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Teichmüller Space of a Countable Set of Points on the Riemann Sphere
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Abstract. We introduce the Teichmüller space T(E) of an ordered countable set E of infinite number of
distinct points on the Riemann sphere. We discuss the relation between the Teichmüller distance on T(E)
and a natural one on the configuration space for E. Also we give a system of global holomorphic coordinates
for T(E) when E is determined from a finitely generated semigroup consisting of Möbius transformations
with the totally disconnected forward limit set.

1. Introduction

Let E = {zk}
∞

k=1 be an ordered countable set of an infinite number of distinct points on Ĉ. We define a
natural kind of the deformation space of E as follows.

Definition 1.1. Let QC(E) be the set of all ordered countable sets E′ = {z′k}
∞

k=1 of an infinite number of distinct

points on Ĉ such that there are quasiconformal self-homeomorphisms f of Ĉwhich are order-preserving from
E onto E′ in a sense that f (zk) = z′k for every k.

We say that two points E1 and E2 of QC(E) are equivalent if there is a conformal self-homeomorphism, or
equivalently a Möbius transformation, φ of Ĉwhich is order-preserving from E1 onto E2.

The Teichmüller space T(E) of E consists of all equivalence classes [E] of E ∈ QC(E).

The Teichmüller metric on T(E) is defined as usual.

Definition 1.2. The Teichmüller distance between [E1] and [E2] in T(E) is defined by setting

dT([E1], [E2]) = inf
1

log K1,

where 1moves all quasiconformal self-homeomorphisms 1 of Ĉ order-preserving from E1 onto E2.

It is clear that the Teichmüller distance dT is actually a distance, and hence T(E) equipped with dT is a
metric space.
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Remark 1.3. We can define the Teichmüller space T(E) of an ordered countable set of infinite number
of points on a general Riemann surface R, and can equip T(E) with a natural complex Banach manifold
structure under some conditions. We will discuss it in a forthcoming paper. In this paper, we give some
interesting examples in the next section instead.

Without loss of generality, we may assume in the sequel that an ordered countable set E = {zk}
∞

k=1 is
normalized, i.e.

z1 = ∞, z2 = 0, z3 = 1.

Then, every point [E′] of T(E) contains a single normalized ordered countable set, say E′, and hence in the
sequel, we identify T(E) with the set NQC(E) of all normalized ones in QC(E), and write [E′] simply as E′.

In particular, a simple canonical parametrization of T(E) is defined as follows.

Definition 1.4. The configuration space of normalized ordered countable sets of infinite number of distinct
points on C − {0, 1} is the subset

Σ = {{wk}
∞

k=1 ∈ Ω = (C − {0, 1})∞ | wm , wn if m , n}

of the product space C∞.

The topology of C∞ is usually induced from component-wise convergence. In this paper, we assume
that the subset Ω, and hence also Σ, is equipped with the hyperbolic `∞ distance defined by

d
(
{wk}, {w′k}

)
= sup

k
dh(wk,w′k)

for every {wk}, {w′k} ∈ Ω, where dh is the hyperbolic distance on C − {0, 1}. In general, Σ is not necessarily
open in Ω.

Definition 1.5. Let E be an ordered countable set as above. Then, there is a natural injection

ι : T(E) = NQC(E)→ Σ,

by sending E′ = {z′k}
∞

k=1 ∈ NQC(E) to {z′k+3}
∞

k=1 ∈ Σ.

We have equipped T(E) with the Teichmüller distance dT, while the image ι(T(E)) with the hyperbolic
`∞ one. Hence, we need to clarify the relation between these two distances.

Here, we consider the following condition.

Definition 1.6. We say that a normalized ordered countable set E = {zk} is uniformly discrete if

inf
m,n≥4,m,n

dh(zm, zn) > 0.

Example 1.7. The density of the hyperbolic metric dh on C − {0, 1} near∞ is comparable with

1
|z| log |z|

,

and hence zk = a2k
with a > 1, k ≥ 4 give a uniformly discrete normalized ordered countable set.

Let UD be the subset of T(E) consisting of those which are uniformly discrete.

Lemma 1.8. The subset UD is open in T(E).
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Proof. Suppose that E′ = {z′k} ∈ T(E) is uniformly discrete, and set

a = inf
m,n≥4,m,n

dh(z′m, z
′

n) > 0.

Then a classical theorem due to Teichmüller (cf. [1]) states that there is an ε > 0 such that every K-qc
self-homeomprphism f of C fixing 0, 1 with K < 1 + ε satisfies

dh(z′m, f (z′m)) ≤ a/3

for every m ≥ 4. Actually, ε = ea/3
− 1 is available. Thus we conclude the assertion.

