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Abstract. The present paper studies compatible adjacency relations for digital products such as a C-
compatible adjacency (or the LC-property in [21]), an S-compatible adjacency in [27] (or the LS-property in
[21]), which are used to study product properties of digital images. Furthermore, to study an automorphism
group of a Cartesian product of two digital coverings which do not satisfy a radius 2 local isomorphism,
which remains open, the paper uses some properties of an ultra regular covering in [24]. By using this
approach, we can substantially classify digital products.

1. Introduction

Motivated by the strong adjacency of a ordinary graph product in [1], the paper [11] firstly introduced
the notion of a digital product with a normal adjacency from the viewpoint of digital topology. The normal
adjacency of a digital product contributed to the study of topological properties of a Cartesian product of
two digital images [6, 20, 23, 26]. In relation to the study of this topic, several approaches have been used as
follows: in case a Cartesian product (or digital product) has a normal adjacency in [11] (or an S-compatible
adjacency in [27], or the LS-property [23]) or the LC-property in [21], many works including [6, 20, 23, 26]
dealt with digital topological properties of digital products by using a digital fundamental group [4], digital
coverings [10, 11, 25], an automorphism group of a digital covering [18] and a digital k-surface structure
[2, 3, 8, 14, 31]. Computing Hyper-crossed complex pairings in digital images was studied in [35]. However,
these approaches could not be enough to deal with the issue because the other cases remain open.

Indeed, a digital image (X, k) is naturally considered to be a set X ⊂ Zn, n ∈ N with one of the k-
adjacency relations of Zn [37], where Zn (resp. N) is the set of points in the Euclidean nD space with integer
coordinates (resp. the set of natural numbers). It is well known that a Cartesian product of graphs [30]
has substantially contributed to the study of a Cartesian product of graphs. Motivated by this approach,
for digital products having the LC-property in [21], their digital topological properties were studied under

some hypothesis. To be specific, consider a Cartesian product SCn1 ,l1
k1
×SCn2,l2

k2
, where SCni ,li

ki
is a simple closed

ki-curve with li elements in Zni , i ∈ {1, 2} and further, is not ki-contractible. Then, if the Cartesian product

(SCn1,l1
k1
× SCn2 ,l2

k2
, k) has the property LS or LC, its digital k-fundamental group πk(SCn1 ,l1

k1
× SCn2 ,l2

k2
, (c0, d0)) is
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The author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded

by the Ministry of Education, Science and Technology (2016R1D1A3A03918403)
Email address: sehan@jbnu.ac.kr (Sang-Eon Han)



S.-E. Han / Filomat 31:9 (2017), 2787–2803 2788

proved to be isomorphic to πk1 (SCn1,l1
k1

, c0) × πk2 (SCn2,l2
k2

, d0) [21] in terms of various properties from digital

homotopy and digital covering theory. Although the paper [7] studied some properties for digital products,
the tools are kinds of the properties of LC and LS in [21, 23]. Besides, more generalized cases with the LHS- or
the LHC-property were also studied in [23]. Unlike these properties, we now need to study the other cases
which remains open. For instance, given two digital images (Xi, ki), i ∈ {1, 2}, let us consider the Cartesian
product X1 × X2 ⊂ Zn1+n2 with a k-adjacency. In details, consider the following cases:

(1) it has neither the LS-property (or a normal k-adjacency) nor the LHS-property; and
(2) it does not have the LHC-property.

To address these topics, the present paper, motivated by the Cartesian product adjacency in [30], uses the
notion of a C-compatible adjacency of a digital product which is different from both a normal k-adjacency
and the LS-property. Besides, the paper investigates some properties of a C-compatible adjacency for
studying the product property of digital images.

The present paper is organized as follows: Section 2 provides basic notions on digital topology in a
graph-theoretical approach. Section 3 recalls various properties of a C-compatible k-adjacency relation of
a digital product which play important roles in studying digital topological properties of digital products.
Besides, we prove that none of an S-compatible adjacency and a C-compatible k-adjacency on X1 × X2

implies the other. Section 4 studies the product property of two digital coverings. Section 5 studies an
automorphism group of a Cartesian product of digital coverings by using a C-compatible adjacency. Finally,
Section 6 concludes the paper with a summary.

2. Preliminaries

A (binary) digital image (X, k) can be regarded as a subset X ⊂ Zn with one of the k-adjacency relations
of Zn (see (2.2)) below. For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z | a ≤ n ≤ b} is called a digital interval
[4]. In this paper we shall use the symbol “ :=” in order to introduce new notions without mentioning the
fact. Further, let us recall the process of establishing k-adjacency relations of Zn which is a generalization of
k-adjacency relations of Z2 and Z3 in [37], as follows: let p := (pi)i∈[1,n]Z

be a point of Zn and m an integer in
[1, n]Z.

For a natural number m, 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(m, n)-(k-, for brevity)adjacent [10, 11] if

at most m of their coordinates differs by ± 1, and all others coincide. (2.1)

The number of such points is [20] (for more details, see [22])

k := k(m, n) =

n−1
∑

i=n−m

2n−iCn
i , where Cn

i =
n!

