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Extremes of Gaussian Processes with a Smooth Random Trend

Vladimir Piterbarg?, Goran Popivoda®, Sinia Stamatovi¢®

*Lomonosov Moscow State University, Russian Federation
YUniversity of Montenegro, Montenegro

Abstract. Let &(t), t € R, be a Gaussian zero mean stationary process, and 7(t) another random process,
smooth enough, being independent of &(t). We will consider the process &(t) + n(t) such that conditioned
on 7(t) it is a Gaussian process. We want to establish an asymptotic exact result for

IP| sup (&(t) +n(t)) > u|, asu — oo,
t€[0,T]

where T > 0.

1. Introduction

For a random element (X, Y), the component Y is called a random environment and the component X a
random element in the random environment, if the properties of X are the subject of primary interest, whereas
the properties of Y can be of substantial influence on X (see [13]). The mathematical modelling of a random
process in random environment is tightly connected with fundamental notions of conditional expectation
and conditional probability.

Gaussian processes in a random environment i.e. Gaussian processes with random parameters (mean,
covariance) are called conditionally Gaussian processes, and they significantly extend the class of processes
whose extremes can be studied with those techniques applied to Gaussian processes. In order to calculate
the exact asymptotic behavior of the probability of large extremes of conditionally Gaussian process it is
necessary to calculate this probability using a fixed, non-random parameter, and then average the behavior
over all the states of the parameter.

The asymptotic theory for large extremes of Gaussian processes and fields is well known, see [10]. In
the paper [6] the authors show how the asymptotic theory for large extremes of conditionally Gaussian
processes with a random variance is related to the corresponding theory for Gaussian processes. In this
paper the authors considered the process X(t) = £(t)n(t), where £(f) is a Gaussian zero mean stationary
process, and 7(t) another random process, smooth enough, being independent of &(f), and presented

asymptotic exact result for IP (supte[o/ﬂ En(t) > u) , as u — oo. Under the same conditions on 7(t) we will
consider process X(t) = &(t) + n(t).
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The paper [1] (as far as we are aware) started to investigate the extremes of conditionally Gaussian
processes. In this paper it is considered the process X(t) = A'/? - G(t), where G(¢) is a stationary Gaussian
process and A is a stable random variable independent of G(-) and the paper dealt with the expected number
of upcrossings of a large level u. To the best of knowledge the paper [6] started to develop an asymptotic
theory for large extremes of conditionally Gaussian processes.

Applications of conditionally Gaussian processes can be seen in financial, optimization and control
problems, as in [4, 7, 8].

2. Definitions, Auxiliary Results, Main Result

Let (X(#),Y), t € R, be a random element, where X(f) is a random process taking values in R, and Y is
another arbitrary random element.

Definition 2.1 The random process X(t) is a conditionally Gaussian process if the conditional distribution of
X(-)1Y is Gaussian.

Let &(f), t € [0,T], T > 0, be a centered Gaussian stationary process, and 7(t) another random process,
being independent of &(f). Then, if we set X(f) := &(f) + n(t) and Y := 1, the process X(t) is a conditionally
Gaussian process, and

E(E(®) +n(8) [n(t) = n(?),

so motivated by the properties of 7(f) and [6] we will call the process X(t) Gaussian process with a smooth
random trend.
Write

1 X2
W(x) = N exp{—E},

and from now on H, denotes Pickands’ constant (see [9, 10]) and ¢(G) := ess sup(G) for any random element
G.

