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Abstract. This paper shows expressions of a power series for the form of dual split quaternions and
provides differential operators in dual split quaternions. The paper also represents a power series of dual
split regular functions by using a dual split Cauchy-Riemann system in dual split quaternions.

1. Introduction
Cockle [2] introduced a set of split quaternions as
S={A=xg+x161 + 300 + X363 : x, € R, m=0,1,2,3},

where R is the set of real numbers and

2 _ 2 _ 2 _ _
e1=-1, e5=e5=1, e1ee3 =1,

1)
€162 = —€261 = €3, €203 = —€3€2 = —€1, €361 = —€1€3 = €.

A set of split quaternions is non-commutative and it contains zero divisors, nilpotent elements, and non-
trivial idempotents (see [17]). To solve split quaternionic equations, split quaternions have been applied
to geometric and physical (see [1, 3]). Inoguchi [4] reformulated the Gauss-Codazzi equations in forms
consistent with the theory of integrable systems in the Minkowski 3-space for split quaternion numbers.
A dual quaternion can be represented in a form reflecting an ordinary quaternion and a dual symbol.
Dual quaternion algebra is constructed from real eight-dimensional vector spaces and an ordered pair of
quaternions. In addition, from their algebraic properties, dual quaternions are used in computer vision ap-
plications. Kenwright [7] provided the characteristics of dual quaternions and explained how dual number
theory can extend quaternions to dual-quaternions and how we can use them to represent rigid transforms
(i.e., translations and rotations). Pennestri et al. [18] investigated the development and implementation of
algorithms for the solution of linear algebra problems using dual numbers. By using properties of Hamilton
operators, Kula et al. [14] defined dual split quaternions and gave some properties of the screw motion in
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the Minkowski 3-space, showing that quaternions have a rotation with unit split quaternions. Song et al.
[19] gave the notion of coupled quaternions and studied an iterative solution to coupled quaternion matrix
equations.

We [5, 6] proved that any complex-valued harmonic function f; in a pseudoconvex domain has a con-
jugate harmonic function f, in D such that the quaternion-valued function f; + f,j is hyperholomorphic in
D. In addition, we [8, 9] provided a new expression of the quaternionic basis and a regular function on
reduced quaternions by associating hypercomplex numbers e; and e;. We [10, 12] investigated some regular
functions with values in dual quaternions and we [15] researched an extension problem for properties of
regular functions with values in dual quaternions and some applications for such problems. Recently,
we [11, 13] give special representations, calculations and operators of hypercomplex numbers, by using
algebraic properties of cosets.

This paper provides some properties of differential operators and a regular function in dual split
quaternions. The paper also researches some equivalent conditions for Cauchy-Riemann systems and
expressions of a power series in dual split quaternions from the definition of dual split regular functions
on an open set Q C C? x C?, where C is the set of complex numbers.

2. Preliminaries

A dual number has the form a + ¢b, where a and b are real numbers, ¢ is a dual symbol with the rules
¢ #0, ¢ =0and asplit quaternion A € S has an expression of the form

A = xo + x11 + X205 + X3e€3,
where x,, € R (m =0,1,2,3) and e, (r = 1,2,3) are split quaternionic units satisfying noncommutative
multiplication rules: (1).
Similarly, a dual split quaternion p can be written as
D(S)={plp=po+ep1, pr€S, r=0,1},
where Po = z1 + 2202 and p1 = w1 + woe, are split quaternion components, z; = Xy + X161, 22 = X2 + X3€7,
w1 = Yo + Y161 and wy = Y, + yse; are usual complex numbers, and x,,, ¥, € R (m=0,1,2,3).
The multiplication of split quaternionic units and a dual symbol is commutative:
ce, =ee (r=1,2,3).
However, by properties of the split quaternionic unit, we have

zver = €z, wier =ewr (k=1,2,r=0,1)

and
zrer = ez, wyer = ewy (k=1,2,r=2,3),

where z1 = xp — X161, 22 = X2 —x3€1, W1 = Yo — y1e1 and w; = Y, — y3e1. For any two elements p = py + ep; and
g = qo + eq1 of D(S), where go = 23:0 S, 1 = Zf:o tre, are split quaternion components and s,, t, € R (r =
0,1,2,3), their non-commutative product is given by

