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Optimization of a Nonlinear Hermitian
Matrix Expression with Application

Abdur Rehman?, Muhammad Akram?

*University of Engineering & Technology, Lahore-Pakistan Faisalabad Campus

Abstract. Extremal ranks and inertias of a nonlinear Hermitian matrix expression are established over a
complex field C. In addition, the constraint extremal ranks and inertias of the nonlinear matrix function
are also observed. Our research extends already work done in the literature.

1. Introduction

In this article, the notation C interprets the complex number field. I pertains an identity matrix having
acceptable dimension. For a matrix A, the notations r(A), R(A) and A" refer for the rank, the column space
and the conjugate transpose of A, respectively. The Moore-Penrose inverse of A is designated by A" and is
defined to be the solution of the following four matrix equations

AATA = A, ATAAT = AT, (AAY) = AAT, (ATA) = ATA.

La =1—-A'A and Ry = I — AA" are pair of projectors made by A, respectively, and these are idempotent
and Hermitian by the definition of the Moore-Penrose inverse. Inertia of a Hermitian matrix A is the set
consisting of the positive, negative and zero eigen values of A counting with multiplicities, respectively. It
is understood that

"(A) = i (A) +i(A),

and i, (A) and i_(A) are known as the positive and negative signature of A.
Linear matrix functions have backbone standing in matrix theory and its applications [4, 5, 7, 9-11, 13,
16,19, 21, 25-29, 32-41, 43-53, 56, 58, 60]. For example, the usage of

BX+(BX) = A 1
in model reduction, stability analysis and optimal control can be found in [26, 29]. Liao and Bai analyzed

CYC'+DZD* + A (2)
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in [20]. Zhang et al. evaluated the extremal ranks and inertias of
A =BXB* + CY(C,
DX =E,GY=H,X=X",Y=Y",
in [61]. Farid et al. [13] found the Hermitian solution of
ApnY =Cxpn, YBn = Dy,
AssZ = Cs3, ZBsz = D33, 4)
CuYCyy + DyuZDyy = Au,

in the setting of Hilbert C*-module. The n-Hermitian solution to (4) was calculated by He and Wang in [17].
The range of inertias of

72(X,Y) = A — BX — (BX)' = CYD — (CYD)' (5)

were examined in [42]. The outstanding applications of extremal ranks and inertias of Hermitian matrix
function can be found in [4, 5].

The nonlinear matrix functions also have vital importance in different fields like quadratic programming
and control theory [1, 3, 12, 18, 24, 30]. Wang and Zhang et al. designed the extremal ranks and inertias of

P(X) = XX = Py,

AnX =Cy1, XB11 = Cx, P11 = Py, ©

in [54]. Yao computed the extremal ranks and inertias of
@ =Qun - XPuX, )

AnX =Cy1, XB11 = Co, Qu1 = Q4
in [59]. The extremal ranks of

f(X,Y)=Q~-XPY - Y'WX"* 8)
were inspected by Xiong and Qin [57] in 2014. Tian [31] derived the extremal ranks and inertias of

9(X,Y) = Q- XPY — (XPY)". )

Some latest related research on matrix equations including coupled Sylvester matrix equation can be
consulted in [8, 14, 15, 55].
Note that (1) and (9) are particular cases of

u(X,Y,Z) = A - BX — (BX) = YCZ — (YCZ)". (10)

Motivated by the work stated above, the extremal ranks and inertias of (10) will be set up in this article. As
an application, the extremal ranks and inertias of (10) are also considered when X, Y and Z are solution of
the following consistent matrix equations

DX =E, FY =G,
and
ZH =].

Since the rank and inertia of a matrix are always a nonnegative integer and hence they are discontinuous
in nature. So, we can not use the differential and Lagrangian method to optimize them as in the case
of continuous optimization. Hence, we will apply some linearization method introduce in Section 3 to
compute the extremal ranks and inertias of the above mentioned problems.

Our article is composed as follows. Some Lemmata are given in Section 2. Key results and some
consequences are established in Section 3. Constraint extremal ranks and inertias of (10) are constituted in
Section 4. Conclusion is presented in Section 5.
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2. Preliminaries

We start with some known results which have crucial importance in the construction of the main results
of this article.