(n − i)! i!
. (2.2)

For consistency with the nomenclature “k-adjacent”, k ∈ {4, 8}, well developed in the context of 2D
integer grids, we will say that two points p, q ∈ Zn are k-adjacent if they satisfy the condition (2.1), where
k := k(m, n) is suggested in (2.2) [11] (see also [20, 22]).

For instance [20, 22],

(m, n, k) ∈

{

(1, 4, 8), (2, 4, 32), (3, 4, 64), (4, 4, 80);

(1, 5, 10), (2, 5, 50), (3, 5, 130), (4, 5, 210), (5, 5, 242).

}

(2.3)

Owing to the phrase “at most m” in (2.1), it is obvious that the points p = (p1, p2, ..., pn) and q =
(q1, q2, ..., qn) ∈ Zn may differ in as many as m coordinates. Thus, in general, we obtain the following: if two



S.-E. Han / Filomat 31:9 (2017), 2787–2803 2789

distinct points x, y ∈ Zn are k(m, n)-adjacent, then they are obviously k(m′, n)-adjacent [22], where m ≤ m′.
This observation will be often used in Section 5.

By using the k-adjacency relations of Zn in (2.2), we can study digital topological properties of a set
X ⊂ Zn with a k-adjacency, n ∈ N. This has been often used to represent digital continuity, a digital
isomorphism, a digital homotopy, a digital k-surface structure, etc. Owing to the digital k-connectivity
paradox in [33], we remind the reader that k , k̄ except the case (Z, 2, 2,X). However, in this paper we are
not concerned with k̄-adjacency between two points in Zn \ X. We say that a set X ⊂ Zn is k-connected if it
is not a union of two disjoint non-empty subsets of X that are not k-adjacent to each other [33]. For (X, k), a
point x ∈ X is called isolated if it is not k-adjacent with any point in X [33]. For a k-adjacency relation of Zn,
a simple k-path with l + 1 elements in Zn is assumed to be an injective sequence (xi)i∈[0,l]Z

⊂ Zn such that xi

and x j are k-adjacent if and only if | i − j | = 1 [33]. If x0 = x and xl = y, then we say that the length of the

simple k-path is l. A simple closed k-curve with l elements in Zn, n ≥ 2, denoted by SCn,l
k

[11] (see also [14]),
is the simple k-path (xi)i∈[0,l−1]Z

, where xi and x j are k-adjacent if and only if |i − j| = 1(mod l) [33]. Besides,
for Zn we remind the following [33]:

{

Nk(x) := {x′ | x is k-adjacent to x′ in Zn} and

N∗k(x) := Nk(x) ∪ {x}.

}

(2.4)

As a generalization of N∗
k
(x) in Zn, for a multi-dimensional digital image (X, k) and a point x ∈ X ⊂ Zn,

the notion of a (digital) k-neighborhood of a point x with radius ε ∈ N was established [9] (see also [11]), as
follows.

Nk(x0, ε) := {x ∈ X| lk(x0, x) ≤ ε} ∪ {x0}, (2.5)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x in X. For instance, for x ∈ (X, k) we
observe [19]

N∗k(x) ∩ X = Nk(x, 1). (2.6)

If a point x in a digital image (X, k) is isolated, then for any ε ∈ N we observe that Nk(x, ε) is a singleton
{x}. The k-neighborhood of (2.6) will be often used to establish a compatible adjacency for a Cartesian
product of two digital images (see Section 4) and digital continuity.

The original version of digital continuity was firstly developed in [37]: let (X, k0) and (Y, k1) be digital
images in Zn0 and Zn1 , respectively. Let f : (X, k0)→ (Y, k1) be a function. We say that f is (k0, k1)-continuous
if the image under f of every k0-connected subset of X is k1-connected (see Theorem 2.4 of [38]).

By using the property (2.6), we can represent the notion of digital continuity, as follows:

Definition 2.1. ([11]) (see also [19]) Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A
function f : X→ Y is (k0, k1)-continuous if for every x ∈ X, f (Nk0

(x, 1)) ⊂ Nk1
( f (x), 1).

We have often used the following notion of a (k0, k1)-isomorphism instead of a (k0, k1)-homeomorphism
used in [4]: for two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y is called a (k0, k1)-
isomorphism [12, 36] if h is a (k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-continuous [12]
(see also [19]), and we use the notation X ≈(k0,k1) Y. If n0 = n1 and k0 = k1, then we call it a k0-isomorphism.

3. C-Compatible Adjacency Relation for a Digital Product

In graph theory two compatible adjacencies of a Cartesian product such as the normal adjacency in [1]
and the Cartesian product adjacency in [30] play important roles in studying graphs. Motivated by the
normal adjacency in [1], the paper [11] developed a normal adjacency for a digital product to study a digital
fundamental group of a digital product, as follows:

Definition 3.1. ([11]) Given two digital images (X, k1) in Zn1 , (Y, k2) in Zn2 , consider the digital product
X × Y ⊂ Zn1+n2 . Then we say that two points (x, y) ∈ X × Y, (x′, y′) ∈ X × Y are normally k-adjacent to each
other if and only if
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(1) x is k1-adjacent to x′ and y = y′; or
(2) y is k2-adjacent to y′ and x = x′; or
(3) x is k1-adjacent to x′ and y is k2-adjacent to y′.

