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Impulsive Fractional Differential Inclusions
with Flux Boundary Conditions

Hilmi Ergoren?

?Department of Mathematics, Faculty of Science, Yuzuncu Yil University, 65080, Van/Turkey

Abstract. In this work we investigate some existence results for solutions of a boundary value problem
for impulsive fractional differential inclusions supplemented with fractional flux boundary conditions by
applying Bohnenblust-Karlin’s fixed point theorem for multivalued maps.

1. Introduction

This article is related to the existence of the solutions to the boundary value problem (BVP for short),
for the following impulsive fractional differential inclusions,

Dy(t) € F(tyt), te]:=[0,TL,t#06y 1<a<2, (1)
Ay(0r) = L(y(6))), Ay (00 = Lw(O;)), k=1,2,..p, 2)
y'(0) = ADPy(T), y(0) + y(T) = ya(y'), 3)

where €D is the Caputo fractional derivative, F : [ X R — P(R) is compact convex valued multivalued map
(P(R) is the family of all non-empty subsets of R), Iy, I, g € C(R,R), T(2 — B) # AT with € (0,1] and y,
A are real constants, Ay(6k) = y(0;) — y(0,) with y(6,) = limy,o+ y(6k + h) and y(6,) = limy,o- y(Ok + h),
Ay’ (6k) has a similar meaning for y’(f), and {Gk}]’z:1 is a finite strictly increasing sequence of impulse points
Orsuchthat0 =0y <01 <02 <..<0, <0y =T.

Here, g(y’) may be given by

4
9y) = Y iy (&)
i=1

where n;,i = 1,2, ..., p are given constants and &; € (0;, 0141); | is non-negative integerie. 0 <[ < p.

Plenty of studies have been dedicated to the issue of fractional order impulsive differential equations
and inclusions by many scientists. That is why, it is owing to the fact that each of fractional calculus and
impulsive theory serves very practical instruments for mathematical modeling of many concepts in different
branches of science and engineering [1-7]. See [8-21] for some recent works on fractional differential
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equations and inclusions, and see [22-31] for the ones on impulsive fractional differential equations and
inclusions.

Come to that, the authors in [32] and [33] have considered boundary value problems for fractional
differential inclusions with flux boundary conditions recently. To be precise, the flux boundary condition
x’'(0) = b°DPx(1) in [32] gives the proportional relationship between ordinary flux x’(0) at the left end
point of the given interval [0,1] and a fractional flux CDFx(1) at the right end point of it, where § € (0,1].
Motivatedly, we shall be interested in a class of boundary value problems for the impulsive fractional
differential inclusions with flux boundary conditions as in (1-3).

The rest of the paper is outlined as follows. In Section 2, we present some notations and preliminary
results about fractional calculus and multivalued maps to be used in the sequent sections. In Section 3,
we discuss some existence results for solutions of BVP (1-3) by means of Bohnenblust-Karlin's fixed point
theorem for multivalued maps.

2. Preliminaries

Definition 2.1. ([1, 2]) The fractional (arbitrary) order integral of the function h € L' (J,R,) of order a € R, is
defined by

t -1
(t—s)
1. h(t) = f L h(s)ds,
s = | Sy
where I'(.) is the Euler gamma function.

Definition 2.2. ([1, 2]) For a function h given on the interval ], Caputo fractional derivative of order e > 0 is defined
by

Cra _ t (t - S)n—a—l (1) -
Dg.h(t) = j(; T —a) W (s)ds, n = [a] + 1,

where the function h(t) has absolutely continuous derivatives up to order (n — 1).
Lemma 2.3. ([1]) Let a > 0, h(t) € C" [a, b], then

%D h(t) = h(t) + co + c1(t — a) + co(t — a)* + ... + cur (t — )",
forsomec;€R,i=0,1,2,.,n-1, n=[a] +1.

Let us set ]0 = [60/ 61]/ ]1 = (91/ 62]/"'/]]{—1 = (Qk—ll Qk]/ Ik = (Qk/ 6k+1]/ ]I = [0/ T]\{Glr 62/ ceey Gp} and
define the set of functions:

PC(JR)={y:] = R:y e C((6k,0ks1],R), k =0,1,2, ..., p and there exist y(@l’;) and y(@;), k=1,2,.,p
with y(6,) = y(6x)} and

PCY(J,R) = {y € PC(J,R), y € C((6k, Okal,R), k = 0,1,2,...,p and there exist y'(0;) and y'(6;), k =
1,2,..,p with ]/(6}:) = y (6x)} which is a Banach space with the norm HyH = supy, {”y”
“y”PC = sup{|y(t)| (te ]}.

