The Drazin Inverse of the Sum of Two Bounded Linear Operators and its Applications

Hua Wanga, Junjie Huangb, Alatancang Chenc

aCollege of Sciences, Inner Mongolia University of Technology, Hohhot, PRC
bSchool of Mathematical Sciences, Inner Mongolia University, Hohhot, PRC
cHohhot Minzu College, Hohhot, PRC

Abstract. Let P and Q be bounded linear operators on a Banach space. The existence of the Drazin inverse of $P + Q$ is proved under some assumptions, and the representations of $(P + Q)^D$ are also given. The results recover the cases $P^2Q = 0, PQ = 0$ studied by Yang and Liu in [19] for matrices, $Q^2P = 0, PQP = 0$ studied by Cvetković and Milovanović in [7] for operators and $PQ^2 = 0, P^2Q = 0$ studied by Shakoor, Yang and Ali in [16] for matrices. As an application, we give representations for the Drazin inverse of the operator matrix $A = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

1. Introduction

Let X be a Banach space. The set $\mathcal{B}(X)$ consists of all bounded linear operators on X. An operator $T \in \mathcal{B}(X)$ is said to be Drazin invertible, if there exists an operator $T^D \in \mathcal{B}(X)$ such that

$$TT^D = T^D = T(T^D)^2, \quad T^{k+1} = T^k$$

for some integer $k \geq 0$,

where T^D is called the Drazin inverse of T. The smallest integer k satisfying the previous system of equations is called the index of T, and is denoted by $\text{ind}(T)$. In particular, if $\text{ind}(T) = 1$, T^D is called the group inverse of T; if $\text{ind}(T) = 0$, it can be seen that T is invertible and $T^D = T^{-1}$. Note that T^D may not exist, but T^D must be unique if it exists. Moreover, if T is nilpotent, then T is Drazin invertible, and $T^D = 0$.

The Drazin inverse has become a useful tool in the researches of Markov chains, differential and difference equations, optimal control and iterative methods[1, 3].

In [11], M. P. Drazin proves that $(P + Q)^D = P^D + Q^D$ if $PQ = QP = 0$ in an associative ring. In the sequel, many authors begin to consider this problem for matrices and operators, and present explicit representations of $(P + Q)^D$ under the conditions such as

(1) $PQ = QP = 0$ (see [11]),
(2) $PQ = 0$ (see [9, 12]),
(3) $P^2Q = PQ^2 = 0$ (see [5]),

2010 Mathematics Subject Classification. 46C07; 46C05; 15A09.
Keywords. Drazin inverse, bounded linear operator, operator matrix.
Received: 01 December 2015; Accepted: 29 April 2016
Communicated by Dragan S. Djordjević
Research supported by the NNSF of China (11261034, 11461049 and 71561020), and the NSF of Inner Mongolia (2014MS0113).
Email addresses: hrenly9163.com (Hua Wang), huangjunjie@imu.edu.cn (Junjie Huang), alatanca@imu.edu.cn (Alatancang Chen)
Lemma 1.1. Let $T \in \mathcal{B}(X)$, then T is Drazin invertible if and only if $0 \notin \sigma(T) \setminus \{0\}$ and the point zero, provided $0 \in \sigma(T)$, is a pole of the resolvent $R(\lambda, T) = (\lambda I - T)^{-1}$, and in this case the following representation holds:

$$R(\lambda, T) = \sum_{k=1}^{\text{ind}(T)} \lambda^{-k} T^{k-1} T^n = \sum_{k=0}^{\infty} \lambda^k (T^{D})^{k+1},$$

where $0 < |\lambda| < (r(T^D))^{-1}$.

Remark 1.2. From Lemma 1.1, T^D can be obtained by the coefficient at λ^0 in the Laurent expansion of the resolvent $R(\lambda, T)$ in a punctured neighborhood of 0, i.e.,

$$T^D = -\frac{1}{2\pi i} \int_{\Gamma} \frac{R(\lambda, T)}{\lambda} d\lambda,$$

where $\Gamma = \{ \lambda \in \mathbb{C} : |\lambda| = \epsilon \}$ with ϵ being sufficiently small such that $\{ \lambda \in \mathbb{C} : |\lambda| \leq \epsilon \} \cap \sigma(T) = \{0\}$.

Lemma 1.3. Let $A \in \mathcal{B}(X, \mathcal{Y})$ and $B \in \mathcal{B}(\mathcal{Y}, X)$. If BA is Drazin invertible, then AB is also Drazin invertible. Moreover,

$$(AB)^D = A((BA)^D) B, \quad \text{ind}(AB) \leq \text{ind}(BA) + 1.$$ (3)

Lemma 1.4. For the operator matrix $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $A \in \mathcal{B}(X), B \in \mathcal{B}(\mathcal{Y}, X), C \in \mathcal{B}(X, \mathcal{Y})$ and $D \in \mathcal{B}(\mathcal{Y})$. If A is invertible, then \mathcal{A} is invertible if and only if $D - CA^{-1}B$ is invertible.

Remark 1.5. The Lemma above is well known, see, e.g., [15, Lemma 2.1].