Lemma 2.1. [23]. Let D11 € C*, E1; € C*f and Fy; € C** be known. Then
(1) r(D11) + r(Rp,, E11) = r(E11) + r(Rg,, D11) = 1’[ Dy En ]

D
(2) r(Dn) + r(FLp,,) = r(F11) + r(DnlLg,) = r[ F1111 ]
D E
(3) r(Enn) + r(F11) + r(Rg, Duilp,,) = r[ Fllll 61 ]

Lemma 2.2. [2]. Let Ay and Cy be given matrices with allowable dimensions. Then A1X = Cy is consistent if and
only if
G = A1AIC.
In this condition, its general solution is
X =AIC + La U,
where U is a free matrix with suitable dimension.

Lemma 2.3. [2]. Let By and Dy be known matrices with suitable dimensions. Then YB1 = D; is solvable if and only
if
D; = D1B'B;.
Under this condition, its general solution is
Y = D1B! + WRg,,
where W is free matrix with feasible dimension.

Lemma 2.4. [6]. Let Aq1 € CZ“’” and By, € C"* be known. Then

s A Bn
max r[An - BuX - (BuX)'] = mln{m,r[ B, 0 ]} (11)
min rlAn - BuX - BXny] = | A1 B0 | onp) (12)
XeCpxm | B;l 0 | 4
. . [ An B
max i.[An -~ BuX - (BuX)] = zi[ B’ili 0 ] (13)
. . [ Ay By |
Jmin, isldn —BuX=(BuX)y] = r| gl | = rBu). (14)

Lemma 2.5. [22]. A € CZ’X’”, B11 € €™, and Cyq € C™ be given, and assign

A Bn An C
K = * ’K = 11 7
' [ By, O ] : [ ST ]
_| An Bu Cj _| An Bu Cj
K3‘[ B, 0o o |"MTlcy o o |
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Then
max r«[A11 — B11YC11 — (B11YC11)'] = min{r [ An Bun Cj ],V(Kl), r(K2)},
g?cm r+[A11 = B YCii — (B YCn)'l = 27[ Ann B Cj ] + max{w.

+W_, gy + -, Wy + g, W_ + G4},
max ix[A1; — B11YCq1 — (B11YCq1)'] = min{i. (K1), 1+ (K3)},

YeCrxq

YeCrxq

—1(K3),i+(K2) — r(Ky)},
where w.. = i(K1) — 1(K3), g+ = 1:(K2) — r(Ka)}.

3. Main Result

The fundamental theorem of this paper is established in this section.

Theorem 3.1. Let A € C™", B € C™ and C € C>! be given matrices over C of executable shapes. Then

max r[A —BX — (BX)" — YCZ — (YCZ)'] = min {n,n + r(B),2r(C) + r[

A

*

rg(uyn r[A — BX — (BX)" —= YCZ — (YCZ)"] = max {r[

B
B 0
~HO), i_[ ]‘; ]g ]—r(C)},

) . v_ . ). 1A B
mX%/xzi[A - BX - (BX)' - YCZ - (YCZ)'] = min {z+ [ B 0 ] + r(C), n},
ini.[A—BX—-(BX)"'-YCZ-(YCZ)'] = L4 B- (0),0
rgg;ui ( =maxqis| p. g r(C),0;.

Proof. Using formula (11) in the Lemma 2.4 to the equation (10), we have

max r[u(X, Y)] = min {n,r[ A-YCZ-(YCZy B ] }

B* 0
Since
A-YCZ-(YCZ) B )
B e 0 ] - T[A“ = BuYuCn — (BuY1Cn) ] - 2r(C),
where
[ A B 0 O 0 0
B 0 0 O 0 0
An = 00 0 C , Bii = o c |
| O O C* O C* 0
Y)(-
Y= 7 ], Cu=|-I, 0 0 0 ]

min i.[An — B YCi1 — (B11YCi1)'] :r[ A Bu C ]+max{ii(K1)

A B
B)(—

o ™

] -2r(C), 0,1, [

2808

(15)