Let L! (J,R) denote the Banach space of measurable functions x : ] — R which are Lebesque integrable
with the norm

pc Y ”Pc}’ where

T
Il = f lx(f)| dt for all x € L1 (], R).
0

Now, we recall some basic facts of multivalued maps. See the books of Gorniewicz [34], Aubin and
Frankowska[35], Deimling [36], and Hu and Papageorgiou[37]:
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For a Banach space (X, ||.||), denote:

PX)={YCX:Y#0},PuX)={Y e P(X): Yisclosed},

Pur(X) ={Y € P(X) : Yis bounded}, P,(X) = {Y € P(X) : Y is convex},
Peop(X) ={Y € P(X) : Y is compact}, P,p(X) = {Y € P(X) : Y is convex and compact} .

A multivalued map G : X — P(X) has convex(closed) values if G(x) is convex(closed) for all x € X. G is
bounded onbounded sets if G(B) = U,epG(x) isbounded in X forall B € $(X) (i.e. sup, 4 {sup {Hy“ Ty € G(x)}} <

A multivalued map G : [0,1] — Pu(X) is said to be measurable if for every x € X, the function
Y : [0,1] — X defined by Y(¢) : dist(x, G(t)) = inf {||x — z|| : z € G(t)} is Lebesque measurable.

A multivalued map F : | X X — P(X) is said to be L!-Caratheodory if

i) t — F(t, u) is measurable for each u € X,

ii) u — F(t, u) is upper-semi continuous for almost all ¢ € J,

iii) For each q > 0, there exists ¢, € L' (J,R,) such that

IF(t, w)ll = sup{[v] : v € F(t,u)} < ¢y(t)

for all ||Ju|| < g and for almost all € .
For a function x € PC'(J, R), we define the set of selections of F by

Skx={v e L'(JR)  o(t) € F(t,x) forae. t € J}.

Lemma 2.4. ([38])Let F : [XR — Py, p(R) be L'-Caratheodory multivalued map with Sg, # 0 and let L be a linear
continuous mapping from L' (J, R) to C(J, R), then the operator

LoSe : C(R) = P, (C(,R))
X+ (Lo Sp) (x) := L(SEx)

is a closed graph operator in C(J,R) x C(J, R).

Proposition 2.5. ([34])Assume ¢ : X — Y is a multivalued map such that ¢(X) C K and the graph T, of ¢ is
closed, where K is a compact set. Then @ is upper semi continuous.

Lemma 2.6. (Bohnenblust-Karlin [39]) Let X be a Banach space, D a nonempty subset of X, which is bounded,

closed, and convex. Suppose G : D — P(X) is u.s.c. with closed, convex values, and such that G(D) C D and G(D)
compact. Then G has a fixed point.

3. Main Results

Definition 3.1. A function y € PC'(], R) with its a-derivative existing on | is said to be a solution of (1-3) if there
exists a function v(t) € Sg, which holds the equation CDYy(t) = v(t) for a.e. t € | where the conditions

Ay(6k) I(w(0,)), Ay (6x) = L(y(0,)), k=1,2,...,p,
y'(©0) = ASDPy(T), y(0)+y(T) = y9(y),

are satisfied for y.
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Lemma 3.2. Let v € L' (J,R). A function y(t) € PC!(J,R) is a solution of the fractional integral equation, for t € Ji,
Oi a-1
_ (0i —s) o
yit) = 29(y ) + 22 ( o T oy 0(s)ds + Li(y(67))

0; L o\a—2
Sy a-o( [ QT o hue)

L Ta-1)
+Z‘(t - 0)) ( fe 6 %v(s)ds + I;(y(e,-‘))) (f - I) %
‘ [ [ T s+ Z s ( - i >>)l @

if and only if y(t) is a solution of the fractional BVP

Ay(Or) = L(y(6,)), Ay’ (6) = L(y(6,)), k=1,2,....p, (5)
y(0) + y(T) = yg(y'), y'(0) = ADPy(T).

Proof. Assume that y(f) is a solution of the problem (5). Then from Lemma 2.3 we have

{ CDy(t)=o(t), te]:=[0,T], t#0r 1<a<?2,

. [ oo v(s)ds+z[ O oeds + (@)
y =

k
+L(t-6) [ B G o)ds + 1;@(9;))] +oo+art.
1=

Moreover, we find the constants ¢y and ¢; by utilizing the boundary conditions y(0) + ¥(T) = yg(y’) and
y'(0) = ACDP y(T). And we obtain the fractional integral equation (4) by substituting cy and c;.