2. Main Results

In this section, we investigate the Drazin inverse of the sum of two operators $P, Q \in \mathcal{B}(X)$. It is interesting that the conditions when $n \geq 2$ will share the same representation of the Drazin inverse of $P + Q$.

In order to show that $P + Q$ is Drazin invertible, we need to find out the resolvent of the operator matrix $M = \begin{pmatrix} P & PQ \\ I & Q \end{pmatrix}$ defined on the Banach space $X \times X$. Write $\Delta(\lambda) = \lambda I - R(\lambda, P)Q$. Then, the following two lemmas are necessary.
Lemma 2.1. Let $P, Q \in \mathcal{B}(X)$ be Drazin invertible, $r = \text{ind}(P)$ and $s = \text{ind}(Q)$. If $P^2Q + QPQ = 0$ and $P^nQ = 0$ for some integer $n > 0$, then

$$
\Delta(\lambda)^{-1} = \lambda^{-2}(\lambda^2I + PQ)R(\lambda, Q),
$$

(4)

where $0 < |\lambda| < \min\{|r(P^D)|^{-1}, |r(Q^D)|^{-1}\}$.

Proof. From $P^mQ = 0$ and $P^D = (P^D)^2P$, it follows that $P^DQ = 0$, then $P^mQ = 0$ if the integer $m \geq r$. Moreover, $P^nQ = P^mQ = 0$. By $P^2Q + QPQ = 0$, we have

$$
P^{2k-1}Q = (-1)^{k-1}(Q)^k, \quad P^{2k}Q = (-1)^k(Q)^k, \quad k = 1, 2, \cdots.
$$

(5)

Since there always exists an integer k_0 such that $2^{k_0} \leq n \leq 2^{k_0+1} - 1$ for each n, we deduce $P^{2^{k_0}+1}Q = 0$ from $P^nQ = 0$. This together with Eq.(5) shows that PQ is Drazin invertible, $(PQ)^D = 0$ and $\text{ind}(PQ) \leq 2^{k_0}$. Thus, using Lemma 1.1, we conclude that

$$
R(\lambda, P)PQ = \left(\sum_{k=1}^{2^{k_0}-1} \lambda^{-k}P^{k-1}P^n - \sum_{k=0}^{\infty} \lambda^k(P^D)^{k+1} \right)PQ
$$

$$
= \sum_{k=1}^{2^{k_0}-1} \lambda^{-k}P^kQ
$$

$$
= \sum_{k=1}^{2^{k_0}-1} \lambda^{-k}P^kQ
$$

$$
= (\lambda I - Q) \sum_{k=1}^{2^{k_0}-1} (-1)^{k-1} \lambda^{-2k}(PQ)^k
$$

$$
= (\lambda I - Q)PQR(\lambda^2; -PQ),
$$

where $0 < |\lambda| < (r(P^D))^{-1}$.

Then,

$$
\Delta(\lambda) = \lambda I - Q - R(\lambda, P)PQ
$$

$$
= (\lambda I - Q)(I - PQR(\lambda^2; -PQ))
$$

$$
= \lambda^2(\lambda I - Q)R(\lambda^2; -PQ).
$$

Therefore, we have

$$
\Delta(\lambda)^{-1} = \lambda^{-2}(\lambda^2I + PQ)R(\lambda, Q),
$$

where $0 < |\lambda| < \min\{|r(P^D)|^{-1}, |r(Q^D)|^{-1}\}$.

Lemma 2.2. Under the assumptions of Lemma 2.1, the representation of the resolvent for the operator matrix

$$
M = \begin{pmatrix} P & PQ \\ I & Q \end{pmatrix}
$$

is given by

$$
R(\lambda, M) = \begin{pmatrix} \lambda^{-2}(\lambda I - Q)(\lambda^2I + PQ)R(\lambda, Q)R(\lambda, P) & \lambda^{-2}(\lambda I - Q)PQR(\lambda, Q) \\ \lambda^{-2}(\lambda^2I + PQ)R(\lambda, Q)R(\lambda, P) & \lambda^{-2}(\lambda^2I + PQ)R(\lambda, Q) \end{pmatrix},
$$

(7)

where $0 < |\lambda| < \min\{|r(P^D)|^{-1}, |r(Q^D)|^{-1}\}$.

\qed
Proof. Let \(\rho(\Delta) \) denote the set of all \(\lambda \in \mathbb{C} \) such that \(\Delta(\lambda) \) is invertible in \(\mathcal{B}(\lambda) \). By Lemma 1.4, we obtain \(\rho(M) \cap \rho(P) = \rho(P) \cap \rho(\Delta) \). If \(\lambda \in \rho(M) \cap \rho(P) \), then

\[
R(\lambda, M) = \begin{pmatrix}
R(\lambda, P) + R(\lambda, P)PQ\Delta(\lambda)^{-1}R(\lambda, P) & R(\lambda, P)PQ\Delta(\lambda)^{-1} \\
\Delta(\lambda)^{-1}R(\lambda, P) & \Delta(\lambda)^{-1}
\end{pmatrix},
\]

where \(0 < |\lambda| < \min\{\|(r(P^D))^{-1}, (r(Q^D))^{-1}\}. \) By (4) and (6), we immediately have the expression

\[
R(\lambda, P)PQ\Delta(\lambda)^{-1} = (\lambda I - Q)PQR(\lambda^2, -PQ)\Delta(\lambda)^{-1} = \lambda^{-2}(\lambda I - Q)PQR(\lambda, Q).
\]