(16)
(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Now using formula (15) in the Lemma 2.5 to (24), we have

A-YCZ-(YCZ) B . .
maxr B 0 ]zmm{r[ A Bn Cj ],r(Pn),r(P22)}—2r(C),
where
A B 0 0 0 0 -l
" B0 0 0 O O O
V[A“ Bn Cll]:r 0 00 CO0OC 0
| 0 0 C 0 C 0 O
=n+ r(B) + 2r(C),
A B 0 0 0 O
B0 0 0 0 O
0O 0 0 C 0 C
rPu)=rl 5 o ¢ 0 ¢ o
0O 0 0 C 0 O
| 0 0 C 0 0 O
[ A B
=r _ B 0 + 4r(0),
A B 0 0 -I,
B 0 0 0 O
F(Pzz) =r 0 0 0 C 0
0O 0 C 0 o
| -, 0 0 O O
=2n+ 2r(C).

By putting (26)-(28) in (25) and then (25) in (23) produces (19).
By using formula (12) in the Lemma 2.4 to (10), we have

minr{u(X, Y)] = r[ A= YCZB,T (yezy ](3) ] — 2¢(B).

By using formula (16) in the Lemma 2.4 to the term of (29), we have

. A-YCZ-(YCZ) B
m;n r B 0
= 2r[ An Bn Cj ] + max {w+ +w_, g+ +g-,we +g-,w_ + g+} - 2r(C)

= 2n + 2r(B) + 2r(C) + max {w+ +w_, g+ +g-,we + g, w_ + g+}.

2809

(25)

(26)

(27)

(28)

(29)

(30)
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where

wy =14 (P11) — r(P33)

A B 0 0 0 0 A B 0 0 0 0 -I
B0 O 0 0 0 B 0O 0 0 0 0 0
.o o o0ococ| |000CoO0O0C O
=l o 0o c o cCc ol o ocCc o cCc 0 o0
00 0 C 0 0 000 C 0 0 0
00 C 0 0 0 0 0C 0 0 0 0
.| A B
=ix| B o — 1 -21(C), (31)
g+ = i+(Py) — r(Pas)
A B 0 0 -I, A B 0 0 0 0 —I,
B 0 0 0 0 BB 0O 0 0 0 0 0
=il 0 0 0 C 0 |-l 0 0 0 cC o0 C 0
0 0 C 0 0 0 0C 0C 0 0
| -, 0 0 0 0 I, 0 0 0 0 0 0
=-n-r(C). (32)

With the assistance of (29)-(32), we gain (20).
By using formula (13) in the Lemma 2.4 to (10), we have

A-YCZ-(YCZ) B ]

max i.[u(X, Y)] = i [ B 0 (33)

By using formula (17) in the Lemma 2.5 to the right hand side of (33) and simplifying the block matrices in it by the
same fashion as we did earlier, we obtain

.| A-YCZ-(YCZ) B . .
maxi, [ B ( ) 0 ] = min {All = B11Y11Ci1 — (B11 Y11Cn1) }— r(C)
= min {i, [ 1’; ]g } +7(C),n}. (34)
From (33) and (34), we receive (21).
By utilizing formula (14) in the Lemma 2.4, we have
o .| A-YCZ-(YCZ)y B
rrg(mzi[u(X, Y)l= zi[ B 0 ] —1(B). (35)

By applying formula (18) in the Lemma 2.5 to a term on the right hand side of (35), we have

A-YCZ-(YCZ) B

B 0 ] = H}}in ix[A11 — B11Y11Ci1 — (B11Y11Cu)'] = 7(C)

mini, [
Y
= r[ A11 B11 C;l ] + max{wi,gi} - T(C)

=n+ r(B) + 2r(C) + max {i+ [ ; g ] -n—-2r(C),-n— r(C)} -r(C)

= max {i+ [ EI?* Ig ] -r(C) + r(B),r(B)}. (36)

By (35) and (36), we gain (22). Hence the theorem is accomplished. [
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If B is zero in (10), then I get the following outcome.