Theorem 1.9. The injection ι : T(E) → Σ is continuous and non-expanding. Moreover, ι is a locally bi-Lipschitz
homeomorphism of UD onto its image, i.e., for every E′ ∈ UD, there are a neighborhood V of E′ and an M > 0 such
that

1
M

dT(E1,E2) ≤ d(ι(E1), ι(E2)) ≤M dT(E1,E2),

for every E1,E2 ∈ V.

Proof. Again by the classical theorem due to Teichmüller stated in the above proof, we see that

d(ι(E1), ι(E2)) ≤ dT(E1,E2)

for every E1,E2 in T(E), which means that ι is continuous and non-expanding.
Next, fix {wk}

∞

k=1 in ι(UD). Then the assumption implies that

a = inf
m,n

dh(wm,wn) > 0.

In particular, the (a/3)-neighborhoods Uk of wk with respect to the hyperbolic metric dh are mutually disjoint
in C− {0, 1}. Here replacing a/3 by a smaller positive constant if necessary, we may assume that Uk is either
a topological disk or an annulus for every k. In the latter case, we can find a positive a′ (< a/3), depending
only on a, such that either the a′-neighborhood of wk is a topological disk or the hyperbolic distance between
wk and the boundary of Uk is greater than a/4 for every k.

In any case, there exists a positive η, sufficiently smaller than a′, satisfying the following condition: For
every {w′k} in

V = {{w′k} ∈ Σ | d
(
{w′k}, {wk}

)
< η},

we can construct explicitly a normalized quasiconformal self-homeomorphism f of C, order-preserving
from {wk} onto {w′k}, such that f is the identical map on C −

⋃
k Uk and the maximal dilatation of f is

bounded by

exp
(
Md({w′k}, {wk})

)
,

where M is a positive constant depending only on a, a′, and η.
Thus we conclude that V ⊂ ι(UD) and ι is a locally bi-Lipschitz homeomorphism of UD to its image.

Remark 1.10. The continuous and non-expanding injection ι seems not always to be locally bi-Lipschitz on
T(E). Also see Remark 2.11 below.

On the other hand, the standard complex analytic structure of T(E), if exists, is given by using Beltrami
coefficients, and the corresponding normalized quasiconformal homeomorphisms gives holomorphic fam-
ilies (cf. [4]). In particular, components wk of Σ always induce some complex Banach manifold structure on
T(E) if ι(T(E)) is open in Ω.
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2. Countable Sets Ordered by Möbius Action

Let S be a semigroup generated by Möbius transformations of the Riemann sphere Ĉ. We give a canonical
order to S by using the word length of the reduced word expressions and in addition by giving elements
with same length the lexicographic order with respect to the ordered generators. So, we consider S as an
ordered set {σk}

∞

k=1. Here we always assume that the identity e is added to S and σ1 = e.
For the sake of simplicity, we restrict ourselves to the case that S is finitely generated in the sequel.

Definition 2.1. Let S = [11, · · · , 1n] be a semigroup generated by a finite number of ordered non-identical
Möbius transformations 11, · · · , 1m. Assume that∞ is a fixed point of 11 and that 1k have mutually distinct
fixed points in C.

We say that an ordered countable set E of an infinite number of distinct points on Ĉ including ∞ is
S-invariant if

1(E) ⊂ E for every 1 ∈ S

and
n⋃

k=1

1k(E) ⊃ E.

We say that the order of E is induced from the S-action if there is an order-preserving injection

τ : E→ S.

Remark 2.2. The second condition of S-invariance is equivalent to

E =

n⋃
k=1

1k(E).

If S is a group, then the first condition implies that 1(E) = E for every 1 ∈ S, and hence the second
condition is unnecessary.

For a countable set E with an order induced from the S-action, we consider the Teichüller space T(E; S)
of E with S-action as follows.

Definition 2.3. Let E,S = [11, · · · , 1n], τ : E → S be as above and QC(E; S) the set of all triples (E′; S′, τ′) of
ordered countable sets E′ = {wk}

∞

k=1 of infinite number of distinct points on Ĉ, semigroups S′ = [1′1, · · · , 1
′
n]

isomorphic to S by the isomorphisms σS′ : S → S′ which send 1k to 1′k for every k, and order-preserving
injections τ′ : E′ → S′ such that τ′(E′) = σS′ ◦ τ(E) and there are quasiconformal self-homeomorphisms f of
Ĉwhich equal τ′−1

◦ σS′ ◦ τ on E.
We say that two points (E1; S1, τ1) and (E2; S2, τ2) of QC(E; S) are equivalent if there is a conformal self-

homeomorphism φ of Ĉ such that φ(E1) = E2 and

τ2 ◦ φ = (σS2 ◦ σ
−1
S1

) ◦ τ1

on E1.
The Teichmüller space T(E; S) of E with S-action consists of all equivalence classes [E; S, τ] of (E′; S′, τ′) ∈

QC(E; S), which we write simply by [E] whenever S′ and τ′ are clear.
The Teichmüller distance dT on T(E; S) is defined similarly as before.