Then, we further have

\[
R(\lambda, P) + R(\lambda, P)PQ\Delta(\lambda)^{-1}R(\lambda, P) = (I + R(\lambda, P)PQ\Delta(\lambda)^{-1})R(\lambda, P)
\]

\[
= (I + \lambda^{-2}(\lambda I - Q)PQR(\lambda, Q))R(\lambda, P)
\]

\[
= \lambda^{-2}(\lambda I - Q)(\lambda^2 I + PQ)R(\lambda, Q)R(\lambda, P).
\]

Moreover,

\[
\Delta(\lambda)^{-1}R(\lambda, P) = \lambda^{-2}(\lambda^2 I + PQ)R(\lambda, Q)R(\lambda, P).
\]

The proof is completed. \(\square \)

We will give other two necessary lemmas in order to obtain the representation of \((P + Q)^D\).

Lemma 2.3. Under the assumptions of Lemma 2.1, the following statements are true:

1. The coefficients \(\alpha_i \) at \(\lambda^i \) \((i = -1, 0, 1, 2)\) of \(R(\lambda, Q)R(\lambda, P) \) are given by

\[
\alpha_{-1} = -(Q^\tau \delta P^D + Q^D \tau P^\tau),
\]

\[
\alpha_0 = -(Q^\tau \delta(P^D)^2 + (P^D)^2 \tau P^\tau) + Q^D P^D,
\]

\[
\alpha_1 = -Q^\tau \delta(P^D)^3 + (P^D)^3 \tau P^\tau + Q^D (P^D)^2 + (Q^D)^2 P^D,
\]

\[
\alpha_2 = -Q^\tau \delta(P^D)^4 + (P^D)^4 \tau P^\tau + Q^D (P^D)^3 + (Q^D)^2 (P^D)^2 + (Q^D)^3 P^D,
\]

where \(\delta = \sum_{k=0}^{r-1} Q^k P^D k \), \(r = \sum_{k=0}^{r-1} (Q^D)^k P^k \).

2. \(\alpha_{-1} = Q\alpha_0 + PQ\alpha_1 - QPQ\alpha_2 \) and \(\alpha_0 + PQ\alpha_2 \) are the coefficients at \(\lambda^2 \) of \((\lambda I - Q)(\lambda^2 I + PQ)R(\lambda, Q)R(\lambda, P) \) and \((\lambda^2 I + PQ)R(\lambda, Q)R(\lambda, P) \), respectively.

3. \(-PQ^D - P^2 (Q^D)^2 \) and \(-Q^D - P(Q^D)^2 \) are the coefficients at \(\lambda^2 \) of \((\lambda I - Q)PQR(\lambda, Q) \) and \((\lambda^2 I + PQ)R(\lambda, Q) \), respectively.

Proof. (1) Note that \(P, Q \) are Drazin invertible. Applying Eq.(1) for \(P, Q \) in a punctured neighborhood of 0, we have

\[
R(\lambda, Q) = \sum_{k=1}^{\infty} \lambda^{-k} Q^{k-1} Q^\tau - \sum_{k=0}^{\infty} \lambda^k (Q^D)^{k+1}
\]

and

\[
R(\lambda, P) = \sum_{k=1}^{\infty} \lambda^{-k} P^{k-1} P^\tau - \sum_{k=0}^{\infty} \lambda^k (P^D)^{k+1}.
\]

Then the coefficients \(\alpha_i \) at \(\lambda^i \) \((i = -1, 0, 1, 2)\) of \(R(\lambda, Q)R(\lambda, P) \) can be easily obtained.
Thus, by Lemma 2.3 (1), \(\alpha_{-1} - Q\alpha_0 + PQ\alpha_1 - QPQ\alpha_2 \) is the coefficient at \(\lambda^2 \) of \((\lambda I - Q)(\lambda I + PQ)R(\lambda, Q)R(\lambda, P)\). Analogously, (3) can be proved. \(\square \)

Lemma 2.4. Under the assumptions of Lemma 2.1, the following statements are valid:

1. \(\tau Q = Q \), and hence \(\tau P^2Q = P^2Q \).
2. \(\tau PQ = PQ + Q^Dp^2Q \), and hence \(\tau PQ^D = PQ^D + Q^Dp^2Q^D \).
3. \(\tau\delta = \tau + \delta - I \).
4. \(\alpha_{-1}PQ = \alpha_0PQ = \alpha_1PQ = Q\alpha_2PQ = 0 \).
5. \(\alpha_{-1}Q = -Q\alpha_0Q = -(Q^D)^{i+1}, \quad i = 0, 1, 2, 3 \).
6. \(\alpha_{i+1} = -\alpha_{i+1}, \quad i = -1, 0, 1, 2, 3 \).
7. \(\alpha_i P^2(Q^D)^2 = -(Q^D)^{i+2}P^2(Q^D)^2, \quad i = -1, 0, 1, 2 \).