Corollary 3.2. Let A and C be given matrices over C of conformable shapes. Then
maxr[A - YCZ - (YCZ)'] = min {n,21(0) + r(4)},
rg(ugl r[A = YCZ — (YCZ)] = max {r(A) -2r(C),0,i.(A) —r(C),i_(A) - r(C)},
maxi.[4 - YCZ - (YCZ)'] = min fi(4) +7(C),n),
mini.[A - YCZ - (YCZ)'] = max {i-(4) - r(0),0}.

Comment 3.3. Corollary 3.2 is the Theorem of [31].

4. Constraint Extremal Ranks and Inertias of (10)
As an application of the Theorem 3.1, the extremal ranks and inertias of

DX=E FY=G, ZH =],

uX Y,Z)y=A-BX - (BX)'-YCZ - (YCZ) 57)
are investigated in this section.
By Lemma 2.2 and Lemma 2.3, the general solution to DX = E, FY = G and ZH = | are given by

X =D'E + LpX; = Xo + LpXy, (38)

Y =F'G + L¢Y1 = Yo + L¢Y1, (39)
and

Z =JH'+ ZiRy = Zy + Z1Ry. (40)

Using (38)-(40) in (10), we have

WX, Y, Z) =A - BXy — (BXo)" — BLpX1 — (BLpX1)"
_(Y() + L[:Yl)C(ZO + ZlRH) — (ZB + RHZ;)C*(YB + Y;LF) (41)

Theorem 4.1. Let A, B, C, D, E, F, G, H and ] are known matrices of adjustable shapes over C. Assign
B* 0 D* 0 0 0

No| E D 0 0 0 0 G- ; ]g g*
1 - H*A H*B H*E* ]*C* O _H* 7 1= E D 0 7
0 0 0 0 GC F
0 D 0 B'H 0 B 0 D 0
D 0 0 EH 0
G = 0 0 H F G=| F D 0 0
2 = - 4 3 = * * * % _LJ* 7
HB H'E -H' -HAH —J'C'G* HA HB HE -H

0 0 F -GCJ 0 0 0 0 F

0 D~ 0 0 0 B'H 0
D 0 0 0 0 EH 0

G=| 0 0 0 0 0 -H F |,
HB HE JC 0 -H -HAH 0

0 0 0 GC F 0 0
ws =1:(C1) —1(C3) —n —2r(C) + r(F) + r(H),
g+ = 1:(C2) — r(Cs) —n = 1(C) + r(F) + r(H).
Then
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(1) The maximal rank of (37) is

max r[u(X, Y, Z)]

FY=G,ZH=]

= min {n, r(N1) —v(H) — r(F) — 2r(D), r(Cy) + 2r(C) — 2r(D), r(C3) + 2n — 2r(F) — 2r(H) — 2r(D)}. (42)

(2) The minimal rank of (37) is

min r[u(X,Y,Z)] =

FY=G,ZH=]
2r(N7) + 2r(C) — 2r(H) — 2r(F) + max {w+ +w_, g+ +g-, Wy + g, w_ + g+} - Zr[ g ] . (43)
(3) The maximal positive and negative signature of (37) is

max ix[u(X, ¥,2)] = min {i.(C) + r(C) = 1(D), x(Ca) + n = r(H) ~ r(F) = r(D)}. (44)

FY=G,ZH=]

(4) The minimal positive and negative signature of (37) is

min i [u(X, Y, 2)] =r(Ny) + r(C) = r(H) = r(F) + max{w., g2 - r[ b ] . (45)

FY=G,ZH=]

