrum problem on a star graph (Inv) is ’given an instance of the

inverse k-centrum problem on a star graph, does there exist a feasible solution with objective value is less
than or equal to C’?

Given an instance (I), we construct an instance of (Inv) as follows.

• Let S = (V,E), where V = V1 ∪ V2 ∪ {v0,X}. Here, V1 = {x1, . . . , xn} and V2 = {v1, . . . , vk′ }. The set of
edge E = E1 ∪ E2 ∪ {(v0,X)}with E1 = {(v0, x j)} j=1,...,n and E2 = {(v0, vi)}i=1,...,k′ .

• The weights of vertices are given as in the following. Let m := 1 +
a2

n
B−1 , we set wv0 := 0, wX := B + km,

wvi := m for i = 1, . . . , k′, and wx j := a j + m for j = 1, . . . ,n.

• We additionally choose `(v0,X) = `(v0, vi) = B for i = 1, . . . , k′ and `(v0, x j) =
(B−a j)m−a2

j

a j+m > 0 for
j = 1, . . . ,n.

• Only the lengths of (v0, x j), for j = 1, . . . ,n, can be increased by an upper bound a j. Other edge lengths
are fixed.

• The cost to modify one unit edge length is 1.

• Consider the inverse k-centrum problem on S with k := k′ + 1 and the cost C := B.

Observe that
wx j`(v0, x j) = Bm − aim − a2

i < Bm = wvi`(v0, vi).

for all j = 1, 2, . . . ,n and i = 1, 2, . . . , k′. Therefore, the ordered weighted sum of the subgraph induced by X
is B + k′m and that of S\X is k′m. The optimality criterion does not hold for v0. Furthermore, if the length
of (v0, x j) increases by its upper bound p̄(v0,x j) := a j, for some j ∈ {1, . . . ,n}, then wxi

˜̀(v0, xi) = wvi`(v0, vi) for
all i = 1, . . . , k′. We aim to increase the length of `(v0, x j) for j = 1, . . . ,n to obtain the optimality criterion. In
what follows we prove that the answer to (I) is ’yes’ if and only if the answer to (Inv) is ’yes’.
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If the answer to (I) is ’yes’, there exists a subset S′ such that |S′| ≤ k′ and
∑

a j∈S′ a j = B. We set ˜̀(v0, x j) :=
`(v0, x j) + a j for a j ∈ S′, then wx j

˜̀(v0, x j) = wvi`(v0, vi) for all j with a j ∈ S′ and i = 1, . . . , k′. As a result, there
exists a feasible permutation such that the ordered weighted sum of S\X is

∑
a j∈S′ a j + k′m = B + k′m. The

optimality criterion is satisfied and the objective value is B. The answer to problem (Inv) is also ’yes’.
Conversely, if there exists a feasible solution of (Inv) problem with objective value being at most B.

Denote by (p∗, q∗) the mentioned solution. Assume that there exists some index j ∈ {1, . . . ,n} such that
0 < p∗x j

< a j, we get wx j
˜̀(v0, x j) < wvi`(v0, vi) for all i = 1, . . . , k. In other words, wx j

˜̀(v0, x j) is not one of the
k′ + 1 largest weighted distances. It means we have to pay avoidable cost. Thus, we can assume p∗x j

= 0 or
p∗x j

= a j for all j = 1, . . . ,n. Furthermore, if p∗x j
= a j, we can choose wx j

˜̀(v0, x j) as one of the k′ + 1 largest
weighted distance to v0. If wx j

˜̀(v0, x j) is not chosen as one of the k′ + 1 largest weighted distance to v0, we
set p∗x j

= 0. Let J := { j ∈ {1, . . . ,n}|p∗x j
= a j}. We observe that |J| ≤ k′ as there are at most k′ modifying edges.

By the optimality criterion
∑

j∈J a j + k′m ≥ B + k′m or
∑

j∈J a j ≥ B. The objective value satisfies
∑

j∈J a j ≤ B.
We finally get

∑
j∈J a j = B. In orther words, the set S′ = {ai ∈ S|i ∈ J} satisfies |S′| ≤ k′ and

∑
a j∈S′ a j = B. The

answer to (I) is ’yes’.

