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The Homogeneous Weight for Rk, Related Gray Map
and New Binary Quasi-Cyclic Codes
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Abstract. Using theoretical results about the homogeneous weights for Frobenius rings, we describe the
homogeneous weight for the ring family Rk, a recently introduced family of Frobenius rings which have
been used extensively in coding theory. We find an associated Gray map for the homogeneous weight
using first order Reed-Muller codes and we describe some of the general properties of the images of codes
over Rk under this Gray map. We then discuss quasi-twisted codes over Rk and their binary images under
the homogeneous Gray map. In this way, we find many optimal binary codes which are self-orthogonal
and quasi-cyclic. In particular, we find a substantial number of optimal binary codes that are quasi-cyclic
of index 8, 16 and 24, nearly all of which are new additions to the database of quasi-cyclic codes kept by
Chen.

1. Introduction

Codes over Frobenius rings make up an important field of study in the literature of coding theory. An
important aspect of Frobenius rings is that they possess a so-called generating character and it is possible
to define a homogeneous weight on them. For different ways to describe the homogeneous weight and the
related theoretical results we refer the reader to such works as [8], [12], [13] and [14].

Recently, a family of Frobenius rings denoted by Rk have been introduced and studied through different
aspects with coding theory. These are finite commutative rings of characteristic 2 that are non-principal,
non-chain when k ≥ 2 and that generalize such rings as F2 + uF2 and F2 + uF2 + vF2 + uvF2. More on these
rings can be found in [9], [10], [19], [20], etc.

In this work, contrary to the Lee weights used for the ring Rk up to now, we describe the homogeneous
weight for Rk, using the theoretical results related to homogeneous weights for Frobenius rings, and in
particular using a generating character for the ring Rk. We then find a Gray map, ψk, using the first order
Reed-Muller codes, allowing us to map codes over Rk of length n to binary linear codes of length 22k

−1n in a
distance-preserving way. We show that the ψk-images of all linear codes over Rk are self-orthogonal binary
linear codes for k ≥ 2. We also describe quasi-twisted codes over Rk, giving some theoretical results (such
as all quasi-twisted codes over Rk of odd coindex are quasi-cyclic) and describe the binary images under
the ψk-map. We also find many optimal binary codes as the ψk-images of quasi-twisted codes over Rk for
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suitable k. These binary images are at the same time self-orthogonal and quasi-cyclic of certain indices,
almost all of which are new additions to the database of known quasi-cyclic codes kept in [7].

The rest of the work is organized as follows: In section 2 we give some of the preliminaries about the
ring family Rk and the homogeneous weights on Frobenius rings. In section 3, we find the general form
of the homogeneous weight for Rk and we also describe the related Gray map ψk. Section 4 includes the
theoretical discussion on quasi-twisted codes over Rk. In section 5, we give the numerical results, where
we tabulate the optimal binary codes we have obtained from the ψk-images of quasi-twisted codes over Rk.
We then finish with section 6, where we mention the concluding remarks and possible directions of future
research in related areas.

2. Preliminaries

2.1. The rings Rk

The family of rings denoted by Rk have been introduced in [9]. Leaving the details of these rings to the
aforementioned work, we recall some of the basic properties, the proofs of which can be found in [9]. For
k ≥ 1, let

Rk = F2[u1,u2, . . . ,uk]/〈u2
i = 0,uiu j = u jui〉. (1)

We actually take R0 = F2, the binary field. The basis elements of Rk can be viewed, using subsets A ⊆
{1, 2, . . . , k} by letting

uA :=
∏
i∈A

ui (2)

with the convention that u∅ = 1. Then any element of Rk can be represented as∑
A⊆{1,...,k}

cAuA, cA ∈ F2. (3)

The ring Rk is a local ring with maximal ideal 〈u1,u2, . . . ,uk〉 and |Rk| = 2(2k). It is neither a principal ideal
ring nor a chain ring when k ≥ 2, but is a Frobenius ring for all k ≥ 0.

An element of Rk is a unit if and only if the coefficient of u∅ is 1 and each unit is also its own inverse.
The following expresses this more accurately:

∀a ∈ Rk a2 =

{
1 if a is a unit
0 otherwise. (4)

The following observations follow easily from the structure of these rings and will be needed later:

Lemma 2.1. (i) For any a ∈ Rk, we have

a · (u1u2 · · · uk) =

{
0 if a is a non-unit
u1u2 · · · uk if a is a unit.

(ii)For any unit α ∈ Rk and x ∈ Rk, we have

α · x = u1u2 · · · uk ⇔ x = u1u2 · · · uk.