Pq = (po + ep1)(o + £41) = podo + €(Podu + p1o)-
The conjugation p* of p and the corresponding modulus N(p) = pp* in D(S) are defined by

P =py+ep
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and
N(p) = pp"=p'p=popy + &pop; + p1py)
= (2121 — 2272) + 2e(z1Wn — 20W2)
= (x§ + X7 — X5 — X3) + e(XoYo + X1Y1 — XaY2 — X3Y3),
where py = z1 — 222 and p] = wy — waey.

From the above operators, we have a division of dual split quaternions:

P _ potep _ pofo + E(pody +pidy) _ podo + €(pody + pagp)

q qo + € qq* N(q)
where N(g) # 0.

4

Lemma 2.1. Forall p € D(S), we have

n
-k k-1
pate) pitppl, nez.,
k=1

—n

N ™ +e ) ) " pip) Y, nez.,

k=1

where Z., :=1{0,1,2,3,---Yand Z_ .= {-1,-2,-3,---}.

Proof. If n = 1, then the equation (1) is trivial. Now suppose that this holds for some n € Z,. Then, as
desired,

P =t =pi e ) o) = pi e ) T T + ep
k=1 k=1

n+1

— n+1 n+1-k k-1
= P *e¢ Z Po "P1Py -
k=1

By the principle of mathematical induction, (1) holds for all # € Z,. On the other hands, forn € Z_,

o (P N R, p = (L) = N
P - NG’ p 2_<N(p)) = N(p) 2(P 2, p 3_(N(p)) = N(p) 3(}7 2.

By continuing the above calculations, we obtain

pr=NE ()" + e ) )R T, ez

k=1

Lemma 2.2. Forallp € D(S)andn € N := (1,2,3, ...} and an exponential function on D(S), denoted by exp(p),
we have an Euler formula with a dual part of dual split quaternions:

exp(ep1) = cos(epr) +sin(ep1) or exp(ep1) = cosh(epr) + sinh(epy).
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Proof. From a Taylor series of transcendental functions and properties of the dual symbol ¢, we have

o (ep)t v CD)"ep)?
exp(epy) = ; i 1+ ep1, cos(epr) = L eV
R . 2n o —1*(e 2n+1
cosh(epr) = )| (Z;)), =1, sin(epr) =) % = epy,
n=0 ' n=0 '

] R (g )2n+1
sinh(ep1) = Z ﬁ = ep1.
n=0 ’

Therefore, by comparing above equations, we obtain the result. [

Let Q be an open subset of C? x C2. Then the function f : Q — D(S) can be expressed as

fp) = f(po, p1) = fopo, p1) + €fi(po, p1),

where the component functions f, : Q — § (r = 0,1) are split quaternionic-valued functions. The
component functions f, (r =0, 1) are

fo(po, p1) = fo(z1, 22, w1, w2) = g1(21, 22, W1, W2) + ga(21, 22, W1, Wa)ea,
filpo, p1) = fi(z1, 22, w1, w2) = hi(z1, 22, w1, W2) + ha(z1, 22, W1, W2)ez,
where g1 = up + uie1, g» = up + uze;, 1 = vy + vie; and hy = v, + v3e; are complex-valued functions,

and u, = uy(xo, X1, X2, X3, Yo, Y1, Y2, y3) and v, = v,(Xo, X1, X2, X3, Yo, Y1, Y2, y3) (r = 0,1,2,3) are real-valued
functions.