We will assume that the covariance function r(t) of the stationary Gaussian process &(t), with the
expectation of zero, satisfies

r(t) =1—1|H* +o(|t|*), ast — 0, 1)
for some a € (0,2], and
r(t) <1, forallt > 0. (2)

We will assume that the process )(t) satisfies conditions
nl. n(t) is non-negative and 0 < ¢ < oo, where o := a(n(t)).

n2. For some ¢, 0 > 0 there exists 1" (f) for all t with (¢, n(t)) € K(5, €) :== [0, T + 0] X [0 — ¢, 0], and that

sup  In"(Hl<¢,
(t,n(t)eK(6,¢)

for some constant c. Moreover, assume that for all + with (¢, 7(t)) € K(6, €) n”(t) is equicontinuous in
the following sense

w(h) = sup sup a(l’t+s)—n"®I) — 0, ash — 0.
(ENB)EKG,E)  SE[0h]:(t+s,n(t+3))EK(5,¢)

n3. For some ¢,0 > 0 the vector X; = (n(t), ’(t), n"’(t)) has a density fx,(x,y,z), x € [0 — ¢,0], which is
bounded for any t € [0, T + 0].
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n4. For some ¢,0,x > 0 almost surely n’(t) < —x« for any (,x) € K(o, €) such that n’(t) = 0 and 1" (t) < 0.
Moreover, assume that the function

—K
it 2) 1= f 1212 fop 1 my=x (0, 2)dlz

C

. . . . T
is continuous in x = ¢ uniformly on t, with fo m(t, o)dt > 0.

Under different assumptions on 7(t), the asymptotic behavior of the tail of the process X(t) has been
evaluated in [14]. In that paper it is assumed that process 7(t) is almost sure three times continuously
differentiable on R with the property that sup,_;(In(t)| + [’ (t)]) < C(B) for any bounded B C R and for
some non-random C(B) < co. In this paper we assume that the process 7(t) is two times differentiable and
bounded near o, that is in K(5, €) and that n’’(t) is equicontinuous i.e. we assume condition n2. Also in [14]
it is assumed that the function m(t,x) = E (In”(t)ll/ 2 | n(t) =x,n'(t) = 0) is continuous in x = ¢ uniformly on
t, with m(t,0) > 0 and limy_o— fiy ) 1n=x(0) = fiy®1n»=s(0) > 0 uniformly on . In this paper, we assume
conditions 73 and n4.

We state here (with proofs) two lemmas that will be used in the proof of Theorem Theorem 2.4.

Lemma 2.2 Let g(x), x € [a, 0],'be a bounded function, which is r times continuously differentiable in a
neighborhood of o, such that g")(¢) = 0 fori =0,1,...,r — 1 and g"(0) # 0. Then

f g gV (u = x)dx = (=1)'g" (@)u™ "W (u - 0)(1 + o(1)), ®)

asu — oo. If g(x) = g1(x)g2(x), where g1 (x) is a bounded function, continuous from the left at ¢ with g,(c) > 0

and g,(x) satisfies the above conditions on g, one can change g (o) in (3) to gl(a)g(zr)(a).

Lemma 2.3 Let &(t), t € [T, T], T > 0, be a stationary Gaussian process with the expectation of zero and
with a covariance function r(t) that satisties (1) and (2) and leta € (0, +c0) be constant. Then

2
IP( max (E(t) - ﬂ) > u) = V2 Hya 2 ui~2 W(u)(1 + o(1)), asu — oo.
te[-T,T] 2
Remark. Theorem 13.2.5 of [12] is more general result than Lemma 2.3 but we think that it is useful
to have a self-contained proof of this lemma here. Let us mention that in the same paper the asymptotic
behavior of the tail of non-centered locally (a¢, D¢)—stationary Gaussian field indexed on a smooth manifold
is evaluated.

Our main result is the next theorem.

Theorem 2.4 Let &(f), t € [0,T], T > 0O, be a stationary Gaussian process with the expectation of zero and
with a covariance function r(t) that satisties (1) and (2) and let n(t) be a process being independent of the
process &(t) that satisties conditions 1 — n4.