We denote the set of units of Rk byU(Rk) and non-units byD(Rk). It is clear that

|U(Rk)| = |D(Rk)| = 22k
−1 and U(Rk) = D(Rk) + 1. (5)

A linear code of length n over Rk is defined to be an Rk-submodule of Rn
k .
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2.2. The Homogeneous weight on Frobenius rings

Contrary to most of the work done on Rk, instead of the Lee weight and the related Gray map, we will
be interested in the homogeneous weight and the related Gray map. Homogeneous weights were first
introduced by Constantinescu and Heise [8]. We may consider these weights as a generalization of the
Hamming weight for finite rings.

Definition 2.2 ([12, p. 19]). A real valued function w on the finite ring R is called a (left) homogeneous weight, if
w(0) = 0 and the following are true.

(H1) For all x, y ∈ R, Rx = Ry implies w(x) = w(y).

(H2) There exists a real number γ such that∑
y∈Rx

w(y) = γ |Rx| for all x ∈ R\{0}.

The number γ is the average value of w on R, and from condition (H2) we can deduce that the average
value of w is constant on every non-zero principal ideal of R.

Homogeneous weights for Frobenius rings can be described by using the Möbius function. For a finite
poset P, consider the function µ : P × P → C implicitly defined by µ(x, x) = 1 and

∑
y≤t≤x

µ(t, x) = 0 if y < x

and µ(y, x) = 0 if y 
 x. It is called the Möbius function on P and induces for arbitrary pairs of real-valued
functions f , 1 on P the following equivalences, referred to as Möbius inversion

1(x) =
∑
y≤x

f (y) for all x ∈ P⇔ f (x) =
∑
y≤x

1(y)µ(y, x).

Let R be a finite ring and µ be the Möbius function on the set {Rx |x ∈ R } of its principal left ideals (partially
ordered by inclusion). Further let R× denote the set of units in R. The conditions for the existence and
uniqueness of homogeneous weights on finite rings are given by the following theorem in [12].

Theorem 2.3 ([12, p. 19]). A real valued function w on the finite ring R is a homogeneous weight if and only if there
exists a real number γ such that w(x) = γ

[
1 − µ(0,Rx)

|R×x|

]
for all x ∈ R.

Honold [14] described the homogeneous weights on Frobenius rings in terms of generating characters.

Proposition 2.4 ([14, p. 412]). Let R be a finite ring with generating character χ. Then every homogeneous weight
on R is of the form

w : R→ R, x 7→ γ

1 − 1
|R×|

∑
u∈R×

χ(xu)

 . (6)

By Property (H2), the average weight of a left principal ideal of R is γ. The following proposition shows
that for any coset of either a left or a right ideal, the average weight is γ. This property is equivalent to R
being Frobenius.

Proposition 2.5 ([13, p. 412]). Let I be either a left or a right ideal of a finite Frobenius ring R, and let y ∈ R. Then∑
r∈I+y

w(r) = γ |I| .
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3. The Homogeneous Weight and the Related Gray Map for Rk

3.1. The Homogeneous weight for Rk

We will find the homogeneous weight for the ring family Rk using Proposition 2.4. We recall from [9]
that the following is a generating character for the Frobenius rings Rk:

χ(
∑

A⊆{1,2,...,k}

cAuA) = (−1)wt(c), (7)

where by wt(c), we mean the Hamming weight of the F2-coordinate vector of the element in the basis
{uA|A ⊆ {1, 2, . . . , k}}.

For example, for the case of k = 2, we have χ(0) = 1
χ(1) = χ(u) = χ(v) = χ(uv) = −1
χ(1 + u) = χ(1 + v) = χ(1 + uv) = χ(u + v) = χ(u + uv) = χ(v + uv) = 1
χ(1 + u + v) = χ(1 + u + uv) = χ(1 + v + uv) = χ(u + v + uv) = −1
χ(1 + u + v + uv) = 1.
The following lemma will be a key in proving the main theorem about the homogeneous weight on Rk:

Lemma 3.1. Let x be any element in Rk such that x , 0 and x , u1u2 · · · uk. Then∑
α∈U(Rk)

χ(αx) = 0.