As an equivalent version of the normal adjacency of Definition 3.1, we have the following presentation
named by an “S-compatible adjacency” for a digital product, which can be substantially used in studying
a normal adjacency of a digital product in terms of a matric presentation.

Remark 3.2. ([27]) Given two digital images (X, k1) in Zn1 and (Y, k2) in Zn2 , consider a Cartesian product
X×Y ⊂ Zn1+n2 . We say that a k-adjacency of X×Y is strongly compatible (for brevity, S-compatible) with the
ki-adjacency, i ∈ {1, 2} if every point (x, y) in X × Y satisfies the following property: for two distinct points
(x, y) and (x′, y′) in X × Y

(x′, y′) ∈ Nk((x, y), 1)⇔ x′ ∈ Nk1
(x, 1), y′ ∈ Nk2

(y, 1).

The following simple closed 4- and 8-curves in Z2 [9] and a simple closed 18- and 26-curves in Z3 [9, 16]
will be often used later in the paper, especially in Examples 3.3, 3.5, and 4.8 (see also Figure 1).
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Figure 1: Several kinds of simple closed k-curves [9, 17, 22, 23].

To represent a Cartesian product of two digital images as a matrix, we use the notation

SCn1 ,l1
k1

:= (ai)i∈[1,l1]Z
and SCn2 ,l2

k2
:= (b j) j∈[1,l2]Z

(see (3.1)).
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Then take the Cartesian product SCn1 ,l1
k1
× SCn2,l2

k2
⊂ Zn1+n2 which can be represented as the following

matrix:
SCn1 ,l1

k1
× SCn2 ,l2

k2
:= (ci j)(i, j)∈[1,l1]Z×[1,l2]Z

, for brevity, (ci j) (3.2)

where ci j := (ai, b j).
In view of Definition 3.1, not every digital product has an S-compatible k-adjacency, as follows:

Example 3.3. ([26, 27]) (1) ([a, b]Z × [c, d]Z, 8),
(2) (SC2,6

8
× [a, b]Z, 26),

(3) (SC2,6
8
× SC2,6

8
, 80), (SC2,8

8
× SC2,8

8
, 80) and (SC2,6

8
× SC2,8

8
, 80),

(4) (SC3,6
18
× SC2,4

8
, 242), (SC2,6

8
× SC3,6

18
, 242)

(5) None of MSC18 ×MSC18, SC2,8
4
× SC2,6

8
, and SC2,8

4
× SC2,8

4
has an S-compatible k-adjacency [7, 21, 23].

Even though a normal adjacency of a digital product were established for studying digital products,
there are many digital products which do not have normal adjacencies. Thus we need to propose another
new adjacency for a digital product from the viewpoint of digital topology. Motivated by the Cartesian
product adjacency in [30], we now develop its digital version for strongly compatible product adjacency.
The following is another presentation of the LC-property of digital products in [21].

Definition 3.4. For two digital images (X, k1) in Zn1 and (Y, k2) in Zn2 , consider the Cartesian product
X × Y ⊂ Zn1+n2 . We say that a k-adjacency of X × Y is strongly Cartesian compatible (for brevity, C-
compatible) with the given ki-adjacency, i ∈ {1, 2} if every point (x, y) in X × Y satisfies the following
property:

Nk((x, y), 1) = (Nk1
(x, 1) × {y}) ∪ ({x} ×Nk2

(y, 1)).

In view of Example 3.3, not every digital product has a C-compatible k-adjacency, as follows:

Example 3.5. ([21]) (1) ([a, b]Z × [c, d]Z, 4),
(2) (SC2,8

4
× [a, b]Z, 6),

(3) (SC2,6
8
× SC3,4

26
, 130), (SC2,4

8
× SC2,6

8
, 32) and (SC2,8

8
× SC2,8

8
, 32), and

(4) None of SC2,8
4
× SC2,6

8
, SC2,6

8
× SC2,6

8
, and SC2,6

8
×MSC18 has a C-compatible k-adjacency.

By Definition 3.2 and Example 3.5, we obviously obtain the following:

Remark 3.6. Consider two digital images (Xi, ki) in Zni , i ∈ {1, 2}, where ki := k(mi, ni) via (2.1). Assume
ki = 2ni, i.e. mi = 1, i ∈ {1, 2}. Then the digital product X1 × X2 ⊂ Zn1+n2 has a C-compatible k(1, n1 + n2)-

adjacency [21]. For instance, see the case (SC2,8
4
× SC2,8

4
, 8) in Example 3.5

Remark 3.7. [Merits of a C-compatible adjacency of a digital product] Given two digital images (Xi, ki), i ∈
{1, 2}, consider a digital product (X1 ×X2, k). If the given k-adjacency is a C-compatible adjacency, then each
of the projection maps pi : (X1 × X2, k) → (Xi, ki), i ∈ {1, 2} is always a (k, ki)-continuous map (see Corollary
3.11).

According to Remarks 3.6 and 3.7, since the existence of a C-compatible adjacency for a digital product
depends on the situation, we now propose the following:

Theorem 3.8. Consider SCni ,li
ki
, i ∈ {1, 2}, ki := k(mi, ni) from (2.2). Assume ki , 2ni, i ∈ {1, 2} and m1 ≤ m2. Then

we obtain the following cases supporting a C-compatible adjacency for SCn1 ,l1
k1
× SCn2 ,l2

k2
.