Here
\[
\alpha_3 = -(Q^D\delta(P^D)^5 + (Q^D)^5\tau P^5) + Q^D(P^D)^4 + (Q^D)^3(P^D)^3 + (Q^D)^2P^2 + (Q^D)^3(P^D)^2,
\]
and \(\delta, \tau \) are defined as in Lemma 2.3.

Proof. (1) By \(\tau = \sum_{k=0}^{r-1} (Q^D)^k p^k \), we have \(\tau Q = \sum_{k=0}^{r-1} (Q^D)^k p^k Q \). If \(r \) is odd, then, by Eq.(5), we get
\[
\tau Q = Q + \sum_{k=1}^{r-1} ((Q^D)^{2k-1}p^{2k-1}Q + (Q^D)^{2k}p^{2k}Q)
= Q + \sum_{k=1}^{r-1} ((-1)^{k-1}(Q^D)^{2k-1}(PQ)^k + (-1)^k(Q^D)^{2k}(PQ)^k)
= Q + \sum_{k=1}^{r-1} ((-1)^{k-1}(Q^D)^{2k-1}(PQ)^k + (-1)^k(Q^D)^{2k-1}(PQ)^k)
= Q.
\]
If \(r \) is even, then
\[
\tau Q = Q + \sum_{k=1}^{r-1} ((Q^D)^{2k-1}P^{2k-1}Q + (Q^D)^{2k}P^{2k}Q) + (Q^D)^{r-1}P^{r-1}Q
= Q + (Q^D)^{r-1}P^{r-1}Q
= Q + (-1)^{r-1}(Q^D)^{r-1}(PQ)^r
= Q + (-1)^{r-1}(Q^D)^{r-1}(PQ)^r
= Q - (Q^D)^rP^r Q
= Q
\]
since \(P^rQ = P^{r+1}P^DQ = 0 \), and hence \(\tau Q = Q \). Thus, (1) is proved.
(2) Obviously, \(\tau PQ = \sum_{n=0}^{r-1} (Q^n)p^nQ\). If \(r\) is even, then

\[
\tau PQ = PQ + Q^2p^2Q + \sum_{k=1}^{r-1} ((Q^2)^{2k}p^{2k+1}Q + (Q^2)^{2k+1}p^{2k+2}Q)
\]

\[
= PQ + Q^2p^2Q + \sum_{k=1}^{r-1} ((-1)^k(Q^2)^{2k}(PQ)^{k+1} + (-1)^{k+1}(Q^2)^{2k+1}(Q^2)^{k+1})
\]

\[
= PQ + Q^2p^2Q + \sum_{k=1}^{r-1} ((-1)^k(Q^2)^{2k}(PQ)^{k+1} + (-1)^{k+1}(Q^2)^{2k}(PQ)^{k+1})
\]

\[
= PQ + Q^2p^2Q.
\]

Similarly, if \(r\) is odd, then

\[
\tau PQ = PQ + Q^2p^2Q + \sum_{k=1}^{r-1} ((Q^2)^{2k}p^{2k+1}Q + (Q^2)^{2k+1}p^{2k+2}Q) + (Q^2)^{-1}P^rQ
\]

\[
= PQ + Q^2p^2Q + (Q^2)^{-1}P^rQ
\]

\[
= PQ + Q^2p^2Q.
\]

Therefore, the relation \(\tau PQ = PQ + Q^2p^2Q\) is proved.

On the other hand, by \(P^2Q = -Q^2P\), it is obvious that

\[
\tau P^2Q^2 = -\tau Q^2PQ^2 = -Q^2PQ^2 = P^2Q^2.
\]

(3) In view of \(\tau Q = Q\), we clearly have

\[
\tau\delta = \tau\sum_{k=0}^{\infty} Q^k(P^D)^k
\]

\[
= \tau + (Q^D + Q^2(P^D)^2 + \cdots + Q^{r-1}(P^D)^{r-1})
\]

\[
= \tau + \delta - 1.
\]

(4) We only prove \(\alpha_{-1}PQ = 0\), and the proof of others are similar.

Since \(P^nQ = PQ, \tau PQ = PQ + Q^2P^2Q\) and \(P^2Q + PQ = 0\), it follows that

\[
\alpha_{-1}PQ = -Q^D\tau PQ
\]

\[
= -Q^D(Q^2PQ + Q^3p^2Q)
\]

\[
= -Q^D PQ + (Q^2)^2QPQ
\]

\[
= 0.
\]

(5) The conclusion can be immediately obtained from \(P^DQ = 0\), \(P^nQ = Q\) and \(\tau Q = Q\).

(6) We only prove the case \(i = -1\), and other cases are similar.