Proof. Applying formula (11) of the Lemma 2.4 to (41), we have

[ A-BXo—(BXo) =(Yo+LrY1)C(Zo+Z1Rp) BLp
max r[u(X, Y, Z)] = min<n,r ~(Zg+RuZy)C (Yo +YiLy)
X ] LpB* 0
1 A-BXo—(BXo)'=(Yo+LrY1)C(Zo+Z1Rp) B 0 ]
~(Zy+RuZ;)C (Y +Y:LE)
= min {n, r B* 0 D |- 2r(D)}
I 0 D 0 |
[ A-BXo-(BXo) -(Yo+L)C(Zo+ZiRy) g pe
~(Zy+RuZ;)C (Y +Y:LE)
= min {n, r B* 0 D |- 2r(D)}. (46)
E D 0 |
Now we consider the block matrix in (46) as follows:
r A—BX[)—(BX(])*—(Y0+LFY1)C(ZQ+Z1RH) B Ex-
~(Zy+RuZ))C (Yy+Y Lr)
r B 0 D
E D 0
A B FE* (ZB + RHZ;)C>s (Yo + LFY1)C
B 0 D 0 0
=r E D 0 0 0 -2r(C)
C(Zy+Z1Ryg) 0 O 0 C
| C'(Yy+YiLr) 0 O c 0

= (A1 = BuX11C11 — (B11X11Cn1)") — 2r(C), (47)
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E
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B E ZC
0 D 0
D 0 0
0 0 0
o0 C
000 0
000 0]

Y,oC

, Bii=
0 Y
Z, 0

[N}
O MN O OO

Now utilizing formula (15) of the Lemma 2.5 to the matrix pencil in (47), we have

max 7(A11 — B11X11Ci1 — (BuuX11Ci1)")
11

. . A B
:mm{r[ A11 B11 Cll ],1’[ le 51 ],7[
11

An C

11

C11 0

|

}

Now we calculate the block matrices in (49) by using the Lemma 2.1 as follows:

T‘[ A11 B11 C;l]:r

Similarly
. [ An

B:(-

An
r[ Cn

%
Cll

A

B

E
CZ,

| C°Y;

A
B
E

CZo

CY;
0
0

cocoJowmw cogow

E*
Da(-
0

z:c
0
0
0
C*

z:c
0

0

= r(Nl) + 2r(C) — r(H) — r(F).

B:e

E
] =r CZ()
C*Ya
_RH
| -Lr

Il
-
—~
N

—_
~
+
=~
jasy
—~
0O
Nl

r(Cp) +2r(C) +

Z,c
0

0
0
C

F3

0
C

k3

z:C
0
0
0
C*
0
0

oMo nNhoo

Y

SO O NMNOOoO

o
O

YoC 0
0 0
0 0
cC 0
0o C

YoC 0
0 0
0 0
cC 0
0o C
0 0
0 0
0 0]
0 0
0 0
0 C
c 0
0 0
0 0 |
-Ry -

0
0
0
0
0
0

2n — 2r(H) — 2r(F).

oo oo oo

OO MoOoODoo oMo oo

—Ry
0
0

0

0
-,
0
0
0
0
o

0

OO0 0O~

""JOOOOO!\‘

F

—r(F) —r(H)

2813

(48)

(49)

(50)

(51)

(52)
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Combining (46)-(52), we gain (42).
Now by virtue of the formula (12) of the Lemma (2.4) to (41), we have

A-BXo=(BXo) ~(0o+Li)C(Zo+ ZaRi) g
min r[u(X, Y, Z)] =r ~(Z+RuZ)C (V5 +YiLr) ]
DX=E B

— 2r(BL
I (BLp)

A=BXo=(BXo)' ~(Yo+LeY1)C(Zo+Z1Ry) g 0
~(Zy+RuZ)C (Y, +Y: L) ) B
0 D — Zr D |
0 D 0

Since

A—BXO—(BXQ)*—(Y0+LFY])C(Zo+Z]RH) B Ex-
~(Zy+RuZ;)C (Y3 +Y: L)
B 0 D
E D 0

= (A1 — B X11Ci1 — (B11X11Cn)") — 2r(C),

where A11, B11, C11 and Xqq are the same as declared in (48).
By utilizing the formula (16) to the matrix expression of (54), we have

rg}in (A1 — B11X11Ci1 — BuX11Cn)') = 27’[ An Bn C ] + max {k+
11

vk L+ ke + 1k + z+}.