(Case 1) Consider the case m1 = m2 and m1 , n1, i.e. k1 , 3n1 − 1. For each element y j ∈ SCn2,l2
k2

:= (y j) j∈[0,l2−1]Z

assume the number of different coordinates of every pair of the consecutive points y j and y j+1(mod l2) in SCn2 ,l2
k2

is constant

as the number m2 instead of “at most m2”. Then the product SCn1,l1
k1
×SCn2,l2

k2
has a C-compatible k(m, n1+n2)-adjacency,

where m = m1.
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(Case 2) In case m1 = n1, i.e. k1 = 3n1 − 1, assume that for each element y j ∈ SCn2 ,l2
k2

:= (y j) j∈[0,l2−1]Z
, the number

of different coordinates of every pair of the consecutive points y j and y j+1(mod l2) is constant as the number m2 instead
of “at most m2”.

Then the product SCn1 ,l1
k1
× SCn2 ,l2

k2
has a C-compatible k(m2, n1 + n2)-adjacency.

(Case 3) In case mi = ni, i ∈ {1, 2}, i.e. ki = 3ni − 1 (or mi < [0, ni − 1]Z), then we can consider two cases:
(Case 3-1) Assume that for each element y j ∈ SCn2,l2

k2
:= (y j) j∈[0,l2−1]Z

, the number of different coordinates of every pair

of the consecutive points y j and y j+1(mod l2) is constant as the number m2 instead of “at most m2”.

Then the product SCn1 ,l1
k1
× SCn2 ,l2

k2
has a C-compatible k(m2, n1 + n2)-adjacency.

(Case 3-2) We assume that for each element xi ∈ SCn1 ,l1
k1

:= (xi)i∈[0,l1−1]Z
, the number of different coordinates of every

consecutive points xi and xi+1(mod l1) in SCn1 ,l1
k1

is constant as the number n1 instead of “at most n1” and further, for

each element y j ∈ SCn2 ,l2
k2

:= (y j) j∈[0,l2−1]Z
, the number of different coordinates of every pair of the consecutive points

y j and y j+1(mod l2) is constant as the number m2 instead of “at most m2”.

Then the product SCn1 ,l1
k1
× SCn2 ,l2

k2
has a C-compatible k(t, n1 + n2)-adjacency, where m2 ≤ t ≤ m1 +m2 − 1.

Before proving this theorem, we need to explain the hypotheses relating to the four cases of this theorem
such as “the number of different coordinates of every pair of the consecutive points y j and y j+1(mod l2) in

SCn2,l2
k2

is constant as the number m2” and another relating to the k1-adjacency of SCn1,l1
k1

. In relation to the

hypothesis of Case 1, for instance, consider the digital image MSC18 := (ci)i∈[0,5]Z
in Figure 1. Then we

observe that it does not have the property that for each element ci the number of different coordinates of
the points ci and ci+1(mod 6) in MSC18 is constant as the number 2. To be specific, consider the consecutive
two points c1 = (1, 0, 0) and c2 = (1, 0, 1) of MSC18 in (3.1). Then we observe that the number of different
coordinates of these points in MSC18 is 1 instead of the number 2. However, consider another space such

as SC2,8
8

in Figure 1. Then we observe that for each element xi ∈ SC2,8
8

:= (xi)i∈[0,7]Z
the number of different

coordinates of the points xi and xi+1(mod 8) ∈ SC2,8
8

is constant as the number 2. This property is substantially
required to make this theorem valid.

Proof. (Case 1): Consider the case m1 = m2, m1 , n1 and given SCn2 ,l2
k2

satisfies the hypothesis. Let us now

prove that for each point (x, y) ∈ SCn1,l1
k1
× SCn2 ,l2

k2
, the following property is valid.

Nk((x, y), 1) = (Nk1
(x, 1) × {y}) ∪ ({x} ×Nk2

(y, 1)),

where k := k(m, n1 + n2).
Consider the point (x, y) := (xi, y j) := p ∈ SCn1 ,l1

k1
×SCn2,l2

k2
. Then we obviously observe that all of the points

(xi−1, y j), (xi+1, y j), (xi, y j−1), (xi, y j+1) and (xi, y j) belong to Nk(p, 1). However, since the following points
(xi+2, y j), (xi−2, y j), (xi, y j−2), (xi, y j+2) cannot belong to Nk(p, 1), let us only examine if each of the points

(xi−1, y j−1), (xi−1, y j+1), (xi+1, y j−1), (xi+1, y j+1) (3.3)

belongs to the set Nk(p, 1). First of all, consider the point (xi−1, y j−1). Then we see that the number of
different coordinates of the following points (xi−1, y j−1) and (xi, y j) is at least 2, which implies that the point
(xi−1, y j−1) < Nk(p, 1).

Similarly, we can prove the other points in (3.3) cannot belong to the set Nk(p, 1) either by using the
method similar to the proof of (xi−1, y j−1) < Nk(p, 1).

(Case 2) For each element y j ∈ SCn2 ,l2
k2

:= (y j) j∈[0,l2−1]Z
assume that the number of different coordinates of

every pair of the consecutive points y j and y j+1(mod l2) is constant as the number m2 instead of “at most m2”.