Note that \(P^DQ^n = P^D, P^nQ^D = Q^D, P^2Q^D = 0\) and \(P^nQ^n = P^n - Q^D\), so

\[
\alpha_{-1}\alpha_{-1} = (Q^nD^D + Q^n\tau P^n)^2,
\]

\[
= Q^nD^D\delta P^D + (Q^D\tau Q^D\tau P^n + Q^D\tau P^n\delta P^D - Q^D\tau Q^D\delta P^D).
On the other hand, the relation $P D Q = 0$ implies $P D = P D$ and $P D = \delta - PP D$. Also, $\tau Q D = Q D$ can be obtained based on $\tau Q = Q$. Therefore, we have

$$a - 1 \alpha - 1 = Q^\tau \delta (P D)^2 + (Q D)^2 \tau P n + Q D (\delta - P P D) P D - Q D Q D \delta P D$$

$$= Q^\tau \delta (P D)^2 + (Q D)^2 \tau P n - Q D P D$$

$$= -\alpha_0,$$

since, by Lemma 2.4 (3),

$$Q D \tau (\delta - P P D) P D = Q D (\tau \delta - \tau P P D) P D$$

$$= Q D (\tau + \delta - I - \tau P P D) P D$$

$$= Q D (\tau + \delta - I) P D - Q D \tau P D$$

$$= Q D (\delta - I) P D.$$

(7) Note that $\tau P D Q^2 = P D Q^2$. Then, the claim follows from $P D Q D = 0$ and $P n P D (Q D)^2 = P D (Q D)^2$. □

The following is the main result of this section.

Theorem 2.5. Let $P, Q \in B(\lambda)$ be Drazin invertible, $r = \text{ind}(P)$ and $s = \text{ind}(Q)$. If $P D + Q P Q = 0$ and $P n Q = 0$ for some integer $n > 0$, then $P + Q$ is Drazin invertible, and

$$(P + Q D) = -\alpha_0 P - PQ \alpha_2 P + (Q D)^2 + Q D,$$ \hspace{1cm} (10)

i.e.,

$$\begin{align*}
(P + Q D) &= Q n \sum_{i=0}^{r-1} (P D)^{i+1} + \sum_{i=0}^{r-1} (Q D)^{i+1} P n P \sum_{i=0}^{r-1} (Q D)^{i+1} P n \\
&+ PQ n \sum_{i=0}^{r-1} (Q D)^{i+1} P n - PQ D^2 P D - PQ Q D (P D)^2.
\end{align*}$$ \hspace{1cm} (11)

Moreover, $\text{ind}(P + Q) \leq r + s + 3$.

Proof. Let $A = (P, Q) : X \oplus X \rightarrow X$ and $B = (P) : X \rightarrow X \oplus X$. Then $P + Q = AB$ and $BA = M$, where M is defined as in Lemma 2.2. By Lemma 2.2, we obtain

$$R(\lambda, BA) = \begin{pmatrix} \lambda^{-2}(AI - Q)(AI + PQ)R(\lambda, Q)R(\lambda, P) & \lambda^{-2}(AI - Q)PQR(\lambda, Q) \\
\lambda^{-2}(AI + PQ)R(\lambda, Q)R(\lambda, P) & \lambda^{-2}(AI + PQ)R(\lambda, Q) \end{pmatrix}$$ \hspace{1cm} (12)

for λ belonging to a punctured neighborhood of 0, which shows that $R(\lambda, BA)$ has a pole at $\lambda = 0$ of order at most $r + s + 2$. So, according to Lemma 1.1, BA is Drazin invertible and $R(\lambda, BA)$ has the Laurent series

$$R(\lambda, BA) = \sum_{k=1}^{r+s+2} \lambda^{-k}(BA)^{k+1}(BA)^n - \sum_{k=0}^{\infty} \lambda k((BA)^D)^{k+1}$$

in a punctured neighborhood of 0. Thus, by Lemma 2.1, AB is Drazin invertible, i.e., $P + Q$ is Drazin invertible. In addition, we have

$$(P + Q D) = (AB D)^2 B$$ \hspace{1cm} (13)

and $\text{ind}(P + Q) \leq \text{ind}(BA) + 1 \leq r + s + 3$.

According to Lemma 2.3 and the expression (12) for $R(\lambda, BA)$, $\alpha_0 - Q \alpha_0 + PQ \alpha_1 - PQ Q \alpha_2, \alpha_0 + P Q \alpha_2, -Q D - P D^2 (Q D)^2$ and $-Q D - P (Q D)^2$ are the coefficients at λ^0 of $\lambda^{-2}(AI - Q)(AI + PQ)R(\lambda, Q)R(\lambda, P), \lambda^{-2}(AI + PQ)$.
Therefore, from Eq. (13), we obtain that

\[
(\mathbf{BA})^D = -\frac{1}{2\pi i} \int \frac{1}{\lambda} R(\lambda, \mathbf{BA}) d\lambda
\]

This gives

\[
\begin{pmatrix}
\alpha_1 - \alpha Q_0 + P Q \alpha_1 - Q P Q \alpha_2 - P Q P Q - P^2 (Q^D)^2 \\
\alpha_0 + P Q \alpha_2
\end{pmatrix}
\]