Now we compute the block matrices in (55) as follows:

A B E ZC YC 0 0]
B 0 D 0 0 0 0
E D 0 0 0 0 0
ii[gfl Bél ]:ii CZ 0 0 0 C 0 C
1 cy, 0o 0 C 0 C 0
0 0 0 0 C 0 0
| 0 0 0 C 0 0 0|
=i.(Gy) +2r(0),
A B E Z)C' YoC -Ry -Lg
B 0 D 0 0 0 0
. E D 0 0 0 0 0
ii[é“ Cél}zii CZo 0 0 0 C 0 0
" cy, o o ¢ 0 0 0
Ry 0 0 0 0 0 0
Ly 0 0 0 0 0 0 |
A B E Z:C YC -I, -I, 0 0]
B 0 D 0 0 0 0 0 0
E D 0 0 0 0 0 0 0
CZy 0 0 0 C 0 0 0 0
=i.|CYy, 0 0 C 0 0 0 0 0
-, 0 0 0 0 0 0 H 0
-, 0 0 0 o 0 0 0 F
0 0 0 0 0 H 0 0 0
| 0 0 0 o0 0 0 F 0 0|
- r(H) —r(F)

=1i+(C) + r(C) + n — r(H) — r(F).

2814

(53)

(54)

(55)

(56)

(57)
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Similarly,
A B E* ZBC* YoC 0 0 —-Ryg -L
B* 0 D 0 0 0 0 0 0
" E D 0 0 0 0 0 0 0
r[‘gjl B(;l C61]=r CZy 0 0 0 cC 0 C 0 0
1 cy, 0 0 c 0o C 0 0 0
0 0 0 0 cC 0 0 0 0
| 0 0 0 c 0 0 0 0 0
=1(C3) + n+4r(C) — r(F) — r(H),
[ A B E* ZBC* YoC 0 0 —-Ryg -L
B* 0 D 0 0 0 0 0 0
" E D 0 0 0 0 0 0 0
r[‘é“ Bél Coll]zr CZy 0 0 0 cC 0 C 0 0
" cy, 0 0 C 0 C 0 0 0
Ry 0 0 0 0 0 0 0 0
| -Lr 0 O 0 0 0 0 0 0
= 1(C4) + 21 + 2r(C) — 2r(F) — 2r(H),
From (56)-(59), we get
ks =1i:(C1) —r(C3) —n —2r(C) + r(F) + r(H),
i =i:(C2) —r(Cs) —n —1(C) + r(H) + r(F).
From(50), (53)-(55) and (60)-(61), we get (43).
Now by aid of formula (13) of the Lemma 2.4 to (41), we have
A-BXo—(BXo)'—(Yo+LrY1)C(Zo+Z1Rpy) BLp
max i [u(X, Y, Z)] = i. ~(ZG+RuZ})C (Yo +YiLp)
DX=E LpB* 0
A=-BXo=(BXo)' ~(Yo+LrY)C(Zo+ZiR) g
—(Zy+RuZ})C (V)41 Lp)
=14 * 0 D |- T(D),
0 D 0
Since
A—BXU—(BXQ)*—(Y0+LI:Y1)C(Z()+21RH) B Ex-
' ~(Zy+RuZ})C (Y +Y' L)
iy * 0 D
E D 0

= i: (A1 — B X11Ci1n — (B11X11Cn)") — r(C),

where A1, B11, Ci1 and Xq1 are the same as declared in (48).
By applying formula (17) of the Lemma 2.5 to the matrix pencil in (63), we have

. . A B A C:
H}}aXZi(All - BuX11Cr1 — (BuiX11Cn)') = {h[ o ],1+[ oM
11

B, 0 Cn 0

From (56)-(57) and (62)-(64), we get (44).

1

2815

(58)

(59)

(60)
(61)

(62)

(63)

(64)
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By using formula (14) of the Lemma 2.5 to the matrix pencil in (41), we have

A-BXo—(BXo)'—(Yo+LrY1)C(Zo+Z1Ru) BLp
min i, [u(X, Y, Z)] = i ~(Zy+RuZ)C (V4 Y L) — HBL
un i[/vl( )] + 0 LlpB*o 1 (BLp)
A-BXo~(BXo)' ~(Yo+LrY)C(Zo+Z1Ry) g 0
' ~(Zy+RyZ:)C (Y} +Y: L) B
= is B 0 D |=r| p|-