Now, let differential operators D; and D, be defined on D(S) as
Dy = D(ll) + ED(lz).
Also, for efficient representations and calculations of Definition 2.4, Corollaries 3.2 and 3.4, by referring

the process of describing complex differential operators with one complex variables, we define the form as
follows:

D, = D(21) + ED(zz) = (i + iez) + E(i + J e )

821 822 &wl 8_wz 2
Then the conjugate operators D) and D;, are
Dj = Dzll) + sDle) , Dy = D221) + eDzzz),
where
Jd J
D = — + =6, D = =—+ —6,
(1) (921 822 2 (12) 8w1 wy 2
d J J
D = —+—e, Doppy=—+—c¢
@) (921 822 2 @) awl 8w2 2
and
D _ J J . . _ d J .
il — az az 2 (12) — 8&71 Zsz 27
J d J J
D7 = —_——E,D* = 0 — T 6.
@1 0z dz ° @~ 9w dwy
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The above equations act on (S). Then, we have the following equations:

2? 2? 22 22
D(ll)D(ll) = D(H)D(ll) = 92107, - 02207, ’ D(12)D(12) = D(12)D(12) = w070, - awzaw—zf
) ) B B ) ) P )
D(Zl)D(21) = D(Zl)D(zl) = 921021 - 92202, D(zz)D(ZZ) = D(ZZ)D(zz) = RO - I,

called the corresponding Coulomb operators [16] and
DiyDPay = DwDyy = DanDyyy + e(DanDiyy) + DazDyy))

and

D5 D) = D)Djyy = DDy + €(D21)D i) + D22) D 5y)

21

called the analogous Coulomb operators on 9(S) which are similar to the Laplacian operator in complex

analysis.

Remark 2.3. From the definition of differential operators on D(S),

D,f = (D(rl) + é‘D(rz))(fo +¢f1) = Dy fo + €(Dy f + D) fo),
Dif = (Di)+eDi))(fo +efi) = Dipy fo + e(Dipy fo + Dy fo),

wherer =1, 2.

Definition 2.4. Let Q be an open set in C> x C2. A function f = fo + ¢y is called an L, (resp. R,)-regular function

(r = 1,2) on Q if the following two conditions are satisfied:
i) fi (k=0,1)are continuously differential functions on Q, and
(ii) Dy f(p) = 0 (resp. f(p)D; =0)on Q (r =1,2).

In particular, the equation D; f(p) = 0 of Definition 2.4 is equivalent to
Dzll)fo =0 and D212)f0 + Dle)fl =0.
Then,

d g ) Ig1
M P, dn do_,

071 0z 0z1 0z
I, 99 O 97

Jz;  dw, Jz Jw,

oz Jwy dz dw,

Oy 992 O _ 97

The above system (2) is a corresponding Cauchy-Riemann system in D(S).
Similarly, the equation D; f(p) = 0 of Definition 2.4 is equivalent to

DZZl)fO =0 and DEZZ)fO + Dz21)f1 =0.

)
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Then,

891 @

oI _ 992 g1 _
3Z 922

=0 E T wm Y
o 991 b 972
aa 9w_1 822 (9ZU2

O, 992 _m _ 91

a_Z aw_l 822 aZU2

The above system (3) is a corresponding Cauchy-Riemann system in D(S).

On the other hand, for an R,-regular function on (Q, the equation f(p)D] = 0 of Definition 2.4 is equivalent
to

fODZu) =0 and fODaZ) = _lezll)'

then we have

W _ 9% _ 9% 99 _
0z1 0z | 0z 9z
% &92 Bhl &]’lz =0, (4)

o Jw, Jm Iz

092 391 dh,

e —~_ =0

0 w1 8w_2 dz 1 BZ

Similarly, the equation f(p)D; = 0 of Definition 2.4 is equivalent to

foDigyy =0 and foDipy) = =fiDyy)-

Then,

o 992 _ 992 _ 971 _

oz dzm  dz 9z

d g1 d g2 ohy  Jdhy
2 T2 5
dw, Jdw, dz; Jz; 0 ©)

892 391 8h2 8111

Jw0 dwy oz 9z, Y

From the systems (2), (3), (4) and (5), it is obtained that the equations D;f(p) = 0 and f(p)D; =0 (r = 1,2)
are different. Now properties of the L,-regular function (r = 1,2) with values in D(S) are considered.