Then

\[
((\mathbf{BA})^D)^2 = \begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\]

where

\[
\begin{align*}
C_{11} &= (\alpha_1 - \alpha Q_0 + P Q \alpha_1 - Q P Q \alpha_2 - (P Q P Q + P^2 (Q^D)^2))(\alpha_0 + P Q \alpha_2), \\
C_{12} &= -(\alpha_1 - \alpha Q_0 + P Q \alpha_1 - Q P Q \alpha_2)(P Q P Q + P^2 (Q^D)^2) \\
&\quad + (P Q P Q + P^2 (Q^D)^2)(P Q P Q + P^2 (Q^D)^2), \\
C_{21} &= (\alpha_0 + P Q \alpha_2)(\alpha_1 - \alpha Q_0 + P Q \alpha_1 - Q P Q \alpha_2) - (P Q + P(Q^D)^2)(\alpha_0 + P Q \alpha_2), \\
C_{22} &= -(\alpha_0 + P Q \alpha_2)(P Q P Q + P^2 (Q^D)^2) + (P Q P Q + P^2 (Q^D)^2)^2.
\end{align*}
\]

By Lemma 2.3 and Lemma 2.4, together with \(P Q + P Q Q = 0, Q^D = Q(Q^D)^2\) and \((Q^D)^2 P^2 (Q^D)^2 = -Q^D P(Q^D)^2\), we can deduce that

\[
\begin{align*}
C_{11} &= -\alpha_0 + Q \alpha_0 + Q^D P Q \alpha_2 - Q^D Q \alpha_0 - Q Q^D P Q \alpha_2 + P Q(Q^D)^2 \alpha_0 \\
&\quad + P Q P Q \alpha_2 + Q P Q(Q^D)^2 \alpha_0 - Q P Q(Q^D)^2 \alpha_0 - Q P Q P Q \alpha_2 + Q \alpha_1 \\
&\quad - P Q \alpha_2 - P Q^2 \alpha_0 - P Q P Q \alpha_2 + P^2 (Q^D)^2 \alpha_0 - P^2 (Q^D)^2 P Q \alpha_2 \\
&\quad = -\alpha_0 + Q \alpha_1 - P Q \alpha_2 + Q P Q \alpha_3, \\
C_{12} &= Q^D P^2(Q^D)^2 - Q^D(Q^D)^2 P^2(Q^D)^2 + P Q(Q^D)^3 P^2(Q^D)^2 - Q P Q(Q^D)^4 P^2(Q^D)^2 \\
&\quad + P(Q^D)^2 + P Q^2 P(Q^D)^2 + P^2(Q^D)^3 + P^2(Q^D)^2 P(Q^D)^2 \\
&\quad = P(Q^D)^2 + P^2(Q^D)^3, \\
C_{21} &= -\alpha_1 + Q \alpha_0 + Q P Q \alpha_2 - Q P \alpha_3 + P Q(Q^D)^3 Q \alpha_0 + P Q(Q^D)^3 P Q \alpha_2 \\
&\quad - Q^D \alpha_0 - Q^D P Q \alpha_2 - P(Q^D)^2 \alpha_0 - P(Q^D)^2 P Q \alpha_2 \\
&\quad = -\alpha_1 - P Q \alpha_3, \\
C_{22} &= (Q^D)^2 P^2(Q^D)^2 + P Q(Q^D)^4 P^2(Q^D)^2 + (Q^D)^2 + Q^D P(Q^D)^2 \\
&\quad + P(Q^D)^3 + P(Q^D)^2 P(Q^D)^2 \\
&\quad = (Q^D)^2 + P(Q^D)^3.
\end{align*}
\]

Thus,

\[
((\mathbf{BA})^D)^2 = \begin{pmatrix}
-\alpha_0 + Q \alpha_1 - P Q \alpha_2 + Q P Q \alpha_3 \\
-\alpha_1 - P Q \alpha_3
\end{pmatrix}
\]

Therefore, from Eq. (13), we obtain that

\[
(P + Q)^D = (I \ Q) \begin{pmatrix}
-\alpha_0 + Q \alpha_1 - P Q \alpha_2 + Q P Q \alpha_3 \\
-\alpha_1 - P Q \alpha_3
\end{pmatrix} P(Q^D)^2 + P^2(Q^D)^3 \\
(P(Q^D)^2 + P^2(Q^D)^3)
\]

\[
= -\alpha_0 P - P Q \alpha_2 P + P^2(Q^D)^3 + Q(Q^D)^2 + Q P(Q^D)^3 \\
= -\alpha_0 P - P Q \alpha_2 P + P^2(Q^D)^2 + Q^D.
\]
Instituting the expression (8) of \(a_0, a_2\) into Eq. (15), then we have

\[
(P + Q)^D = Q^n \sum_{i=0}^{s-1} Q^i (P^D)^{i+1} + \sum_{i=0}^{r-1} (Q^D)^{i+1} P_i P^n + P \sum_{i=0}^{r-1} (Q^D)^{i+2} P_i P^n
+ PQ^n \sum_{i=0}^{s-2} Q^{i+1} (P^D)^{i+3} - PQ^D P^D - PQQ^D (P^D)^2
\]

from \(Q^n Q^s = 0, P^n P^m = 0, Q^D - Q^D P^D P = Q^D P^n\) and \(P(Q^D)^2 - P(Q^D)^2 P Q = P(Q^D)^2 P^n\). \(\square\)

Remark 2.6. In Theorem 2.5, we find that the representation (11) of \((P + Q)^D\) is the same when \(n \geq 2\).