Now, we give two typical examples where the closures of all fixed points of elements in S−{e} are totally
disconnected. In each examples, we can give a system of global coordinates for the standard complex
Banach manifold structure on T(E; S).
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Example 2.4. We consider a semigroup S = [11, · · · , 1n] generated of contractive similarities

11(z) = λ1z, 12(z) = λ2(z − 1) + 1,
13(z) = λ3(z − α3) + α3, · · · , 1n(z) = λn(z − αn) + αn.

Here, n ≥ 3, 0 < |λk| < 1, and 0, 1, α3, · · · , αn are distinct.
Assume that the attractor of the IFS (iterative function system) given by S is dust-like. In other words,

the forward limit set Λ(S) is totally disconnected. For the backgrounds on IFSs, see [2] and the references
of it.

The standard order of S starts with e, 11, 12, · · · , 1n, and so on. Let E = {zk}
∞

k=1 be the set consisting of
z1 = ∞ and all other fixed points of elements in S. Here, we have already normalized S so that the fixed
points z2 and z3 of 11 and 12 are 0 and 1, respectively. Also we set zk+1 = αk for every k = 3, · · · ,n.

Define the injection τ : E→ S as in Definition 2.1 by sending∞, 0, 1, · · · , αn, and every other fixed point
zk ∈ E ∩ C of some 1(k) to e, 11, · · · , 1n, and 1(k) for every k ≥ n + 2, respectively, where 1(k) is assumed to
have the smallest order among all 1 ∈ S − {e} having zk as the fixed point, and assume that the order of E is
induced from the S-action by τ. Then we can define T(E; S).

By the normalization, we have a canonical continuous injection

j : T(E; S)→ ND(n)

by sending [E′,S′ = [1′1, · · · , 1
′
n], τ′] to (1′1, · · · , 1

′
n). Here, ND(n) is the subspace of (CS)n consisting of all

(11, · · · , 1n) normalized as above, where CS is the space of all contractive similarities.

Theorem 2.5 ([2]). The Teichmüller space T(E; S) is identified with the dust-likeness locus DL(n) consisting of all
S′ = [1′1, · · · , 1

′
n] ∈ ND(n) with totally disconnected Λ(S′).

In particular, T(E; S) is a domain in ND(n), and the (2n − 2) fixed points, say z4, · · · , z2n+1, of

13, · · · , 1n, 1112, · · · , 111n, 1211,

in E gives a system of global coordinates for T(E; S).

Actually, the first assertion has been shown as Theorem 1.2 in [2].
Next, by definition, zk+1 = αk for every k = 3, · · · ,n, and the fixed points z2n+1 of 1211 and zn+k of 111k

with k ≥ 2 are

λ2 − 1
λ1λ2 − 1

and
λ1αk(λk − 1)
λ1λk − 1

,

respectively. In particular,

λ1 =
zn+2

z2n+1
, λ2 =

z2n+1 − 1
zn+2 − 1

,

and hence we can conclude that

λk =
z2n+1zn+k − zn+2zk+1

zn+2(zn+k − zk+1)

for k = 3, · · · ,n. It is clear that these relations gives a bi-rational homeomorphism of T(E; S) in C2n−2 with
coordinates z4, · · · , z2n+1 onto the domain DL(n) in C2n−2 with coordinates

λ1, · · · , λn, α3, · · · , αn.
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Example 2.6 (cf.[8]). Let G = 〈11, · · · , 1n〉 be a Schottky group, i.e., a finitely generated purely loxodromic
free discrete group with totally disconnected limit set, generated by ordered n (≥ 2) Möbius transformations
11, · · · , 1n. For the backgrounds on Kleinian groups, see for instance [6].

The standard order of G starts with

e, 11, 1
−1
1 , 12, 1

−1
2 , · · · , 1n, 1

−1
n ,

and so on. We consider the set E = {zk}
∞

k=1 consisting of all fixed points of elements in G− {e}. We normalize
E so that z1 = ∞ and z2 = 0 are the repelling and the attracting fixed point of 11, and z3 = 1 is the repelling
fixed point of 12. Also we assume that z4 is the attracting fixed point of 12, and that z2k−1 and z2k are the
repelling and the attracting fixed points of 1k, respectively, for k = 3, · · · ,n. Recall that the sets of the fixed
points of different 1 ∈ G − {e} are mutually distinct and the attracting fixed point of 1 is the repelling one of
1−1.