3. Properties of L,-Regular Functions (r = 1, 2) with Values in D(S)

Consider properties of L,-regular functions (r = 1,2) with values in D(S).
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Theorem 3.1. Let Q be an open set in C2xC?and f = fot+efi = (g1+g262) + e(hy + haep) be an Ly-reqular function
defined on ). Then

d d d d
o=l b=l

Proof. By the system (2), we have

o1 Jui  duy dg\ (992 dus Buz g
(821 *on 83(1 3x16 * 822) * (8z1 *on 8x1 8JC1 1+ 322)
8571 duy (9140 (9% ohy du; 800 al’lz
+€(aw1+ayl &_m€1+a_w_2+a_ZT+E_a_)q€1+&_z_2)
+ (392 Jdus 8u2 391 8}12 ) dvs  duy 3_;1_1)

Dif

¢ 8w1 * Byl (9]/1 ' o 8w2 321 8X1 a_xlel * (92_2

d
= 2—_62(9262 +g1+ Shzé’z + €h1) + &E— 82(g2€2 +g1+ Ehze‘z + Ehl)

822 &_
+=—-ei{(—u1e1 — up — uzes — uzer) + e(—vie1 — Vo — V€3 — V2€2)}

an

+es—er{(—u1er — ug — uzes — uzer) + e(—vie1 — vy — vzez — v2e2)}

3y1

PR I
{2(3—2—2 7% S=)ex - (ax1 + S,T%)el}f

Therefore, we obtain

d d d d
le = { (E + éaw2)€2 - (a—x1 + Ea—yl)ﬁ}f.

Corollary 3.2. Let Q be an open set in C> x C? and f be an Ly-regular function defined on Q. Then

d 8)62 (8

d
(922 (QZU + € —)61 }f

D,f = {2( o Va]/l

Proof. By the system (3), we have
(% duy &Mo 892 ) + (% duz  duy 8g1 )

—_ — — —=e +

dz1 * oxq 8x1 1t 02> dz1 * ox;  dx; 02>

(0 PG, OE O oo, 0Ty

D, f
¢ 3w_1 * Byl 8y1 M sz M 82_1 M E B (9_X1€ &Zz

392 dus  Jdup 39_1 oh, Jduvs Jduvp 3}1_1
+(8w1+8y1 a_]/161+8_3l)2+a_z_1+8_361_8_3q€1+(9_22)e

PR PR
{(a—Zz“a—wZ)ez (ax +€g)€1}f

Therefore, we obtain the result. O
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Theorem 3.3. Let Q be an open set in C> X C? and the function f be Li-reqular on Q. Then, for n € IN,

Jd d d J .
(28_2_262 - a_xlel)f + 8(23—717262 - a—ylel)f, Zfl’l =1;
D'f ={ A*f+keA"'Bf, ifn = 2k;
J d K 0 J 0 J k1 v '
( o —e I el)A f+ e{ ( 8562 o el)B} + (23w_222 o el)A}A f, ifn=2k+1;
where 92 9? 02 92 02 92
A=dsgtisg—aa ad B=2ie +ago -5 o)

2 3 1

Proof. Because f is an Li-regular function on Q,

d d d d
Dif = {(28_2_262 - Eﬁ) + 8(28—77262 - &—%61)}]5

and a function 5 P P
{(2&—582 - xel) + e(Za—w_ZeQ - a—ylel)}f

is also an L;-regular function on Q. Therefore,
d d 0 d
2
Dl(le) le D1{< a_ a o ) + E( 8w2 —e) — 8—%61)}](

2P P e 32 9
{(4&—% +hos - ﬁ) + 25(4&x2ay2 M ey )If.

3 1

Let
J J )2 02 02 _ 2 02 02

—e——e) =4d—— - — =4+ 44— — —
0z > ox ! 020z ox2  Jx3  oxk ox?

A= (2 3 I
and
o 9 .o 9 Jd 9 A
B )2~ ) + e )z = 5ol
o2 9? 92
=2(48x28y2 " 4ax3(9y3 - 8x18y1)

for representation convenience. Then
f (A+eB)f.
Similarly, we have
J J J J d 0
3p 0 _
Dl(D f) le = (28_ n — 3—61)Af + E{(za—_ez - 8_61)3 + ( a_ ey — B_ylel)A}f

and

d d d d d d d d
Dl(D?f) = D%f = (28_562 - a—mﬁ)(zg—z_zez 836 )Af + E{( a_ - a—nel)(za—zez - a_xlel)B

+(2%62 - aixlﬁ)(zai e — —6’1) }f + é( J e — ai 61)(288_62 - aif?l)Af
(A% +2¢AB)f.