If let \(A = (Q^D) : X \oplus X \rightarrow X\) and \(B = (P^D) : X \rightarrow X \oplus X\), then \(P + Q = AB\), and we have

Theorem 2.7. Let \(P, Q \in \mathcal{B}(X)\) be Drazin invertible, \(r = \text{ind}(P)\) and \(s = \text{ind}(Q)\). If \(PQ^2 + PQP = 0\) and \(PQ^n = 0\) for some integer \(n > 0\), then \(P + Q\) is Drazin invertible, and

\[
(P + Q)^D = Q^n \sum_{i=0}^{s-1} Q^i (P^D)^{i+1} + \sum_{i=0}^{r-1} (Q^D)^{i+1} P_i P^n + \sum_{i=0}^{r-2} (Q^D)^{i+3} P_i P^n Q
+ Q^n \sum_{i=0}^{s-1} Q^i (P^D)^{i+2} Q - Q^D P^D Q - (Q^D)^2 PPPQ.
\]

The following corollary is the case when \(n = 1\) of Theorem 2.5.

Corollary 2.8. [9, 12] Let \(P, Q \in \mathcal{B}(X)\) is Drazin invertible, \(r = \text{ind}(P)\) and \(s = \text{ind}(Q)\). If \(PQ = 0\). Then \(P + Q\) is Drazin invertible, and

\[
(P + Q)^D = Q^n \sum_{i=0}^{s-1} Q^i (P^D)^{i+1} + \sum_{i=0}^{r-1} (Q^D)^{i+1} P_i P^n.
\]

Remark 2.9. When \(n = 2\) in Theorem 2.5 and Theorem 2.7, we obtain the results of [19, Theorem 2.1, Theorem 2.2] and [7, Lemma 4]. When \(n = 3\) in Theorem 2.5, we get the result of [16, Theorem 5].

In fact, the condition \(PQ^2 = 0\) in [16, Theorem 5] can be obtained from \(P^2 Q + PQQ = 0\) and \(PQ = 0\). On the other hand, since \(\text{ind}(P^2) = \left\lceil \frac{\text{ind}(P^2)}{2} \right\rceil = \text{ind}(P)\) and \(P^k P^n = 0\) \((k \geq \text{ind}(P))\), \(X\) in [16, Theorem 5] can be simplified as \(X = \sum_{i=0}^{r-1} (Q^D)^{i+3} P_i P^n + \sum_{i=0}^{r-1} Q^r Q (P^D)^{i+3} - (Q^D)^2 P^D - Q^D (P^D)^2\), where \(r = \text{ind}(P), s = \text{ind}(Q)\). Thus, the representation of \((P + Q)^D\) in [16, Theorem 5] is reduced to the formula of (11).

3. Application to Bounded Operator Matrices

Let \(Y, Z\) be Banach spaces, and let \(A = \begin{pmatrix} A & B \\ C & D \end{pmatrix}\) be a bounded linear operator matrix on \(Y \times Z\). In the following, we illustrate an application of our results to establish representations for \(A^D\) under some conditions.
Lemma 3.1. [8] Let \(M_1 = \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} \), \(M_2 = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \) be operator matrices. If \(\operatorname{ind}(A) = a \), \(\operatorname{ind}(D) = d \), then \(M_1 \) and \(M_2 \) are Drazin invertible, and

\[
M_1^D = \begin{pmatrix} A^D & 0 \\ X_1 & D^D \end{pmatrix}, \quad M_2^D = \begin{pmatrix} A^D & X_2 \\ 0 & D^D \end{pmatrix},
\]

where \(X_1 = D^n \sum_{i=0}^{d-1} D^i C(A^D)^{i+2} + \sum_{i=0}^{a-1} (D^iA)^{i+2} CA^D - D^i CA^D \),

\[
X_2 = A^n \sum_{i=0}^{d-1} A^i B(D^D)^{i+2} + \sum_{i=0}^{a-1} (A^D)^{i+2} BD^i D^\pi - A^D BD^D.
\]

The case \(BC = 0 \), \(BDC = 0 \) and \(BD^2 = 0 \) has been studied in [10] and the case \(ABC = 0 \), \(BDC = 0 \), \(CBC = 0 \) and \(D^2C = 0 \) in [16] for matrices. We focus our attention in the generalization of the mentioned results.

Theorem 3.2. Let \(A \in \mathcal{B}(\mathcal{Y}), D \in \mathcal{B}(\mathcal{Z}) \) be Drazin invertible, \(a = \operatorname{ind}(A) \), \(d = \operatorname{ind}(D) \). Assume that one of the following holds:

1. \(ABC + BDC = 0 \), \(CBC + D^2C = 0 \) and \(D^nC = 0 \) for some integer \(n > 0 \). Further, \(BD^{n-1}C = 0 \) if \(n \) is odd;
2. \(CAB + CBD = 0 \), \(CBC + CA^2 = 0 \) and \(CA^n = 0 \) for some integer \(n > 0 \). Further, \(CA^{n-1}B = 0 \) if \(n \) is odd.