Then for each point (x, y) ∈ SCn1,l1
k1
× SCn2 ,l2

k2
, by using the method similar to the proof of Case 1, we obtain

that
Nk((x, y), 1) = (Nk1

(x, 1) × {y}) ∪ ({x} ×Nk2
(y, 1)),
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where k := k(m2, n1 + n2), which implies that the product SCn1 ,l1
k1
× SCn2 ,l2

k2
has a C-compatible k(m2, n1 + n2)-

adjacency.

(Case 3): Before proving this case, we need to explain the hypothesis in Case 4. Let us consider the digital

product SC2,6
8
×SC3,6

26
⊂ Z5. Then we observe that none of SC2,6

8
and SC3,6

26
in Figure 1 satisfies the hypothesis,

which implies that the digital product SC3,6
18
× SC3,6

26
could not have any C-compatible k-adjacency.

(Case 3-1): By using the method similar to the proof of Cases 2, the proof is completed.
(Case 3-2): By using the method similar to the proof of Cases 2 and 3, we obtain the result.

Example 3.9. Consider the digital images SC3,6
18
, SC2,8

8
, SC3,4

26
,MSC18 in Figure 1. Then we obtain the following

cases related to the existence of a C-compatible adjacency:

(1) (MSC18 × SC2,8
8
, k(2, 5) := 50), and (SC2,6

8
× SC2,8

8
, 32 := k(2, 4)),

(2) (SC2,8
8
× SC3,4

26
, 130 := k(3, 5)),

(3) (SC3,6
18
× SC3,4

26
, k), k ∈ {232 := k(3, 6), 472 := k(4, 6)},

(4) (SC2,4
8
× SC3,4

26
, k), k ∈ {130 := k(3, 5), 210 := k(4, 5)}, and

(5) None of SC2,6
8
×MSC18, MSC18 ×MSC18 and MSC18 × SC3,4

26
has a C-compatible adjacency.

Since the concepts of S-and C-compatible adjacency for a digital product play important roles in studying
digital products, let us now compare “S-compatible” with “C-compatible”.

Theorem 3.10. Given two digital images (Xi, ki) in Zni , i ∈ {1, 2}, none of an S-compatible adjacency and a C-
compatible k-adjacency on X1 × X2 implies the other.

Proof. As examples related to the assertion, consider the following two products SC2,8
4
×SC2,8

4
and SC2,6

8
×SC2,6

8

in Example 3.5. While SC2,8
4
× SC2,8

4
has a C-compatible 8-adjacency, it has no S-compatible k-adjacency,

k ∈ {8, 32, 64, 80}. Besides, while SC2,6
8
× SC2,6

8
has an S-compatible 80 := k(4, 4)-adjacency, it has no C-

compatible k-adjacency, k ∈ {8, 32, 64, 80}.

By Definitions 2.1 and 3.1, we obtain the following:

Corollary 3.11. Assume a C-compatible k-adjacency on X1×X2. Then the natural projection map Pi : X1×X2 → Xi

is a (k, ki)-continuous map, i ∈ {1, 2}.

Proof. If we take a C-compatible k-adjacency on X1 ×X2, then each of the natural projection maps is clearly
(k, ki)-continuous, i ∈ {1, 2}.

4. Digital Product Properties of Digital Coverings

Even though the paper [6] studied product properties of two digital coverings, we need to make it
advanced in the present section. In this section, we show that a C-compatible k-adjacency relation of
a digital product can be substantially used to study Cartesian product properties of digital coverings.
Hereafter, each digital image (X, k) is assumed to be k-connected. Let us recall the notion of a digital
covering space in [24] which is an advanced and simplified version of the earlier versions in [6, 10, 11, 18]
(see Remark 4.2).

Definition 4.1. ([10, 11, 14, 24]) Let (E, k0) and (B, k1) be digital images in Zn0 and Zn1 , respectively. Let
p : E→ B be a surjection. Suppose that for every b ∈ B there exists ε ∈ N such that

(DC 1) for some index set M, p−1(Nk1
(b, ε)) = ∪i∈MNk0

(ei, ε) with ei ∈ p−1(b);
(DC 2) if i, j ∈M and i , j, then Nk0

(ei, ε) ∩Nk0
(e j, ε) = ∅; and

(DC 3) the restriction map p |Nk0
(ei ,ε) : Nk0

(ei, ε)→ Nk1
(b, ε) is a (k0, k1)-isomorphism for all i ∈M.

Then the map p is called a (k0, k1)-covering map, (E, p,B) is said to be a (k0, k1)-covering, and (E, k0) is called
a (k0, k1)-covering space over (B, k1).
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In Definition 4.1, Nk1
(b, ε) is called an elementary k1-neighborhood of b with radius ε [11]. The collection

{Nk0
(ei, ε) | i ∈M} is a partition of p−1(Nk1

(b, ε)) into slices. Furthermore, we may take ε = 1 which is a special
case of Definition 4.1 [14]. For pointed digital images ((E, e0), k0) and ((B, b0), k1) if p : (E, e0) → (B, b0) is a
(k0, k1)-covering map such that p(e0) = b0, then the map p is a pointed (k0, k1)-covering map [11]. Besides,

consider the map p : (Z, 0) → (SCn,l
k
, c0) with p(i) = ci(mod l), where SCn,l

k
:= (ci)i∈[0,l−1]Z

. Then (Z, p, SCn,l
k

) is a
pointed (2, k)-covering [11] because we may take ε = 1 in Definition 4.1.