Proof. Since χ is a generating character, it is non-trivial when restricted to any non-zero ideal, and thus we
have,∑

α∈Rk

χ(αx) = 0. (8)

But, by (5), since α ∈ U(Rk) if and only if 1 + α ∈ D(Rk), and

χ((α + 1)x) = χ(αx + x) = χ(αx) · χ(x),

the above sum becomes

0 =
∑

α∈U(Rk)

χ(αx) +
∑

α∈U(Rk)

χ(αx)χ(x) = (1 + χ(x))
∑

α∈U(Rk)

χ(αx). (9)

The proof is done if χ(x) = 1. Now, assume χ(x) = −1. Let us label the sum:

F(x) =
∑

α∈U(Rk)

χ(αx).

As α runs through all the units of Rk, we can easily observe that F(x) = F(βx) for all β ∈ U(Rk). Thus (9) can
be written as

(1 + χ(αx))F(x) = 0, ∀α ∈ U(Rk). (10)

So, the proof will be complete if we prove that χ(αx) = 1 for at least one value of α ∈ U(Rk). Assume
to the contrary that χ(αx) = −1 for all α ∈ U(Rk). But, then this means we must have χ(βx) = 1 for all
β ∈ D(Rk). Now, the ideal generated by x must contain u1u2 . . . uk. Since x , u1u2 · · · uk, αx , u1u2 . . . uk
for any α ∈ U(Rk) by Lemma 2.1. Thus we must have βx = u1u2 . . . uk for some β ∈ D(Rk). But this is a
contradiction since χ(u1u2 . . . uk) = −1.

We are now ready to describe the homogeneous weight for Rk:
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Theorem 3.2. The homogeneous weight on Rk is found to be:

whom(x) =


0

2γ
γ

if x = 0
if x = u1u2 . . . uk

otherwise.

Proof. Suppose x = u1u2 . . . uk. Then by Lemma 2.1, αx = x for all α ∈ U(Rk). Thus χ(αx) = −1 for all
α ∈ U(Rk). Hence, by Proposition 2.4, we have

whom(x) = γ

1 − 1
|U(Rk)|

∑
α∈U(Rk)

(−1)

 = 2γ.

If x , 0 and x , u1u2 . . . uk, then by Lemma 3.1, we have
∑
α∈Rk

χ(αx) = 0. Thus we obtain

whom(x) = γ

[
1 −

1
|U(Rk)|

0
]

= γ.

3.2. The Gray map for the homogeneous weights
We will assign a numerical value to γ so that it is possible to define a distance-preserving Gray map. In

[16], hyperplanes in projective geometries were used to define a Gray map for the homogeneous weight on
Rk. Consequently, the choice of γ that was imposed by the combinatorial structure was found to be 22k

−2. A

corresponding Gray map from Rk to F22k
−1

2 was described using the hyperplanes in PG2k−1(F2).
We will adopt the same choice of γ, but instead of the combinatorial description of the Gray map we

will give an algebraic description which uses a well-known family of binary codes, namely first order
Reed-Muller codes.

Thus for us the homogeneous weight on Rk is now defined as follows:

whom(x) =


0

22k
−1

22k
−2

if x = 0
if x = u1u2 · · · uk

otherwise.
(11)

Let us recall that first order Reed-Muller codes, denoted by RM(1,m) have the following well-known
properties:

1. RM(1,m) is a binary linear code of length 2m and of dimension m + 1. It contains the all 1-vector of
length 2m.

2. The minimum weight of RM(1,m) is 2m−1.
3. Every nonzero codeword other than the all 1-vector has weight 2m−1. In other words the weight

enumerator of RM(1,m) is given by 1 + (2m+1
− 2)z2m−1

+ z2m
.

Notice that Rk can be viewed as an F2-vector space with a basis consisting of {uA|A ⊆ {1, 2, . . . , k}}. The
basis has 2k elements. Then if we take RM(1, 2k

− 1), and define an F2-linear map ψk : Rk → RM(1, 2k
− 1) in

such a way that the basis elements are mapped to the basic generating vectors of RM(1, 2k
− 1), the map ψ

will satisfy the following property:

Theorem 3.3. The map ψk defined above is a distance preserving isometry from (Rk, homo1eneous distance) to
(F22k

−1

2 , Hammin1 distance).

Example 3.4. For k = 1, we get the ring to be R1 = F2 + uF2 and in this case the homogeneous weight coincides
with the usual Lee weight that was defined in [9]. The map ψ is the usual Gray map defined in the same work, namely
ψ1(0) = (0, 0), ψ1(1) = (0, 1), ψ1(u) = (1, 1) and ψ1(1 + u) = (1, 0).
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Example 3.5. For the case when k = 2, we describe R2 as F2 + uF2 + vF2 + uvF2, to go by the original notation used
in [20]. The homogeneous weight is given by

whom(x) =


0
8
4

if x = 0
if x = uv
otherwise.