Let for any fixed t € [0, T] the density function f, (x) of the random variable 1)(t) be r times continuously

differentiable in a neighborhood of o, with frg?t)(a) =0,i=0,...,r—1,and frgg)(o) # 0 forsomer e Z*.
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Then

T
P| sup (0410 > u| = 1+ o) VER Hy W= 0) [ -1y 5,0 mtt o,
0

te[0,T]

asu — o0,

3. Proofs

3.1. Proof of Lemma 2.2
If we make the substitution x = 0 — y we will get

f g(x)¥(u — x)dx = foa glo—y)¥W(u—o+y)dy

— \I](l/l - U) f oty egy_yT g(o‘ — y) e_uydy.

We will estimate the right side integral from below and from above, and for both bounds we will derive
asymptotic expansions using the idea from the proof of Watson’s lemma (see [5]) .
By using the inequality =% < 1 (here y € [0, 0 — a]), we find that the integral from the right side is not

u—o+y

greater than

I:= f g(o —y)e My,
0

By Taylor’s formula

(1)

glo-y) = 9"()y + R(y).

r+1 ;

There exists a positive constant C, such that IRy(y)I <Gy

Let
1Y —a
I := ( 1) g(r)(o_)f(7 yr e—(u—o)ydy
7! 0

in a neighbourhood of 0.

Now we have

o—a +00 +00
f yr e—(u—o)ydy — f yr e—(u—a)ydy _ f yr e—(u—o)ydy.
0 0 o-a

The first integral is equal

+00
f ey =(u-0)"Tr+1)=u-0)""11,
0

and for the second one we have

oo wowa [T (w-0)
_ - _ u—o)(o—a _ u—0o, y
f y e iy <em 2 f ye 7 dy
o—a o—a

(u=0)(o-a) oo

u—o)lo—a,

<e 2 f yeVdy
0

_ (u=0)(o—a)
2 r+1),

+00
SO f y e W dy = O(e™), for some ¢ > 0, as u — .
o—a
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It follows
L = (_1)rg(r)(0)(u _ G)frfl + O(Eic”), .

Let o
0

We have
+00
L] < C, f y e Wy = Co(u— o) "2 (r + 1L
0

Since O(e™") = O((u — 0)7"2), as u — oo, for any r > 0, we get

I= (—1)rg(r)(a)(u — o)+ 0(e™™), as u — oo.

It follows

f " gOW (- 9y < (1 + V)Wl - o) (-1 g" (1 - %)1

where v(u) — 0 as u — oo.

Now we will find the lower bound.
U=0_ > U=0 and ¢9Y~7 > 1 (here y € [0, 0 — a]) we have

By using the inequalities ;225 > (=7
u o 0—a
f glo - yedy.
0

" u-o 7 -
— Y7 —y)e Wdy >
fo T glo—y)etdy > ——

IS}

u—o+y
By applying the same idea from the above part of the proof to the integral j;j - g(o —y) e dy we get

[ v —ax> @ i@ - 0 Lo

where v1(u) — 0 as u — oo. Finally, the result follows by using the fact that 2=2 = 1 + o(1) and (1 - 9)

1+ 0(1) as u — oo, and the given bounds.

3.2. Proof of Lemma 2.3
Let us denote ,
A=u"a§,

A = [kA, (k+1)A], S>0,
Ay = {sup (é(t) - %) > u},

teA;
t

N; = {KJ ’
where | x| denotes an integer part of the real number x.

Upper bound.
We have

P max cE(t)—ﬁ >ul< f P(Ay) < i P maxé(t)>u+a(kA)2
te[-T,T] 2 = el k \szNT teA;
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Nt
=) l[’(rnaxé(t)>u ”(sz)z)

teAg
k=—NT

where the last equality follows by using the stationarity of the process &(%).
By using Lemma D.1 in [10] or more precisely, a generalization of that lemma, Lemma 13.2.11in [12], we
find that for some function y(u) — 0 as u — oo

teAg

P (max ) > u+ ”(sz)z) < Ho(S)W (u + ”(sz)z) (1 +y(u))