By Theorem 4.2, the inverse k-centrum problem is NP-hard even on weighted stars. We now consider
the underlying problem on an unweighted star S. We further investigate the problem, where the vector of
multipliers is arbitrary, i.e., λ ∈ Rn+1

+ . We get the following property.

Proposition 4.3. Given an unweighted star S. If λi ≤
∑

j,i λ j for all i = 0, . . . ,n, the central vertex v0 is an ordered
1-median of the star.

Proof. Take vi ∈ V\{v0} and x(t) ∈ [v0, vi]. Denote by `(v0, vi) = `i and assume that d(v0, x(t)) = t. Let σ be
a feasible permutation w.r.t. the distances to x(t) and suppose that σ(k) = i. Then we write the ordered
1-median function as

fλ(x(t)) =
∑
σ( j),i

λ j(`σ( j) + t) + λk(`i − t) = (
∑
σ( j),i

λ j − λk)t + constant.

As the slope of fλ(x(t)) is
∑
σ( j),i λ j − λk ≥ 0, this function is increasing along the direction from v0 to vi.

Therefore, v0 is an ordered 1-median of the star.

Let us consider the case, in which the condition of Proposition 4.3 does not hold. Assume that there exists
i0 ∈ {0, 1, . . . ,n} such that λi0 >

∑
i,i0 λi and the edge lengths are supposed to be sorted nondecreasingly, i.e.,

`1 ≤ `2 ≤ . . . ≤ `n. We consider the following theorem.

Lemma 4.4. Given a star graph S with λ ∈ Rn
+ and assume that there exists an index i0 such that λi0 >

∑
i,i0

λi, then

we get two cases:

1. If i0 = 0 then v0 is the ordered median of the star.
2. If i0 > 0 then the midpoint of (vi0−1, vi0 ) is the optimal location of the ordered median problem on the star.

Proof. See Appendix.

From Lemma 4.4, we get the optimality criterion

Theorem 4.5. (Optimality criterion)
Given an unweighted star S = {v0, v1, . . . , vn}, where v0 is the central vertex and the the edge lengths are sorted
nondecreasingly, i.e., `1 ≤ `2 ≤ . . . ≤ `n. Furthermore, the vector λ ∈ Rn

+ satisfies that, there exists i0 with
λi0 >

∑
i,i0 λi and i0 > 0. Then, the central vertex v0 is an ordered 1-median of the star if and only if v0 is the midpoint

of (vi0−1, vi0 ), i.e., `i0−1 = `i0 , where we define `0 = 0.
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Assume that v0 is not an ordered 1-median of S. If λ1 >
∑

j,1 λ j, we have to reduce an edge length at
minimum cost so that it is zero. On the other hand, if there exists an index i0 > 1 such that λi0 >

∑
j,i0 λ j,

we get the following lemma.

Lemma 4.6. In an optimal solution of the problem we have to increase the length of at most one edge in {e1, e2, . . . , ei0−1}

and decrease the length of one edge in {ei0 , ei0+1, . . . , en}.

Proof. Assume that (v0,u) and (v0, v) is the (i0 − 1)th and ith0 largest edges of the star graph and their lengths
are equal in order to obtain the optimality criterion. Hence, other edges, which are different from (v0,u)
and (v0, v), can not be modified as we have to pay avoidable costs. Moreover, as the edge lengths are sorted
nondecreasingly according to the indices, the lemma holds.

We introduce the concept of a candidate pair as follows.

Definition 4.7. A pair u, v ∈ V, where `u ≤ `i0−1 ≤ `i0 ≤ `v, is called a candidate pair if `u + p̄u ≥ `i0−1, `v − q̄v ≤ `i0
and `u + p̄u ≥ `v − q̄v.