(12)

The map ψ2 in this case can be described by assigning the basis elements as follows:

ψ2(uv) = (1, 1, 1, 1, 1, 1, 1, 1), ψ2(u) = (1, 1, 1, 1, 0, 0, 0, 0)

ψ2(v) = (1, 1, 0, 0, 1, 1, 0, 0), ψ2(1) = (1, 0, 1, 0, 1, 0, 1, 0).

The maps ψk are naturally extended (component-wise) to Rn
k as well. This allows us to consider the

ψk-images of codes over Rk as well. Thus we have the following theorem:

Theorem 3.6. Let C be a linear code over Rk of length n. Then ψk(C) is a binary linear code of length 22k
−1n.

Moreover the homogeneous weight distribution of C is the same as the Hamming weight distribution of ψk(C).

Note that when k ≥ 2, all the homogeneous weights are divisible by 4. Considering the binary images
we get the following observation:

Theorem 3.7. Let C be any linear code over Rk of length n with k ≥ 2. Then ψk(C) is a self-orthogonal binary linear
code of length 22k

−1n.

Remark 3.8. The size of a linear code over Rk of length n is at most 22kn. An inductive argument shows that
k + 1 < 2k

− 1 for all k ≥ 3. Thus, for k ≥ 3, if C is a linear code over Rk of length n, then

|ψk(C)| ≤ 22kn = 22k+1.n/2

< 222k−1
.n/2 =

√
|F22k−1.n

2 |.

This shows that the ψk-image of a code over Rk cannot be self-dual for any k ≥ 3. On the other hand, since

|Rn
2 | = 24n =

√

28n

and by Theorem 3.7, ψ2(Rn
2) is self-orthogonal, we see that ψ2(Rn

2) is a Type II (i.e. all weights are divisible by 4)
binary self-dual code of length n and minimum distance 4 for all n ≥ 1. When n = 1, we get a [16, 8, 4] extremal Type
II binary self-dual code.

4. Quasi-Twisted Codes and their Images

We describe a special class of codes over Rk with respect to the homogeneous distance. Cyclic codes are
a special class of codes, which possess an algebraic structure that allows them to be encoded and decoded
easily and it also provides more information about the code. Cyclic codes over R2 were studied in [19] and
later in more generality in [10] with respect to the Lee metric.

Cyclic codes have two possible generalizations. One is obtained by replacing the ordinary shift with
a λ-shift, which results in λ-constacyclic codes. The other possible generalization is achieved through
replacing the shift with a composition of the shift, thus giving rise to the so-called quasi-cyclic codes.
Constacyclic and quasi-cyclic codes over R2 were studied in [15] and [5] respectively with respect to the
Lee metric. Recently, the concepts of constacyclic and quasi-cyclic codes have been combined to give rise to
a new generalization that generalizes all these concepts, and is called quasi-twisted. Quasi-twisted codes
have been studied for their help in finding many good codes over different alphabets. For the rest of the
paper, quasi-twisted codes will shortly be denoted as QT codes while quasi-cyclic codes will be denoted by
QC codes.
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Definition 4.1. Let R be a commutative ring with identity and suppose that λ ∈ R is a unit. A λ-shift on Rn is
defined to be the map Tλ with the property:

Tλ(a0, a1, . . . , an−1) = (λan−1, a0, a1, . . . , an−2).

When λ = 1 we simply denote it by T and we mean it to be the cyclic shift. This leads to the following
definition on codes over R:

Definition 4.2. Let C be a linear code over R of length n. We say, C is a cyclic code if T(C) = C, a λ-constacyclic
code if Tλ(C) = C. For `|n, we say C is an `-QC code if T`(C) = C, and it is a (λ, `)-QT code if T`λ(C) = C. ` is called
the index of QT codes while n/` is referred to as the coindex of the QT codes.

Structural properties of QT codes over finite fields have been given in [3], [4] and [6]. We recall that to any
vector (a0, a1, . . . , an−1) ∈ Rn, we can assign a polynomial a0 + a1x + . . . an−1xn−1

∈ R[x]. This correspondence
leads to the following well-known theorems:

Theorem 4.3. (i) C is a λ-constacyclic code over R of length n if and only if the polynomial correspondence of C is
an ideal in R[x]/(xn

− λ).
(ii) Suppose n = ` · m. Then a (λ, `)-QT code over R of length n algebraically is an (R[x]/(xm

− λ))-submodule
of (R[x]/(xm

− λ))`.