2
< Ho(S) W(u) exp (— ””(’;A) )(1 +y(w)).
It follows that
NT 2
IP( max (E(t) - —) > u) (1+ () Ha(S) W) Y exp (— ””(’;A) )
[ k=— —Nr
a(S) oy \ 21 1 ua(kA)?
= 1+ y(u)) ( Ha®) gy ui o Z (A\/_)exp( (k2) )
k=—Nr
T Vua
a( ) \iypn . 21 1 t2
<A +ywm) —— Y(u) T exp|—7 dt.
,TW
Since
T \ua 5
f exp (—%)dt =(1+0(1)) V2m, asu — oo,
—T\/ﬁ
then by letting S — oo we get
2
IP( max. (E(t) - i) > u) (1 +y1(u)) V2 Hoa 3 ut ™2 W), (4)
te[—
for some function ;1 (u) (y1(1) — 0, as u — o0).
It follows
P (max &) - > u
lim sup ( < TT]( ) ) < N/Z_RHaa_%.
U—00 1/[575 W(u)
Lower bound.
By Bonferroni’s inequality we have
a((k + 1)A)? 3

at? R
l[’(te[rrle},)%] (E(t) - —) > u) > Z P(I};g;(é(t) >u+

2
k=—Nr

5 ) ), P (AiA)) ®)
—Nr<i<j<Nr-1
The first sum from the right side is bounded below by the same term as in (4) but with 1 — 1 () instead
of 1+ y1(u)

Np—1
Z H’(I};gxé(t) >u+ M) > (1—91(w) V2n Hya ? u 2 W(u). (6)

2
k=—Nr
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Now let us consider the double sum. We have

a(in)?
2

. a(jAy?
P(AA;) <P (I};Zx &) >u+ T)

, max&(t) > u+ (7)
teh;
Let i < j be such that the segments A; and A; are non-adjacent. Let us denote k := j —i. Note that in this
case k > 1. Then, by stationarity and Lemma 6.3 in [10] (or the proof of Lemma 9.14 in [11]), C; > 0 exists
such that for all u large enough

a(iA)?
2

P ; ’ a(jA)*
I}’Eli?(cf()>u+ ,rt[;g/xé()>u+T

< ]P(maxé(t) >u+

teAg

< Cp S*W(u) exp {—%‘A)Z} exp {_(k%;)asa}

a(iA)? a(iA)?
2 2

, max&(t) > u +
teA;

It follows

Nr-1 TA)2 aQu
N 5 _ ua(il) B (k—1)*s
A ]P(A,A]) <Ci S W(u) Z exp{ — E 4 eXp\~ g
—Nr<i<j<Nr-1 i=—Nr ke=j-i>1

j=i>1

<Cuais exp {—§

} uiT: W(n), (8)

for some constant C, > 0.
Let i < j be such that the segments A; and A; are adjacent. In this case, j = i + 1. Then, by stationarity
and the monotonicity of probabilities with respect to expanding sets

a(in)>?
2

i+1

P ; ’ a(jA)*
(I}’Eli?(é()>u+ ,glaxé()>u+T

A 2 A 2
< “’(maxat) st O x> u+ M)
teAy teA;
. o A2
< ]P[ max &(t) > u + aia) , max &) >u+ a(id) ) + ]P( max &(t) > u+ atl) )
teu 510,9] teu #[S+ V5,25 2 tew 0,5

By using Lemma 6.3 in [10] (or the proof of Lemma 9.14 in [11]), there exists Cz > 0 such that for all u
large enough

Nr-1 . 2 . 2
Z ]P( max () > u+ M, max  &(t)>u+ M)
N, \ter[os] 27 R seVEas] 2
1 S @ 2_1
<Cza2Sexp {_(\/8—) } ua"2 W(u). (10)

By using Lemma D.1 and by Lemma 6.8 in [10] there exists a constant G such that H,(VS) < G VS we
have