On the other hand, let y(f) satisfy the equation (4). Then, the fractional equation CD"‘y(t) = o(t) in (5)
can be obtained in view of Definition (2.2) together with the property (CD"‘I"‘U) (t) = o(t), @ > 0 ([1], Lemma
2.21). Further, it can be easily seen that Eq. (4) holds the impulse and boundary conditions in (5). Hence,
the solution y given by (4) satisfies (5). The proof is complete. []

For the sake of convenience, we rewrite the integral equation (4): for t € Ji,

_ (0; =5 52t -T—0; (% (6;—9)*2
Y = M(t)+2z f T (s)ds+; > @7 (s)ds

1 1

T(T -5yt Lt —s)r! T AT(2 - B)
_5 5 T v(s)ds + ek T v(s)ds + (t - _)—F(Z B) AT
(T —s)*~ B-1 (T - 91,)1—[5 0; (6 _s)a—z
X[ o Ta-p O +Z [C-p Jo, T@-D ”(S)dSJ ©

where

y 1y 52 -T-0,
M) = S9)+5) WO + ) =L ()
i=1

T\ ATQ-p) (-6,
+(t_§)1‘(2—5)—)\’1‘15; re—p WO
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Theorem 3.3. Assume that

A1)The function F : ] X R = Peyep(R) is L'-Caratheodory, A2)There exist a continuous non-decreasing function
Y : [0,00) = (0,00) and a function m(t) > 0, Vt € J with m® = sup {{m(t)| : t € J} such that ||F(t,u)|| < m(t)(|ul)
for V't € J,Yu € R with

lim M =0,

x—+00 X

A3)There exist constants My > 0, My > 0 and M3 > 0 such that |I(u)] < My,
ueRandk=1,2,..,pwith

IZ(u)( < M, and )g(u)| < M; for all

M = sup |M(t)|
te]
in view of My, M, and M.

Then, the BVP(1-3) has at least one solution.

Proof. Let us transform the problem (1)-(3) into a fixed point problem. By making use of (6) we consider
the operator N : PC!(J,R) — P(PCl(], R)) defined by N(y) = {h € PCY(J, R)} where, t € J,

_ (0 —5)*! : (6 —5)"2
W) = M(t)+22fx1 T M2 y(s)ds + Z fe o o(s)ds
(T —s)*! (t=s)*" T AT(2 - B)
_E . —F(a) v(s)ds + Lk T(@) U(s)ds+(t— _)—F(Z B~ AT 7
(T — s)a6-1 (T-0)'F (% (0; —s)*2
x( T ()ds+Z Gp ). Ta-T v(s)ds]

foro(t) € Sg,. Itis obvious that the fixed points of the operator N give solutions to the problem (1)-(3). Now,
we shall apply Bohnenblust-Karlin’s fixed point theorem (Lemma 2.6) in order to show that the operator N
has fixed points. Then, let us try to satisfy the conditions of Lemma 2.6. The proof will be given in several
steps for convenience.

Step1: ”N(y) is convex for each y € PC(J,R).”

Let hy, ho € N(y) with vy, 0, € Sy such that, for j = 1,2,

0; a-1 0; 0; — a-2
hi(ty = M(t)+ 2Zf ( r(S; vj(s )ds+ZZt -0 . (F(ai)l) vj(s)ds

. T) AT(2 - B)

(T—S)a 1 (f—S)a 1
B2 o (s)ds + (t ~3)ta=p it

_E o —F(a) 'Uj(S)dS-l‘ 0 F(OZ)

T e k e )
(T—s)a p-1 (T—@,’)l B i (Qi—s)"’ 5
X[Lk Ha—_mvj(s)ds+; Te-p Jo. T@-1 U]-(s)ds]
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then, for each t € | we have

k 0i L \a—1
0+ Q=) = 33, [ i -l

k _T_0N. 0i a-2
+;2t Z O [ Oz 1 (5) + (1 — dyoa(s)]ds

0 Ia-1)
1 (T(T-s)*"!
3, W[dvl(s) + (1 - d)va(s)]ds
t _ o\a-1
9 %[dvl(S) (1 = dyos(s)]ds
T AT(2 - B)
& ‘)W
_ o)a—p-1
X( ) %{dvl(s)ul—d)vz(s)lds

k _ 0 (o oya-
B iy U i

+ TQ2-p) Jo, Tla-1) [do1(s) + (1 = d)oa(s))ds |,

where 0 <d < 1.
Since Sg, is convex (i.e. dvi(s) + (1 —d)va(s) € Sk for v1,v2 € Spyand 0 < d < 1) then dhy (t) + (1 —d)ha(t) €
N(x).
( S)tepz: “There exists a constant ry > 0 such that we have N(Q,,) € Q,, foreach y € Q, = {y(t) € PC'(J,R) :
“y” <r}foranyr>0.”
That is to say, (), is a bounded closed convex set in PC1(J, R).
Let y € Q, and h € N(y) with v € S, then for each t € ] we obtain