The following theorem, a special case of which was proved in [15], can easily be proved:

Theorem 4.4. Let R be a finite commutative ring with identity and let λ be a unit in R with λ2 = 1. If n is odd, the
map

µ : R[x]/(xn
− 1)→ R[x]/(xn

− λ)

given by µ( f (x)) = f (λx) is a ring isomorphism.

Since in Rk, all units λ, satisfy λ2 = 1, we get the following corollary:

Corollary 4.5. Let n be odd and λ ∈ Rk be any unit. Then C is a λ-constacyclic code over Rk of length n if and only
if C is a cyclic code over Rk of length n.

Considering the algebraic structure of the QT codes and the above ring isomorphism, we also get the
following result about QT codes over Rk:

Corollary 4.6. Let n = ` ·m, where m is odd and λ ∈ Rk is any unit. Then C is a (λ, `)-QT code over R if and only
if C is an `-QC code.

The above corollaries imply that we do not need to consider constacyclic codes over Rk of odd lengths
and QT-codes of odd coindex as they are cyclic and QC respectively.

4.1. The Binary Images of QT-codes over Rk

We start by observing that

ψk(a0, a1, . . . , an−1) = (ψk(a0), ψk(a1), . . . , ψk(an−1))

for all ai ∈ Rk. Note that ψ(ai) is a binary vector of size 22k
−1. Thus we have

ψk ◦ T(a0, a1, . . . , an−1) = ψk(an−1, a0, a1, . . . , an−2)
= (ψk(an−1), ψk(a0), . . . , ψk(an−2))

= T22k
−1
◦ ψk(a0, a1, . . . , an−1).

In other words, we have

ψk ◦ T = T22k
−1
◦ ψk. (13)

This leads to the following theorem:
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Theorem 4.7. If C is a cyclic code over Rk of length n, then ψk(C) is a binary 22k
−1-QC code of length 22k

−1n. If C is
an `-QC code over Rk of length n, then ψk(C) is a binary (22k

−1
· `)-QC code of length 22k

−1n.

Now, let λ be any unit in Rk. Since λ(u1u2 · · · uk) = u1u2 · · · uk by Lemma 2.1, we have whom(a) = whom(λ ·a)
for all units λ and elements a in Rk. But this means that for any unit λ ∈ Rk and any element a ∈ Rk, ψk(λ · a)
is permutation equivalent to ψk(a). This means that (13) will have the following form

ψk ◦ Tλ(a0, a1, . . . , an−1) ' T22k
−1
◦ ψk(a0, a1, . . . , an−1), (14)

where ' denotes permutation-equivalence. Thus we have the following version of Theorem 4.7:

Theorem 4.8. If C is a λ-constacyclic code over Rk of length n, then ψk(C) is equivalent to a binary 22k
−1-QC code of

length 22k
−1n. If C is a (λ, `)-QT code over Rk of length n, then ψk(C) is equivalent to a a binary (22k

−1
· `)-QC code

of length 22k
−1n.

In the case of R2, which is the most common case we will use in our constructions, we get the following
corollary:

Corollary 4.9. Let C be an `-QC code of length n over R2. Then ψ2(C) is a binary 8`-QC code of length 8n. If C is a
(λ, `)-QT code of length n over R2, then ψ2(C) is permutation-equivalent to a binary 8`-QC code of length 8n.

4.2. One-Generator QT codes

QT codes are structurally complex codes and as such, in their literature the most common types of such
codes that have been considered are the so-called one-generator QT codes. The QC, cyclic and constacyclic
analogues can easily be considered. Assume that 1(x) ∈ R[x]/(xm

− λ) is a polynomial, with λ a unit. Then
the one-generator λ-constacyclic code generated by 1(x) is simply defined to be the principal ideal 〈1(x)〉 in
the ring R[x]/(xm

− λ). It is clear that such a code will be generated by the following matrix:

G =


10 11 12 · · · 1m−1

λ1m−1 10 11 · · · 1m−2
λ1m−2 λ1m−1 10 · · · 1m−3
...

...
...

. . .
...

λ11 λ12 λ13 · · · 10


,

where 1(x) = 10 + 11x + · · · 1m−1xm−1. In some contexts such a matrix is called a λ-twistulant matrix or
λ-circulant matrix. When λ = 1, we simply get a circulant matrix as the generator matrix of a one-generator
cyclic code.