Remark 4.8. For a candidate pair, we are sure to get a feasible solution, i.e., their modified lengths are equal and they
are the (i0 − 1)th and ith0 largest edges. Therefore, we consider only the candidate pairs.

Denote by C the set of all candidate pairs. For each candidate pair {u, v} ∈ C, we solve a problem (P{u,v}).

min (cupu+cvqv)
s.t. `u + pu ≥ `i0−1

`v − qv ≤ `i0

`u + pu = `v − qv

0 ≤ pu ≤ p̄u

0 ≤ qv ≤ q̄v

(3)

We first presolve (P{u,v}) by increasing the length of (v0,u) to `i0−1 and decrease the length of (v0, v) to `i0 .
In other words, we choose p′u := `i0−1 − `u and q′v := `v − `i0 . Then we update the upper bound p̄u := p̄u − p′u
and q̄v := q̄v − q′v. We get a new problem (P′

{u,v}) as follows.

min (cupu+cvqv)
s.t. `u + pu =`v − qv

0 ≤ pu ≤p̄u

0 ≤ qv ≤q̄v

(4)

1. If cu ≤ cv, the optimal solution of (4) is p∗u := min{p̄u, `v − `u} and q∗v := `v − `u − p∗u.
2. If cv < cu, the optimal solution of (4) is q∗v := min{q̄v, `v − `u} and p∗u := `v − `u − q∗v.

The optimal objective value of (P{u,v}) is equal to the optimal objective value of (P′
{u,v}) adding an amount

(cup′u + cvp′v). Therefore, each problem (P{u,v}) is solvable in O(1) time.
In Algorithm 2 follows we assume that there exists i0 > 1 such that λi0 >

∑
i,i0 λi. Otherwise, the solution

approach is trivial.
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Algorithm 2 Solves the inverse ordered median problem on an unweighted star graph.
Input: An instance of the inverse ordered 1-median problem on a star S = (V,E) with sorted edge lengths.

for any pair of vertices {u, v} in V such that it satisfies `u ≤ `i0−1 ≤ `i0 ≤ `v do
if {u, v} is not a candidate pair then

The subproblem P{u,v} is infeasible.
else

Solve the subproblem P{u,v} and get the optimal objective value Val{u,v}
end if

end for
Compare all Val{u,v} and get the minimum value. The corresponding solution is the optimal solution of
the problem.
Output: The optimal solution of the problem.

We analyze the complexity of Algorithm 2. We first sort all the lengths of the star graph in O(n log n)
time. For each pair {u, v}, we can check if it is a candidate pair in O(1) time and solve the corresponding
problem P{u,v} in O(1) time. As there are at most O(n2) pairs, all subproblems can be solved in O(n2) time.
We then choose the smallest objective value in O(n2) time. Finally, we get the result on the solvability of the
inverse ordered 1-median problem on a star graph as follows.

Theorem 4.9. The inverse convex ordered 1-median problem on an unweighted star graph can be solved in O(n2)
time, where n + 1 is the number of vertices.

5. Conclusions and Outlook

We investigated in this paper some polynomially solvable cases of the inverse ordered 1-median problem
on trees. Precisely, the inverse convex ordered 1-median problem on paths and the inverse ordered 1-median
problem on unweighted stars can be solved in polynomial time. We further improved the result in [13] by
proving that, the inverse k-centrum problem on weighted stars is NP-hard.

For future research, the results in this paper play an important role in the following.
- As the topology structure of the caterpillar trees is somehow related to that of paths and stars, the

solution approaches in this paper form the basis for considering the inverse ordered 1-median problem on
caterpillars.

- It is worthwhile to investigate the inverse ordered 1-median problem in the real line, or say R1, as the
line is closely related to path graphs. Then, we can also extend the corresponding results in the line to the
inverse ordered 1-median problem on the plane.

- Another promising topic is to find an exact solution approach for the inverse convex ordered 1-median
problem on trees; e.g., through a mixed integer program.

- The inverse ordered 1-median problem on unweighted paths was investigated with non-decreasing
multipliers, it is therefore interesting to study the problem with general multipliers.
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Appendix

Proof of Lemma 4.4.