(6 -9)*! RE-T—6) (% (6 —s)*
NGO < M)+ ZZ [re e |v(s>|ds+2— s b
T (T = g)r-1 Lt = g)r! AT@ - p)|
3 Sy, T e [ S ot - T AT ]
(T —s)* (T—6)"F [ (6;—s)
x{ ., Ha—ﬁ)|v(s)|ds+2 o5 fel A Iv(s)lds]
pT* pT* T I
Nwe] < M +m°”b(”y”){2r(a+1) @) T @+1) 2@+
IATT(2 - B) ( ToB pjra—ﬂ )
2|r@-p) - AT \T(@ =g +1) " T@r@-p)

T(p+pa+2) T [(1-p)Ba,1-p)+ p]} )

o
INw© < M+ y(lyDS { Tw+ T @ -~ T |1

where B(m, n) is Beta function.

Since limy_ oo K = 0 from (A2), there exists a positive number ry which is sufficiently large such that
T'(p+pa+2) WTH [0 - HB1-p) +p]
T(a+1) IF@ - p) - AT |T(a) '

o > M+ 1#(7’0)% {
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This, together with (7), implies that ||N (y)(t)” < 19 whenever Hy“ <rp. Thus, N(Q,,) € Q,, now is shown.
Step3: N is a compact multi-valued map.”
It is clear that NV(€),) is uniformly bounded from (7). It remains to show that N (€2,) is equicontinuous.
Assume thatl,l; € |, I; <. Let y € Q, and h € N(y) with v € Sg,, such that

0i 0; — a-2
W) = M’t)+z (( i)1)

(-5 re-p
* f@k Ta—1) "% 1o B)— AT F

v(s)ds

T(T sy S (T=0)'F (70—
x[ . T@-p v(s)ds+2 TZ-p Jo. T@-1 v(s)ds
where
a=2
HE < M)+ Z f s s
(t—s)*2 MT@ - p)
+fek Ma-p "OI® 1r(2—5)—)\T1—ﬁ|
T —p— k _
(T —s5)* 1 (T-0)'F (7 (6 =s5)*>
X[fek e p |v(s)|ds+; G-y T@oT |U(s)|ds]
: , e T
LG O] +mo¢<||y||>{ ERT
ATQ - p) ( T pT? ) .
Ir@-p) - AT6[\T(@-p+1) "Tra-p)f’

Then for each t € | we have

I
|W (s)| ds
L
(I -h)K

INW)(I2) = N(y)(1)|

IA

IN

implying that NV is equicontinuous on | since the right-hand side of the inequality tends to zero as [y — I,.
Thus, as a consequence of Arzela-Ascoli theorem, the operator N : PC!(J,R) — P(PCl(], R)) is a compact
multivalued map.

Step4: ”N has a closed graph.”

Let y, — x., h, — h. and h, € N(y,) with v, € Sg, , such that for each t € |

~ % (0; - 5)*! 50t - % (0; - 5)*2
h() = M)+ ZZ LT vn<s>ds+;] ey e
1 (T (T-s)! L (t—s)al T\ ATQ2-p)
- fe s | o vn(S)ds+(t—E)—F(Z_ﬁ)_ﬂﬂ_ﬁ

T 4 r e .
(Gl (T—0)'F (% (6; - 52
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Then we have to show that there exists v, € Sg, ,, in order to prove that . € N(y.) such that for each t € |

0; 6 (. _ -
h(t) = M(t)+22 6; =51 v*(s)ds+ZZt =0 (7 Gizs) 20*(s)ds

. I'(a) 0i1 [(a-1)
1 (T(T- s)“‘1 () A T AT(2 - B)
-5 A T 0.(s)ds + o T@ ———0.(s)ds + (t - —) T@_p) _ATF B) AT
T —p- k - 0, =
(T —s)*F1 (T-6)"F 7 (6;—s)*2
X . Ta-p v.(s)ds + LiTC-f) Jo, Ta-1) v.(s)ds (8)

Let us consider the continuous linear operator £ : L' (J,R;) — C(J,R),

£ (t _ S)a—l
I(a)

Obviously, by the continuity of M(t), we have

v— (L)) = v(s)ds.

17 (8) = Myu(8) = [R(t) = ML(D)]Il = O

asn — oo.
It results from Lemma 2.4 that £ o Sr is a closed graph operator. Furthermore, since (h,(t) — M,(t)) €
L(Sgy,) and y,, — y., Lemma 2.4 implies that the relation (8) holds for some v. € Sf, ..
As a consequence of Proposition 2.5, N is an upper semi-continuous compact map with convex closed
values. Therefore, thanks to Bohnenblust-Karlin’s fixed theorem (Lemma 2.6), we conclude that NV has a
fixed point y € PC!(J, R) which is a solution of the problem (1-3). [
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