Definition 4.10. A one-generator (λ, `)-QT code over R is a linear code over R generated by a matrix of the form

[G1|G2| · · · |G`],

where each Gi is an m ×m λ-twistulant matrix.

The following theorem, whose cyclic analogue is proved in [5], is easily obtained.

Theorem 4.11. Let C = 〈1(x)〉 be a λ-constacyclic code over Rk of length m where 1(x) is a monic polynomial with
deg(1(x)) = m − k. Then C is a free module of rank k if and only if 1(x)|xm

− λ.

This theorem can then be used to obtain the following result for a special type of one-generator QT
codes:
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Theorem 4.12. Suppose C is a (λ, `)-QT code of length n = m` generated by ( f1(x)1(x), f2(x))1(x), · · · , f`(x)1(x)),
where xm

− λ = 1(x)h(x) with 1(x) and h(x) monic polynomials in Rk[x]/(xm
− λ) and fi(x) is relatively prime to

h(x) for all i = 1, 2, . . . , `. Then C is a free module with rank m − de1(1(x)). In other words, ψk(C) is of dimension
2k(m − de1(1(x)).

There is a natural projection from Rk to its residue field, namely,F2, which we denote byµk. µk essentially
works as reduction modulo the maximal ideal, that is

µk(
∑

A⊆{1,...,k}

cAuA) = c∅. (15)

Non-units are sent to 0, while units are mapped to 1.
The following lemma provides a natural interval for the minimum homogeneous weight of a code over

Rk:

Lemma 4.13. Let C be a linear code over Rk and suppose the minimum Hamming weight of µk(C) is d. Then

22k
−2d ≤ dhom(C) ≤ 22k

−1d.

Proof. For any codeword c = (c1, c2, . . . , cm) ∈ C, the projection under µk has at least d non-zero coordinates,
which means c has at least d unit coordinates, all non-zero. Thus the homogeneous weight of c is at least
d · 22k

−2, giving us the left hand inequality.
For the upper bound, suppose (a1, a2, . . . , am) ∈ µk(C) is a binary codeword in µk(C) whose Hamming

weight is d. Since µk maps units to 1 and non-units to 0, this means there exists (c1, c2, . . . , cm) ∈ C such
that exactly d of the cis are units. But then u1u2 · · · uk(c1, c2, . . . , cm) ∈ C as well, since C is linear over Rk and
this last codeword has exactly d coordinates that are equal to u1u2 . . . uk and the rest equal to 0. Since the
homogeneous weight of u1u2 . . . uk is equal to 22k

−1, we see that

whom(u1u2 · · · uk(c1, c2, . . . , cm)) = 22k
−1d,

giving us the necessary upper bound.

Corollary 4.14. Let C = (11(x), 12(x), . . . , 1`(x)) be a one generator (λ, `)-QT code over Rk of length n = m.`, and
suppose the number of unit coefficients of 1i(x) is di for i = 1, 2, . . . , `. Then

dhom(C) ≤ 22k
−1(d1 + d2 + · · · + d`).

5. Examples of Optimal Binary Codes from ψk-Images of QT Codes over Rk

In this section we will be giving some examples of optimal codes that we have obtained from the
ψk-images of QT-codes over Rk. The optimality of these codes have been established by theoretical upper
bounds and specific constructions in [11]. It turns out that many of our constructions serve as alternative
(and usually much simpler) constructions for the optimal codes. Because the images under ψ of our codes
are binary QC codes of high index, we also compare our results with those collected in [7], the database
of known QT codes. It turns out that we have found many new additions to this database through our
constructions.

Before we proceed, we would like to observe that, ψk is from Rk to F22k
−1

2 . Thus for example for k = 3, ψ3

is from R3 to F128
2 while for k = 4, ψ4 is from R4 to F215

2 . So, for practical purposes, it is not feasible to look
beyond k = 2. That is why, in what follows we will first write down some of the general examples, but then
devote separate subsections to the feasible cases of k = 1 and k = 2.
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5.1. The ψk-images of the repetition code

Let C be the code of length n over Rk generated by (111 . . . 1). It is clear that C is a cyclic and QC code for
any suitable index. C is a free code of free rank 1. Thus |C| = 22k

. Considering the homogeneous weights
and the ψk-image we get the following family of binary codes:

Theorem 5.1. Let C be the code of length n generated by (11 · · · 1) over Rk. Then ψk(C) is a binary linear code of
parameters [n · 22k

−1, 2k,n · 22k
−2]. Moreover, when k ≥ 2, these codes are all self-orthogonal binary codes.