Let f [vi,v j]
λ (.) denote the ordered 1-median objective function, which is defined on the edge (vi, v j). We

recall that `0 = 0. We consider some cases as follows.

1. If λ0 >
∑

i,0 λi, we consider a point x(t) ∈ (v0, vi) such that d(v0, x(t)) = t. The distance from x(t) to
v j is ` j + t for j , i and to vi is `i − t. For 0 ≤ t ≤ `i

2 , the function fλ(x(t)) is a piecewise linear increasing
function as the slope of fλ(x(t)) is positive. For `i

2 ≤ t ≤ `i, i.e., `i − t ≤ t, the function fλ(x(t)) is decreasing.
Therefore, the minimum value of fλ(x(t)) is either f [v0,vi]

λ (x(`i)) = fλ(vi) for i = 1, . . . ,n, or fλ(v0). Moreover,
f [v0,vi]
λ (`i) = f (vi) ≥ f (v0) as d(v( j), v0) < d(v( j), vi) for j = 1, 2, . . . ,n. and d(v(0), v0) = d(v(0), vi) = 0. In

conclusion, v0 is an ordered 1-median of the star, see Figure 4.
2. If there exists i0 > 0 such that λi0 >

∑
i,i0 λi, we take a point x(t) on an edge of the star S. We consider

the following situations.
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t

f (x(t))

`i
2

`i0

Figure 4: The ordered 1-median function satisfies f (vi) > f (v0).

a. If x(t) ∈ (v0, v j) for some j < i0, the distance from x(t) to vi is `i + t for i , j and to v j is ` j − t. The slope
of fλ(x(t)) is always nonnegative. Therefore, fλ(x(t)) is a piecewise linear increasing function in (v0, v j) and
obtain the smallest value at v0; see Figure 5.

t

f (x(t))

`i0

Figure 5: The ordered median function is increasing in (v0, v j).

b. If x(t) ∈ (v0, vi0 ), the distance from x(t) to vi is `i + t for i , i0 and to vi0 is `i0 − t. Then, fλ(x(t)) decreases
in the interval 0 ≤ t ≤

`i0−`i0−1

2 since its slope is negative. However, when t ≥
`i0−`i0−1

2 the slope of fλ(x(t)) is
nonnegative. Thus, the minimal objective value of fλ(x(t)) in the edge (v0, vi0 ) is

A := f [v0,vi0 ](
`i0 − `i0−1

2
).

Moreover, f
[v0,vi0 ]
λ (

`i0−`i0−1

2 ) < fλ(v0) as the function is strictly decreasing when 0 ≤ t ≤
`i0−`i0−1

2 , see Figure
6.

t

f (x(t))

`i0−`i0−1

2
`i00

Figure 6: The ordered median function gets its minimal value at t =
`i0−`i0−1

2 .

c. If x(t) ∈ (v0, v j) for some j > i0, the distance from x(t) to vi is `i + t for i , j and to v j is ` j − t.

The function fλ(x(t)) increases on [0,
` j−`i0

2 ] ∪ [
` j−`i0−1

2 , ` j] and decreases on [
` j−`i0

2 ,
` j−`i0−1

2 ]. Therefore, the two
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possible minimal values of fλ(x(t)) in the edge (v0, v j) are fλ(v0) and f [v0,v j]
λ (

` j−`i0−1

2 ); see Figure 7. We get

B := f [v0,v j]
λ (

` j − `i0−1

2
) < fλ(v0).

t

f (x(t))

` j−`i0
2

` j−`i0−1

2
` j0

Figure 7: The two candidate minimal value of f (x(t)) are obtained at t = 0 and t =
` j−`i0−1

2 .

By elementary calculation, we get B − A > 0. Therefore, it implies f [v0,v j]
λ (

` j−`i0−1

2 ) > f
[v0,vi0 ]
λ (

`i0−`i0−1

2 ). In
other words, the midpoint of (vi0−1, vi0 ) is an ordered 1-median of the star graph.
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