Remark 4.2. ([24]) We observe that the digital covering map of Definition 4.1 is more simplified than the
versions of [6, 11, 12, 14, 19]. Namely, owing to the property (DC 3), the “(k0, k1)-continuous surjection” of
the earlier versions in [6, 9, 12, 17] is replaced by a “surjection”.

Definition 4.3. ([11]) We say that a (k0, k1)-covering map p : E → B is an n-fold (k0, k1)-covering map if the
cardinality of the index set M is n.

For instance, consider the map

p : SCn0 ,lm
k0

:= ((di)i∈[0,lm−1], d0)→ SCn1 ,l
k1

:= ((c j) j∈[0,l−1], c0)

with p(di) = ci(mod l),m ∈ N. Then (SCn0,ml
k0

, p, SCn1,l
k1

) is an m-fold (k0, k1)-covering. This property will be often

used in Section 5.

Definition 4.4. ([10]) For n ∈ N, a (k0, k1)-covering (E, p,B) is a radius n local isomorphism if the restriction
map p |Nk0

(ei,n) : Nk0
(ei, n)→ Nk1

(b, n) is a (k0, k1)-isomorphism for all i ∈M.

Definition 4.5. ([19]) A (k0, k1)-covering (E, p,B) is called a radius n-(k0, k1)-covering if ε ≥ n.

For instance, while (Z, p, SC2,6
8

) is a radius 2-(2, 8)-covering, (Z, p, SC2,4
8

) cannot be a radius 2-(2, 8)-
covering. The case of ε = 2 in Definition 4.5 has been substantially used to establish the digital homotopy
lifting theorem (see Lemma 5.6 of the present paper).

By Definitions 4.4 and 4.5, we can say that a (k0, k1)-covering satisfying a radius n local isomorphism
is equivalent to a radius n-(k0, k1)-covering. Namely, in this case we may take ε = n in Definition 4.1. In
addition, we clearly observe that a (k0, k1)-covering is a radius 1-(k0, k1)-covering.

Let us now study some Cartesian product properties of digital coverings.

Remark 4.6. ([23]) Consider four digital images (E1, k0) in Zn0 , (B1, k1) in Zn1 , (E2, k2) in Zn2 and (B2, k3) in Zn3 .
Furthermore, the digital products (E1 × E2, k4), (B1 × B2, k5) are assumed with some k4- and k5-adjacencies
of Zn0+n2 and Zn1+n3 , respectively. Let p1 : E1 → B1 and p2 : E2 → B2 be (k0, k1)- and (k2, k3)-covering maps,
respectively. Precisely, we observe that the digital product map p := p1 × p2 : E1 × E2 → B1 × B2 need not be
a (k4, k5)-covering map.

To make Remark 4.6 self-contained, we can consider the following (8, 4)-covering

(X := (ci)i∈[0,7]Z
, p, SC2,8

4
:= (d j) j∈[0,7]Z

) given by p(ci) = di,

where (X, 8) is the digital image in Figure 1. Using the presentation of (3.2), let us consider the product map

p × p : X × X := (ci j)→ SC2,8
4
× SC2,8

4
:= (di j) (4.1)

given by p × p(ci, c j) = (di, d j). Consider two Cartesian products (X ×X, k), (SC2,8
4
× SC2,8

4
, k′) with any k- and

k′-adjacencies of Z4 in (2.2), respectively. Then we can observe that none of k- and k′-adjacencies of Z4 in
(2.2) makes the product map p × p a (k, k′)-covering map.

With some hypothesis of a Cartesian product map we obtain the following:



S.-E. Han / Filomat 31:9 (2017), 2787–2803 2795

Theorem 4.7. Let (E1, p1,B1) be a (k0, k1)-covering and let (E2, p2,B2) be a (k2, k3)-covering, where (E1, k0), (B1, k1),
(E2, k2) and (B2, k3) are considered in Zn0 , Zn1 , Zn2 and Zn3 , respectively. Then the Cartesian product map p := p1×p2 :
E1 × E2 → B1 × B2 is a (k, k′)-covering map given by p(e1, e2) = (p1(e1), p2(e2)), where k and k′ are C-compatible
adjacencies of E1 × E2 ⊂ Zn0+n2 and B1 × B2 ⊂ Zn1+n3 , respectively.

Proof. In Definition 4.1 as already referred, we may take ε = 1. With the hypothesis, let us now examine if
the Cartesian product map p := p1 × p2 is a (k, k′)-covering map.

First, we observe that the map p := p1 × p2 : E1 × E2 → B1 × B2 is clearly a surjection because both p1 and
p2 are surjections.

Second, owing to the existence of a C-compatible adjacency of B1 × B2, for any (b1, b2) ∈ B1 × B2, we
obtain

Nk′((b1, b2), 1) = (Nk1
(b1, 1) × {b2}) ∪ ({b1} ×Nk3

(b2, 1)) ⊂ B1 × B2.