Define the injection τ : E → G by sending the repelling fixed point zk of 1(k) to 1(k) for every k ≥ 2n + 1,
where 1(k) is assumed to have the smallest order among all 1 ∈ G−{e} having zk as the repelling fixed points,
and assume that the order of E is induced from the G-action by τ. Then we can define T(E; G).

By the normalization, we have a canonical continuous injection

j : T(E; G)→ NDef(n)

by sending [E′; G′ = 〈1′1, · · · , 1
′
n〉, τ

′] to (1′1, · · · , 1
′
n). Here, NDef(n) is the subspace of (PSL(2,C))n consisting

of all (11, · · · , 1n) normalized as above, where PSL(2,C) is the space of all Möbius transformations.

Theorem 2.7. The Teichmüller space T(E; G) is identified with the normalized Schottky locus NS(n) in NDef(n)
consisting of all normalized system of ordered generators of Schottky groups canonically isomorphic to G.

In particular, T(E; G) is a domain in NDef(n) and 3n − 3 fixed points

z4, · · · z2n, z1·2, z2·1, · · · , zn·1

in E give a system of global coordinates for T(E; G). Here zk· j is the repelling fixed points of 1k1 j1
−1
k for every j and k

with j , k.

Proof. First, recall that NS(n) is a domain in NDef(n) and it is clear that NS(n) ⊂ j(T(E; G)). On the other hand,
take a point [E′; G′, τ′] in j(T(E; G)). Then the definition of T(E; G) implies that G′ is a finitely generated
purely loxodromic free subgroup of PSL(2,C) and the set of all fixed points of elements in G′ − {e} are
mutually disjoint and is contained in a totally disconnected closed subset of Ĉ. Hence by Lemma 2.8 below,
G′ is discrete, which means that j([E′; G′, τ′]) ∈ NS(n).

Next, the ordered fix points and the multiplier determine the Möbius transformation. Hence those of
11, · · · , 1n give a system of global coordinates for NS(n). On the other hand, the multiplier of 11 is 11(1),
which is the repelling fixed point z1·2 of 11121

−1
1 , and the multipliers of other 1k are given by

zk·1 − z2k

zk·1 − z2k−1
.

In particular, these relations gives a bi-rational homeomorphism of T(E; G) in C3n−3 with coordinates

z4, · · · z2n, z1·2, z2·1, · · · , zn·1

onto the domain NS(n) in C3n−3 with coordinates consisting of the ordered fixed points and the multipliers
of all 1k.

Lemma 2.8. Let G be a subgroup of PSL(2,C) which contains no elliptic elements and fixes no points in Ĉ. If the set
of all fixed points of elements in G − {e} is contained in a proper closed subset of Ĉ, then G is discrete.
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Proof. By the classification theorem (Proposition of [7]), the assumptions implies that G is either discrete
or a non-elementary subgroup of PSL(2,R) without elliptic elements. But it is elementary to show that the
latter is also discrete.

Remark 2.9. We can consider an infinitely generated normalized Schottky group G as in [5]. Even in
this case, we can consider an ordered set E consisting of all fixed points of elements in G − {e} and
the corresponding Teichmüller space T(E; G), where some ordered subset of E gives a system of global
coordinates of T(E; G).

Note that in the previous proofs of theorems, we could use the following classical variants of global
coordinates.

Definition 2.10. The cross-ratio χ(a, b, c, d) of distinct 4 points a, b, c, d in C is defined by

χ(a, b, c, d) =
a − b
a − c

d − c
d − b

(and by taking the limit if one of them is∞).
When a, b, c, d are in E, then χ(a, b, c, d) can be considered as a function on T(E), which we call the

cross-ratio coordinate for a, b, c, d ∈ E.

Let CR(E) be the set of all cross-ratio coordinates corresponding to 4 distinct ordered points of E with the
induced order, which are clearly countable. Without using the normalization, CR(E) gives an continuous
injection CR : T(E)→ Ω.

Remark 2.11. We can define a metric on T(E) by using CR(E), which we called the CR-metric in [2]. Again,
we know that the CR metric subordinates to the Teichmüller metric.

Finally, recall that, if T(E) is finite-dimensional, then T(E) is locally compact. Hence we can consider a
natural kind of compactification of it.

Definition 2.12. Let X be a locally compact, but non-compact, Hausdorff space, andF be a set of continuous
maps of X to Ĉ.

Then, a compactification X∗ of X such that every element in F can be extended to a continuous map of
X∗ and that the family of all extended maps separates points of X∗ − X is called an F -compactification of X.

Proposition 2.13. There exists an CR(E)-compactification T(E)∗ of T(E), which is unique up to homeomorphisms
fixing T(E) point-wise.

For the reference and the proof, see [3].
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