Then the operator matrix \(\mathcal{A} \) is Drazin invertible, and

\[
\mathcal{A}^D = \begin{pmatrix} A^D + BC(A^D)^{i+1} & X + BC(A^D)^{i+2}X + A^i XD^\pi + BCX(D^\pi)^2 \\
C(A^D)^{i+2} + DC(A^D)^{i+1} & D^\pi + CA^i XD^\pi + DC(A^D)^{i+2}X(D^\pi)^2
\end{pmatrix}.
\]

where \(X = A^n \sum_{i=0}^{d-1} A^i B(D^D)^{i+2} + \sum_{i=0}^{a-1} (A^D)^{i+2} BD^i D^\pi - A^D BD^D \).

Proof. We consider the splitting \(\mathcal{A} = P + Q \), where \(P = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \), \(Q = \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \). Then

\[
P^nQ = \begin{pmatrix} \sum_{k=0}^{n-1} A^k BD^{n-1-k}C & 0 \\ D^nC & 0 \end{pmatrix}.
\]

If (1) holds, then \(D^{2k}C = C(-BC)^k \) by \(CBC + D^2C = 0 \). Thus, using \(ABC + BDC = 0 \), we have

\[
\sum_{k=0}^{n-1} A^k BD^{n-1-k}C = \sum_{k=0}^{n-1} (A^{2k+1} BD^{n-2-2k}C + A^{2k} BD^{n-1-2k}C)
\]

\[
= \sum_{k=0}^{n-1} (A^{2k+1} BC(-BC)^{\frac{n-2-2k}{2}} + A^{2k} BDC(-BC)^{\frac{n-1-2k}{2}})
\]

\[
= \sum_{k=0}^{n-1} A^{2k}(ABC + BDC)(-BC)^{\frac{n-2-2k}{2}}
\]

\[
= 0
\]
when \(n \) is even, and
\[
\sum_{k=0}^{n-1} A^k BD^{n-1-k} C = BD^{n-1} C + \sum_{k=1}^{n-1} A^k BD^{n-1-k} C
\]
\[
= \sum_{k=1}^{n-1} \left(A^{2k} BD^{n-1-2k} C + A^{2k-1} BD^{n-2k} C \right)
\]
\[
= \sum_{k=1}^{n-1} \left(A^{2k} BC(BC)^{\frac{n-2k}{2}} + A^{2k-1} BDC(BC)^{\frac{n-2k}{2}} \right)
\]
\[
= \sum_{k=1}^{n-1} A^{2k-1}(ABC + BDC)(BC)^{\frac{n-2k}{2}}
\]
\[
= 0
\]
when \(n \) is odd. So, \(P^n Q = 0 \) according to \(D^n C = 0 \). On the other hand, a straightforward calculation shows that \(P^n Q + QPQ = 0 \). The desired result follows from Theorem 2.5 and Lemma 3.1.

Similarly, if (2) holds, then we conclude that \(QP^2 + QPQ = 0 \) and \(QP^n = 0 \). Therefore, the claim follows from Theorem 2.7. \(\square \)

If we consider the splitting \(M = P + Q \), where \(P = \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}, Q = \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}, \) then we obtain the following result.

Theorem 3.3. Let \(A \in \mathcal{B}(Y), D \in \mathcal{B}(Z) \) be Drazin invertible, \(a = \text{ind}(A), d = \text{ind}(D) \). Assume that one of the following holds:

1. \(CAB + DCB = 0, BCB + A^2B = 0 \) and \(A^nB = 0 \) for some integer \(n > 0 \), further, \(CA^{n-1}B = 0 \) if \(n \) is odd;
2. \(BCA + BDC = 0, BCB + BD^2 = 0 \) and \(BD^n = 0 \) for some integer \(n > 0 \), further, \(BD^{n-1}C = 0 \) if \(n \) is odd.

Then the operator matrix \(\mathcal{A} \) is Drazin invertible, and
\[
\mathcal{A}^D = \left(\begin{array}{ccc} A^{n} + BXA^{n} + BD^{n}X + AB(D^n)^{X} & X^{+}CBX(A^{n})^{Y} + CBX(A^{n})^{Y} & BD^{n}X + AB(D^n)^{Y} \\ X^{+}CBX(A^{n})^{Y} + CBX(A^{n})^{Y} & D^{n}X + CBX(D^n)^{Y} & BD^{n}X + AB(D^n)^{Y} \end{array} \right)
\]

where \(X = D^{\frac{n}{2}} \sum_{i=0}^{d-1} D^{i}C(A^{D})^{i+2} + \sum_{i=0}^{a-1} (D^{i})^{\frac{a+2}{2}}CA^{i}A^{n} - D^{D}CA^{D} \).

Acknowledgments

The author would like to thank the anonymous referees for their very detailed comments and many constructive suggestions which helped to improve the paper.

References