Due to the given digital coverings (E1, p1,B1) and (E2, p2,B2), for some index sets M1 and M2, we obtain














p−1
1 (Nk1

(b1, 1)) = ∪i∈M1
Nk0

(ei, 1) and

p−1
2 (Nk3

(b2, 1)) = ∪ j∈M2
Nk2

(e j, 1),















(4.2)

where Nk1
(b1, 1) and Nk3

(b2, 1) are, respectively, elementary k1- and k3-neighborhoods of b1 and b2, and
ei ∈ p−1

1
(b1), e j ∈ p−1

2
(b2).

Then for the index set M1 ×M2 and (ei, e j) ∈ p−1((b1, b2)), by (4.2) and the hypothesis of an existence of
C-compatible adjacencies of E1 × E2 and B1 × B2, we obtain











































p−1(Nk′((b1, b2), 1)) = p−1((Nk1
(b1, 1) × {b2}) ∪ ({b1} ×Nk3

(b2, 1)))

= (p−1
1 (Nk1

(b1, 1)) × ∪ j∈M2
{e j}) ∪ (∪i∈M1

{ei} × (p−1
2 (Nk3

(b2, 1))))

= (∪i∈M1
Nk0

(ei, 1) × ∪ j∈M2
{e j}) ∪ (∪i∈M1

{ei} × ∪ j∈M2
Nk2

(e j, 1))

= ∪(i, j)∈M1×M2
((Nk0

(ei, 1) × {e j}) ∪ ({ei} ×Nk2
(e j, 1))),

= ∪(i, j)∈M1×M2
Nk((ei, e j), 1).











































(4.3)

Third, if (i1, j1) and (i2, j2) ∈M1×M2 and (i1, j1) , (i2, j2), then we prove that Nk((ei1 , e j1 ), 1)∩Nk((ei2 , e j2 ), 1) =
∅.

To be specific, due to both the (k0, k1)-covering (E1, p1,B1) and the (k2, k3)-covering (E2, p2,B2), for (i1, j1) ,
(i2, j2) we suffice to consider two cases as follows.

In case i1 , i2, we obviously obtain Nk0
(ei1 , 1) ∩Nk0

(ei2 , 1) = ∅, where Nk0
(ei1 , 1),Nk0

(ei2 , 1) ∈ p−1
1

(Nk1
(b1, 1))

and ei1 , ei2 ∈ p−1
1

(b1).

In case j1 , j2, we also have Nk2
(e j1 , 1) ∩ Nk2

(e j2 , 1) = ∅, where Nk2
(e j1 , 1),Nk2

(e j2 , 1) ∈ p−1
2

(Nk3
(b2, 1)), and

e j1 , e j2 ∈ p−1
2

(b2).
Consequently, if (i1, j1) , (i2, j2), then we get

Nk((ei1 , e j1 ), 1) ∩Nk((ei2 , e j2 ), 1) = ∅, (4.4)

because






















Nk((ei1 , e j1 ), 1) = (Nk0
(ei1 , 1) × {e j1}) ∪ ({ei1} ×Nk2

(e j1 , 1)),

Nk((ei2 , e j2 ), 1) = (Nk0
(ei2 , 1) × {e j2}) ∪ ({ei2} ×Nk2

(e j2 , 1)),

where (ei1 , e j1 ), (ei2 , e j2 ) ∈ p−1(b1, b2).























Fourth, due to the given digital coverings (E1 , p1,B1) and (E2, p2,B2), for any Nk((ei, e j), 1) ∈ p−1(Nk′((b1, b2), 1)),
by (4.3), we obtain the restriction map

p |Nk((ei ,e j),1) : Nk((ei, e j), 1)→ Nk′((b1, b2), 1) (4.5)

which is a (k, k′)-isomorphism for all (i, j) ∈M1 ×M2 because p1 |Nk0
(ei ,1) and p2 |Nk2

(e j ,1) are (k0, k1)- and (k2, k3)-
isomorphisms, respectively. Therefore, by (4.3), (4.4) and (4.5), the surjection p : E1×E2 → B1×B2 is proved
to be a (k, k′)-covering map.
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Example 4.8. (1) Consider the following two maps p1 and p2 which are (4, 8)- and (2, 8)-covering maps,
respectively:

p1 : SC2,8
4

:= (ci)i∈[0,7]Z
→ SC2,4

8
:= (d j) j∈[0,3]Z

with p1(ci) = di(mod 4) and

p2 : Z→ SC2,6
8

:= (ci)i∈[0,5]Z
with p2(t) = ct(mod 6).

By Example 3.5, we observe that SC2,8
4
× Z and SC2,4

8
× SC2,6

8
have C-compatible 6- and 32-adjacencies,

respectively. Thus, by Theorem 4.7, the Cartesian product map p1 × p2 : SC2,8
4
× Z → SC2,4

8
× SC2,6

8
is a

(6, 32)-covering map.
(2) Consider the following two maps q1 and q2 which are (2, 8)-covering maps, respectively:

q1 : Z→ SC2,4
8

:= (ci)i∈[0,3]Z
with q1(i) = ci(mod 4) and

q2 : Z→ SC2,6
8

:= (d j)i∈[0,5]Z
with q2(t) = dt(mod 6).

By Example 3.5, we observe that Z×Z and SC2,4
8
×SC2,6

8
have C-compatible 4- and 32-adjacencies, respectively.