0 D 0
Sine
A—BXO—(BXO)*—(Y(H-LFY])C(ZQ+Z]RH) B E*
. ~(Z;+RuZ;)C (V3 + Y, L)
[ B* 0 D
E D 0
= i+(Ann — B X11Ci1 — B11X11Cnp)") = r(C).

where Av1, B11, C11 and X11 are the same as declared in (48).
By utilizing formula (18) of the Lemma 2.5 to the matrix pencil in (65), we have

rg}in ix(A11 — B1nX11Ci1 — (BuX11Cn)') = 7’[ An B C ] +maxtky, .}

By combining (50), (60)-(61) and (65)-(67), we receive (45). Hence the theorem is finished. [

A following corollary can be derived with the assistance of the Theorem 4.1.
Let

Qi ={X|DX =E},
Q: ={Y|FY =g},
Q={z|zH=]}.

2816

(65)

(66)

(67)

Corollary 4.2. Let A, B, C, D, E, F, G, H and | are known matrices of adjustable shapes over C as mentioned in

Theorem 4.1. Assume that Q1, Qo and Q3 are non empty sets. Then
(1) Thereexist X € Q1, Y € Qp and Z € Q3 such that A — BX — (BX)" = YCZ - (YCZ)* > 0 if and only if

i+(C1) +r(C) —r(D) 2 n,
i+(C2) — r(H) — r(F) —r(D) 2 0.
(2) There exist X € Q1, Y € Q, and Z € Qs such that A — BX — (BX)* — YCZ — (YCZ)* < 0 if and only if
i-(C1) +r(C)—r(D) 2 n,
i-(C2) — r(H) — r(F) —r(D) 2 0.

(3) Thereexist X € Q1, Y € Qpand Z € Q3 such that A — BX — (BX)" = YCZ - (YCZ)* > 0 if and only if

r(N1) + r(C) — r(H) — r(F) + w- — r( g ) =0,

r(N1) +r(C) —r(H) = r(F) + g- - r( g ) =0.
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(4) Thereexist X € Q1, Y € Qx and Z € Qs such that A — BX — (BX)* — YCZ — (YCZ)* < 0 if and only if

r(NY) + 7(C) — r(H) — 1(F) + w, _r( B )= 0,

r(N7) + r(C) = r(H) = r(F) + g+ —r( g ): 0.

(5) A—BX - (BX)' = YCZ - (YCZ)' >0V X € Q1, Y € Qy and Z € Qs if and only if

V(Nl)+V(C)—T(H)—r(F)+w+—r( B )zn,

or

r(N1) + r(C) = r(H) = r(F) + g+ — r( g ) =n.
(6) A=BX —(BX)*—YCZ—-(YCZ)' <0V X € Qy, Ye€Qyand Z € Qs if and only if

r(Ny) + r(C) — r(H) — r(F) + w_ —r( g ) =n,
or

r(N1) +r(C) —r(H) = r(F) + g- - r( g ) =n.

(7) A= BX — (BX)' = YCZ - (YCZ)y' > 0¥ X € Q1, Y € Q, and Z € Qs if and only if

i-(C) +r(C)—r(D) =0,
or
i(Q)+n—r(H)—r(F)-rD)=0.

(8) A—-BX - (BX)'-YCZ—-(YCZ) <0V XeQ, YeQrand Z € Qs if and only if

i:(C1) +1(C) = (D) = 0,
or
i4(C2) + n—r(H) - r(F) - (D) = 0.

(9) Thereexist X € Q1, Y € Qa and Z € Qs such that A — BX — (BX)* — YCZ — (YCZ)" is nonsingular if and if
r(N1) — r(H) — v(F) = 2r(D) = n,

7(C1) +2r(C) = 2r(D) = n,
1(C2) +n = 2r(F) = 2r(H) — 2r(D) > 0.

5. Conclusion

The extremal ranks and inertias of a nonlinear Hermitian matrix function involving three variables are
constituted in this paper with the assistance of linearization. As an application, the constraint extremal
ranks and inertias of (10) are also established in this paper. Our investigation contains the primary research
of [31]. Some remarkable consequences are also derived from the main theorems of this paper.
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