24

(6)
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Through the continuous calculation of this process, we obtain the following forms for n € IN,

0 d d d
Dif = {(28_562 - 3_161) + 5( el a_ylel)}f’

D¥f=A"f +neA"'Bf

and

DIlf = (Z&a_ez - a;;el)A”f + e{ ( &iz_zez - %

1

)8 + (25 er = 3ol

Therefore, the result (6) is obtained. [

Corollary 3.4. Let Q be an open set in C* x C? and the function f be Ly-reqular on Q). Then, forn € N,

(2% 2—— )f+e(2%zez—£el)f ifn=1,

Dif ={ A*f+keA"'Bf, ifn =2k

(Ziez - iel)Akf + é{ (Ziez _9

(922 2 8x1 sz 8y1

Proof. Since we have

0 d Jd 0
D,f = {2(&—2262 - 8—96161) + S(ﬂez - a_ylel)}f

and a function D, f is also an Ly-regular function on ), we obtain the equations (7) forn € N. [

Theorem 3.5. Let Q) be an open set in C* x C? and the function f be Li-reqular on Q. Then, for n € N

2f(0)  df(0)

flp) = {f(0)+(2328—zz—ela—h)o anA FO)ph +Z% z_iel) )
n=2

n:even n”0=d
20) 90 fO) _, 2Oy y 1m
+€{(262 ;wz _elg_]/l)p (2 €2 gZz “ afxl )Pl * ; ﬁ< (A Bf(o))
+Y (A0 o)+ Y (5] 2 82 —a 3& oAt £
=1 n=3
n:odd

n

(e —en g WO + (e e A RO )

where [5] is the greatest integer less than or equal to 5 (n € IN) .

——e1)B+ (zie2 - iel)A}A’f-1 f, oifn=2k+1.

25



J. E. Kim, K. H. Shon / Filomat 31:1 (2017), 17-27 26

Proof. From Theorem 3.3 and the properties of dual split quaternions,

d

fo) = fop) = fO) +{(25ze - )f(0)+s( i ez—iel)ﬂo ) (po + ep1)

£y e ;_ez_aiel)m 10)+ e[ 3]0z - aixlel)s

(250~ g A O weZp pivs!

Then, we have

0 = f0+(222 -0 LD 4 (2,20 -0 DD,

9f(0) _ af(O)) y
15 1 o

o+ <262 0z ox1

n

nl AL RO + {(2ASBAOYp + Y (A2 FO)p k)

k=1

M?ﬁ ‘SﬁMS

+

5 He e WO (2 o i

]
@

n
n:

+<282aiwz-elaiyl>wf<o>)ps+;(<zeza —e A Ot )

o
(oW
Q.

Therefore, the result is obtained. [

Corollary 3.6. Let Q) be an open set in C* x C? and the function f be Lo-regular on Q. Then, for n € N

9 9 & &
fo) = {f0)+ (2 i—f) 5;0)) +an(Azf0) an 3i22_é?ixlel)( O)

n:even nnodd
af(0 0 af(0) af - n
w26, 5‘_)_61 §;1>)p + (20 g(_ _elgT(l))pﬁ Z L (E(assroe

n

+ Y (AL FO)psFpipk) +

5«kmf:a§wm“m>

‘wl\’lé%

=}
[0
_2u

+(2623iw—2_618iy1)‘4[;]f(0))?8+ ((zeza&—‘eli) L) e}

k=1
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Proof. From Theorems 3.3 and 3.5, we have

F) = S = SO+ (5= gemen)0)+ e 52 301 FO o+ ep)

+ %(A% £(0) + ggA%B FO)ps+e ) pippk™
_rg/%n ' k=1
o 10 ) . P P
v Y alme - sme)atro + e([5](e - 5a)s
nrzlo:ci))d
+(%Ez - %El)A)A[Z]—lf(O)}(pg + EZPS_kmpﬁ_l)-
k=1

Therefore, by rearranging the terms of the above equation, the result is also obtained. [
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