Nr=1 0
A

) IP( max 5(t)>u+M)<&a-%u%—%\y(u). (11)

i \tew#0,v5] - Vs

for some constant C4 > 0.
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Finally, by using the relations (5)—(11) we get
2
]P( max (cf(t) - %) > u) > (1-y1(u) V2n H, a1 yir W(u)-

te[-T,T]
(\/g)a} + G atyet W(u).
8 Vs

a

- [Cz S exp {—%} +C3S exp {—

It follows (by letting S — o)

R (maxte[fT,T] (5(t) - %) > u)
lim inf

— > V2nHa 2. O
U—co ua"2 W(u)

3.3. Proof of Theorem 2.4

Let t be a point of local maximum of n(t) with n(t) > o — ¢(u), where 0 < e(u) < 5 and ¢(u) — O as u — oo.
Using Taylor’s formula and the fact that n’(t) = 0 we have

_ )2
16 =00 + S o - 1), 12)

for some 6 € (0,1).
We will say that point s is connected with point ¢ if

(y,n(y)) € K(6,¢), foreveryyel:={x € R: x =As + (1 — A)t, for some A € [0,1]}.

Using the equation (12) and condition 12 we get for s connected with ¢
1) > () = 5= > 0= () = (t =9,

Ifo—e(u)—5(t— $)?> > 0 — ¢, then any s with |s — # < 1/%(e — ¢(u)) is connected with .
Let i > 0 be such that s is connected with t with |s — {| < h and w(h) < 5. Using mean value theorem for
n’ on [ (if we assume that s > t) we have

nE) =) =n"(t+6(—-1)s—1), (13)
for some 0 € (0,1). (If s < t we have n'(t) — 1’(s) = "’ (t + O(t — s))(s — t), for some O € (0,1).) Then

' (t+ 06— 1) — 1" (0] < w(h). (14)

It follows that the right hand part of (13) is < (7”(t) + w(h))(s — t) which is (by using the second part of
condition 2) < —5(s — f). It follows that

, K
[n'(s)| > E'S -1 >0,

which means that there are no local maxima of n in [t — /i, t + h] other than ¢, with trajectories in K(6, €). So,
all points of local maxima in K(6, (u)) are in distance at least 2h.

Let0 < h* < min {h, 0, \/E } and s a is point such that |s — t| < h*. Then, by using (12) and (14) we have
(s =1t (s =1ty

10+ S50 0 - o) < 166) <16 + 070 + ). (15)
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Set (see [6])
Dy(6) :={(x, y) € K(5, () : y = n(x)}

consists of small “hats” with only one point of maximum for each “hat”, and the points of maximum are
separated by at least 21", If (s,1(s)), (¢, n(t)) € D,(0) belong to the same “"hat” (where t is the point of local
maximum of 1), then

2
o —e(u) < () < () + & 2) ( K+2) 0TG- 1P,

e(u)

hence |s — ] < 2 ot so it follows that the width of the base of each “hat” is at most 26(u) := 4

&(u)
ot

Let s1 be the first local maximum of 7 in [0, T] (with n(s1) > o — €(u)) and sy the last one. We will
introduce the random sets
=[0,TIN U [s — 5(u),s + 6(w)],
se M(e(u))

Ly :=LU[0,5114,] U [sm1a,,, T1a,],

where M(e(u)) is a set of local maximum points of the process 7(t) which are above ¢ — (1), A1 = {n(0) >
—&(u),n’(0) < 0} and Ay = {(T) > 0 — e(u), ' (T) > 0}.
If t € [0, TI\L+ then n(t) < 0 — e(u), so we have

P| max (&) +n(t) > ul r]) ( max &) >u—(0-— e(u)))

te[0,T]\Ls te[0, TI\L,
< ]P(tn?ax E)>u—(o- e(u)))
= O(utW(u — (0 — e())), asu — oo

where the last equality follows from Theorem D.2 in [10].
By using the total probability rule and the previous inequality we have

P max (&) +n(t) > u) =E (]P (}é}{}’h’-‘] (&) + (b)) > ul n))

=E (]P (I;I;?X (&) + (b)) > ul r])) + 0 (ut W - (0 - ().