Example 5.2. Putting k = 2 into Theorem 5.1, we get self-orthogonal binary linear codes of parameters [8n, 4, 4n]
from the ψ2-images of the repetition code over R2. For n = 1 up to 6, we get the self-orthogonal binary codes of
parameters [8, 4, 4], [16, 4, 8], [24, 4, 12], [32, 4, 16], [40, 4, 20] and [48, 4, 24], all of which are optimal linear codes
according to [11]. When n = 7 and 8 we get self-orthogonal binary linear codes of parameters [56, 4, 28] and [64, 4, 32].
The optimal codes of these lengths have parameters [56, 4, 29] and [64, 4, 33]. But since these latter codes cannot be
self-orthogonal, the codes we obtain, have the best possible minimum distance among all the self-orthogonal codes of
those lengths and dimensions.

Example 5.3. Putting k = 3 into Theorem 5.1, we get self-orthogonal binary linear codes of parameters [128n, 8, 64n]
from the ψ3-images of the repetition code over R3. The only cases for which we can make comparisons are the cases
when n = 1 and n = 2. With these values, we obtain self-orthogonal binary linear codes of parameters [128, 8, 64]
and [256, 8, 128], both of which are optimal as linear codes.

5.2. Optimal binary codes from (1 + u, 3)-QT codes over R1

Note that the ring R1 = F2 + uF2, the first example of the rings we study, has been studied already
in the literature for cyclic, quasi-cyclic and constacyclic codes. We may refer the reader to [1], [2], [17]
and [18]. Now, the Gray map ψ1 on R1 that we have defined is the same map used in these works that
we have mentioned and the homogeneous weight coincides with the Lee weight used. That is why, we
will focus on (1 + u)-QT codes here. We will fix the index at 3. The results that we have found are quite
different than the ones found in the above-mentioned works. We tabulate our results in the following
table. To save space, we will replace 1 + u by 3. A typical generator of the QT-code will be given in the
form (1112 . . . 1m|h1h2 . . . hm|r1r2 . . . rm). Thus for example (1u|30|u3) will denote the one generator QT-code
generated (1(x), h(x), r(x)) where 1(x) = 1 + ux, h(x) = 1 + u and r(x) = u + (1 + u)x.
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Table 1: Optimal binary codes from (1 + u, 3)-QT codes over R1 of length 3m

m Generator of the code Binary Image under ψ1

2 (0u|0u|uu) [12, 2, 8]
2 (10|11|3u) [12, 4, 6]
2 (0u|33|13) [12, 3, 6]
3 (00u|011|u33) [18, 5, 8]
3 (00u|111|111) [18, 4, 8]
3 (001|113|1u1) [18, 6, 8]
3 (0uu|0uu|uu0) [18, 2, 12]
4 (0011|001u|00u1) [24, 8, 8]
4 (0011|0013|1u1u) [24, 7, 10]
4 (000u|00uu|0uuu) [24, 4, 12]
4 (0u0u|0u0u|uuuu) [24, 2, 16]
5 (0011u|001u3|00u33) [30, 8, 12]
5 (001u1|0013u|01111) [30, 9, 12]
5 (13131|uuuuu|13131) [30, 2, 20]
6 (uuuu11|uuu103|u1u311) [36, 11, 12]b

6 (u1u103|u10101|113133) [36, 6, 16]
6 (u1u3u1|010301|133113) [36, 4, 18]
6 (0u0u0u|0u0u0u|uuuuuu) [36, 2, 24]
7 (uuu1013|uu01033|uu11101) [42, 11, 16]
7 (uu10333|u1330u1|u03u331) [42, 6, 20]
7 (1313131|uuuuuuu|1313131) [42, 2, 28]

Remark 5.4. The [36, 11, 12]-code that is marked with b is the best known code of these parameters. The theoretical
upper bound for the minimum distance of the code of length 36 and dimension 11 is 13, which has not been attained
yet. All the rest of the codes in the table are optimal, meaning that they attain the theoretical upper bounds. We also
note that all the binary codes given in the above table are equivalent to 6-QC codes.

A pattern in the table has led us to observe the following: Suppose m is even. Then, since (1 + u) · u = u,
the (1 + u, 3)-QT code C generated by (0u0u . . . 0u|0u0u . . . 0u|uu . . . u) contains just four codewords given by

(00 . . . 0|00 . . . 0|00 . . . 0), (0u0u . . . 0u|0u0u . . . 0|uu . . . u),

(u0u0 . . . u0|u0u0 . . . u0|uu . . . u), (uu . . . u|uu . . . u|00 . . . 0).