2

< - Inu, with a large positive £ (> 3 + r — 2), such that
-0

Now we choose ¢(u) =

u%\lf(u — (0 —e(u) ~u"W(u - o), as u — co.

It follows

se[t—h*t

P max (&) +n(t)) > u) < E[ max (E(s) +1(s)) > u] 77)]

I[) (
teM(e(u))N[0,T]

+E (IP (( max_(£65) +1(5)) > u) N A m))

+E (IP (( rnax (é(s) +1(s)) > u) NApm| n))

s€[sp+

+0 (u“‘l’(u - a)) .
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If A1 occurs then the largest negative point of local maximum of 7(t), is larger than —6(u) by the structure
of the set D,,(6). If Ay occurs then the smallest point of local maximum of 7(t) after T, is smaller than T +6(u)
(the same observation as in [6]). It follows that

JP(( max <s<s>+n<s>>>u)mA1|n)< Y lP( max (E(S)+n(5))>u|n)
reM(e(u))N[=5(1)

se[0,s1—h*] se[t—h* t+h*]

and

]P(( max (E(s) +1(s)) > u) NAi|n

s€lsm+

) ]P( max (5(5)+77(5))>”|77)
te M(e(u)N[T, T+6(u)] el

Now, if we set M := M(e(u)) N [-6(u), T + o6(u)], we get

]P(g}g%(} (&) + () > u) <E (Z P(SE[E}aﬁM(E(s) +1(s)) > u| 17) +0 (u'[‘ll(u - a)).

teM

From the right inequality (15) and Lemma 2.3 we get

F (se[ﬂ*a,ﬁ.h*](é(s) +1(s)) > ul 7])

<IP( max " (é(s)+n(t)+( £y’

se[t—h*t+

(" (t) + ok’ ))) > ul 77)

— )2 *
< IP( max (g(s) - % (-1 (1)) (1 - @)) >u—nt)] 17)

se[t—h*t+h*]
h:e _%
< Vet (-1 22)) "t - g a4y,
where y(u) (| 0 as u — o0) can be chosen non-randomly. Indeed, if we set

(s=t)* l‘ 1 (u(h
Y (u,n(t), 1" (1)) := sup P (maxsere ot (566 ~ 557 (-1 (t)l)( “2)) > x=n(1n) |
= \V2nH, ( ”(t)( - “’(h )) X572 W(x — (b))

we get 1" (u, n(t), n”(t)) | 0 as u — oo, where 1(t) and n’’(t) are fixed. Since n(t) € [0 — ¢, 0] and | (t)| € [x, c]
we can take y(u) := y*(u, 0, —x).

Now let us consider the point process of local maxima {(t, n(t), (1)), t € M(e(u))} as a point process in
[=6(u), T + 06(u)] X [0 — e(u), o] X [—c, —«]. Its intensity is

v(t, x,z) = |z| 1¢z<0) fx,(x, 0, 2)

(see Chapter 3 in [2] for more details).
For any bounded function F(f, x, z) we have (Campbell’s Formula, see for instance Theorem 2.2 in [3])

T+06(u) —K
E[ Z F(t,n(t), 17"(1‘))] =1 f_ ( )j: F(t,x,z) v(t, x, z)dt dx dz.

M(eG)OI0,T] —ow)

It follows

P (éﬂ‘&’% (&) +n(h) > u)
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(1+7/(u))\/_Hau2—%( w(“)if

+0(u "W - o))
. ) -1 AT+ o ek !
<1+ p(u) V2rn Hyus 2 (1 - ) f f f |22 W(u — x) fx,(x, 0, z)dtdxdz

o(u)

T+6(1)

f f Izl%\IJ(u —X) fx,(x,0,z)dtdxdz
o(u) o—¢e(u) J—c

+0 (u“‘l’(u - a)) .