The homogeneous weight distribution of this code is given by 1 + 3z4m. Thus in the ψ1 image we get a
binary [6m, 2, 4m]-code.

When m is odd, we take the generator to be of the form (1313 . . . 1|1313 . . . 1|uu . . . u). Remembering that
3 stands for 1 + u and that (1 + u)(1 + u) = 1 and 1 + (1 + u) = u, again C has 4 codewords in this case, given
by

(00 . . . 0|00 . . . 0|00 . . . 0), (1313 . . . 1|1313 . . . 1|uu . . . u)

(3131 . . . 3|3131 . . . 3|uu . . . u), (uu . . . u|uu . . . u|00 . . . 0).

This code also has minimum homogeneous weight 4m.
Thus we have found the following result:

Theorem 5.5. For any m ≥ 1, we can obtain a binary code of parameters [6m, 2, 4m] as theψ1-image of a (1+u, 3)-QT
code over R1. Note that all such codes attain the Griesmer bound and thus are optimal.
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5.3. Optimal binary codes from QT codes over R2
We give some examples of optimal binary codes from the ψ2-images of cyclic and QC-codes over R2.

R2 = F2 + uF2 + vF2 + uvF2, having 16 elements, we use the hexadecimal notation to denote the elements of
R2 in numerical form. For this we fix the basis {uv, v,u, 1} for R2 and represent the element auv+bv+cu+d as
the 4-bit abcd which, then is represented by its hexadecimal value. Thus for example uv+u+1 is represented
by b, which stands for the numerical value of 11, while v + u + 1 is represented by 7.

Table 2: Optimal binary codes from ψ2-images of cyclic codes over R2

n Generator of the code Binary Image under ψ2 As 8-QC in Database in [7]
2 (11) [16, 4, 8] New
3 (088) [24, 2, 16] New
3 (246) [24, 4, 12] New
3 (135) [24, 8, 8] New
3 (019) [24, 9, 8] New
4 (0282) [32, 4, 16] —
4 (1199) [32, 5, 16] New
4 (1119) [32, 6, 16] New
5 (11111) [40, 4, 20] New
5 (02442) [40, 8, 16] New
6 (aec26c) [48, 4, 24] New
6 (088088) [48, 2, 32] New
7 (0888008) [56, 3, 32] New
8 (ceec4e6c) [64, 6, 32] —

Table 3: Optimal binary codes from ψ2-images of `-QC codes of length ` ·m over R2

` m Generator of the code Binary Image under ψ2 As `-QC in Database in [7]
2 2 (2c|2c) [32, 4, 16] New 16-QC
2 2 (5F|57) [32, 5, 16] New 16-QC
2 3 (088|088) [48, 2, 32] New 16-QC
2 3 (066|6e8) [48, 4, 24] New 16-QC
2 3 (246|2c6) [48, 5, 24] New 16-QC
2 4 (aaa2|4e4e) [64, 5, 32] New 16-QC
2 4 (1573|b f 51) [64, 6, 32] New 16-QC
2 4 ( f 539|b579) [64, 7, 32] New 16-QC
3 2 (08|08|88) [48, 2, 32] —
3 3 (231| f 87|bc7) [72, 8, 32] New 24-QC

Remark 5.6. The codes in Tables 1-3 have different properties even if some of them have the same parameters. The
binary codes in Table 1 are equivalent to 6-QC codes while the binary codes in Table 2 all are 8-QC codes and the ones
in Table 3 are 16-QC or 24-QC according as ` = 2 or 3.

6. Conclusion

It is known in the literature of coding theory that quasi-cyclic codes (and more generally quasi-twisted
codes) tend to have good parameters as they satisfy a modified version of the Gilbert-Varshamov bound.
Many optimal codes have constructions that are related to quasi-cyclic codes.
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In this work, we demonstrated that, considering QT codes over Rk with respect to the homogeneous
weight lead to many optimal (self-orthogonal) codes. Our constructions have resulted much more than
what has been put into Tables 1-3 (with many different weight enumerators and automorphism groups),
however, we have given a sample of these to illustrate the effectiveness of our constructions. We have found
many new quasi-cyclic codes that can be added to the database of known binary quasi-cyclic codes in [7].
We have also come up with rather simple constructions for many optimal binary codes in the database [11],
that otherwise have rather complicated constructions. We believe such an approach can be applied to other
Frobenius rings as well.

Acknowledgment: The authors would like to thank the anonymous referees and the editor for their
valuable remarks that improved the presentation of this paper.
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