By using equality
x(x,0,2) = fun () fr )@ 1 n9y=x(0, 2)
and Lemma 2.2 (g1(x) = m(t, x) and g2(x) = f;,¢(x)) we derive the bound

P (éﬂ‘&’% (&) +n(5) > u)

A\~ T+6(u
(1+y(u)+y1(u))\/_H yima T (1—@) Y(u - o) ( 1) f (a)m(t,a)dt

—0(u)
+0 (u_f\lf(u - 0)) ,

where y1(u) = 0as u — oo.
Finally we have

P (;nax (&) +1(5) > u)

lim sup
u—c0 Ui W (Y — o)

T
— V2nH, f (=1) £ (o) m(t, o)t
0

ash* — 0.

Lower bound. If (s, 7(s)), (t, n(t)) € D,(0) and t and s are points of local maximum of ), then |t — s| > 2h
It implies that there are at most | 5~] points of such local maximum in the [0,T]. By setting M; :=
M(e(u)) N [6(u), T — 6(1)] we have

E (]P (E?oa])"(] (&) + 1) > ul 1])) >E [IP[ U {se[t m /2 X . (&(s) + n(s)) > u} ‘ ]}

teMy

. [tg/(:1 Y (se[t;{f}gﬁh*/z](é(s) +1(8)) > ul 77)]

- E .
;‘4 H’(velt;}}%ﬁ b E@ TN >, max (E(©) + (o) > ul n) (16)
S, 1
s#t

By using the left inequality (15), and Lemma 2.3, we get

]P( o max (é(s)+n(s))>uln)

se[t—=h*/2,t+h* /2]
(s—1)~ )

> l[’( max (é(s) +n(t) + —=—

se[t—h*/2,t+h* /2]

VMO w(h*))) > u| 77)
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—t 2 e
> (se[t}ll}}fia,t)ih*/z] (é(s) -€ > ) (=n"(®) (1 + ?)) >u—n(t)] 17)

> Vot (- )1+ )t e - v,

where v(u) (— 0 as u — o0) can be chosen non-randomly. Now, by using the arguments for the upper
bound we get

E( r P (maxse[t—h*/Z,Hh*/Z](5(5) +1(s)) > ul T]))
lim inf —2 — - V2 H“f (-1 f( (a m(t, o)d
U—00 u;—i—r\y(u _ G)
ash* — 0.
The double sum in (16) can be estimated from above by using Borel’s theorem (see Theorem D.1 in [10]).
The distances between the considered intervals are at least h*.

v (velt D O NE) > e SO ) > ] ’7)

max v1) + &(v2) > 2w —0)].
((vl,vz)e[t—h*/Z,Hh*/2]><[s—h*/2,s+h*/2](é( 1)+ &(02) ( ))

For (v1,vp) € [t =1 /2,t + ¥ /2] X [s — h*/2,s + h*/2] we have
Var(&(vy) + &(v2)) =2+ 2r(lvg —va]) <4 -2 mmh 1 =r(vr — ) <

v1—0a|>

<P

There exists constant a > 0 satisfying

(&(v1) + E(v2)) > ﬂ) < 1[’( max (5(01) +&(v2)) > 11)

max
((vl,vz)e[th*/z,t+h*/2]><[sh*/2,s+h*/2] (01,0)€l

a 1
= < =.
P (22}3‘%‘ 0> 2) 2

Therefore by Borel’s theorem

(&(v1) + &(02)) > 2(u - 0))

( max
(©1,00)€lt=h" /2,4+11* [2]X[5—* [2,5+h" 2]
2 —0) - a)
4-b
= o(u%’%’r\lf(u - a)) as u — oo,

<2

where b := 2 ming, 4,51+ (1 — r(lv; — v2])) > 0.
Thus, we get

r rnax (&) +n(h) > u)

lim inf
U—0o 2.3 r\y(u G)

ash* — 0. O

—>\/_Haf(l f( (@) m(t, o)dt
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