Thus, by Theorem 4.7, the Cartesian product map q1 × q2 : Z × Z→ SC2,4
8
× SC2,6

8
is a (4, 32)-covering map.

(3) Consider the two digital products in (4.1). Since the following Cartesian products (SC2,8
8
× SC2,8

8
, 32),

(SC2,8
4
×SC2,8

4
, 8) have only 32- and 8-compatible adjacencies, respectively, we obtain the product map which

is a (32, 8)-covering map.

5. Automorphism Group of a Cartesian Product of Digital Coverings

Since the study of an automorphism group of a digital covering space plays an important role in
classifying digital images [18], we need to study an automorphism group of a Cartesian product of two
digital coverings in terms of a C-compatible k-adjacency, we can consider the following two cases: for a
Cartesian product of two digital coverings

(Case 1) it satisfies a radius 2 local isomorphism.
(Case 2) it does not satisfy a radius 2 local isomorphism.
Before studying these cases, let us now recall the notion of a digital covering homomorphism in [18, 19].

While the notion of a (k1, k2)-covering homomorphism from (E1, p1,B) into (E2, p2,B) is motivated by that
of a covering homomorphism in [34, 39], it can be substantially used to study a digital homomorphism
between two digital coverings (E1, p1,B) and (E2, p2,B) because the present digital covering is very different
from a covering from algebraic topology. In this section we show that a C-compatible k-adjacency of a
digital product can be substantially used to study an automorphism group of a Cartesian product of digital
coverings.

Definition 5.1. ([18, 19]) For three digital images (B, k), (E1, k1), and (E2, k2), let (E1, p1,B) and (E2, p2,B) be
(k1, k)- and (k2, k)-coverings, respectively. Then, we say that a (k1, k2)-continuous map φ : E1 → E2 such that
p2 ◦ φ = p1 is a (k1, k2)-covering homomorphism from (E1, p1,B) into (E2, p2,B).

Let us now study an automorphism group of a Cartesian product of two digital coverings of the above
Case 1. First of all, in case a digital covering satisfies a radius 2 local isomorphism (see the above Case 1),
since the study of an automorphism group of a digital covering is very related to the calculation of a digital
fundamental group, let us now recall it. Motivated by the pointed digital homotopy in [4, 32], the following
notion of k-homotopy relative to a subset A ⊂ X has been substantially used to study a k-homotopic thinning
[14, 16, 18] and a strong k-deformation retract of a digital image (X, k) in Zn [14, 16, 18, 20].

Definition 5.2. ([16, 20]) Let ((X,A), k0) and (Y, k1) be a digital image pair and a digital image, respectively.
Let f , 1 : X→ Y be (k0, k1)-continuous functions. Suppose there exist m ∈ N and a function F : X×[0,m]Z→ Y
such that

(1) for all x ∈ X, F(x, 0) = f (x) and F(x,m) = 1(x);
(2) for all x ∈ X, the induced function Fx : [0,m]Z → Y given by Fx(t) = F(x, t) for all t ∈ [0,m]Z is

(2, k1)-continuous;
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(3) for all t ∈ [0,m]Z, the induced function Ft : X → Y given by Ft(x) = F(x, t) for all x ∈ X is (k0, k1)-
continuous.
Then we say that F is a (k0, k1)-homotopy between f and 1 [4].

(4) Furthermore, Ft(x) = f (x) = 1(x) for all x ∈ A and for all t ∈ [0,m]Z.
Then we call F a (k0, k1)-homotopy relative to A between f and 1, and we say f and 1 are (k0, k1)-homotopic
relative to A in Y, f ≃(k0,k1)relA 1 in symbols.

In Definition 5.2, if A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy at {x0} [4]. When f
and 1 are pointed (k0, k1)-homotopic in Y, we denote by f ≃(k0,k1) 1 the homotopic relation. In addition, if
k0 = k1 and n0 = n1, then we say that f and 1 are pointed k0-homotopic in Y and use the notation f ≃k0

1

and f ∈ [1] which means the k0-homotopy class of 1. If, for some x0 ∈ X, 1X is k-homotopic to the constant
map with the set {x0} relative to {x0}, then we say that (X, x0) is pointed k-contractible [4]. Indeed, the notion
of k-contractibility is slightly different from the contractibility in Euclidean topology [18].

In classical topology any circles in the nD real space are homeomorphic to each other, n ≥ 2. How-
ever, in digital topology simple closed k-curves in Zn need not be k-isomorphic to each other because

a k-isomorphism between them depends on the cardinality of SCn,l
k
, n ≥ 2. Thus, motivated by both

8-contractibility of SC2,4
8

[4] and non-8-contractibility of SC2,6
8

[9], the paper [11] proved that πk(SCn,l
k

) is

an infinite cyclic group such as (lZ,+), where SCn,l
k

is not k-contractible. More precisely, for SCn,l
k

not k-
contractible, by using the digital homotopy lifting theorem [10], the digital unique lifting theorem [11], and

some properties of the (2, k)-covering map (Z, p, SCn,l
k

) we obtain [11]

πk(SCn,l
k
, x0) ≃ (Z,+) ≃ (lZ,+), (5.1)

where “ ≃” means a group isomorphism. In addition, πk(SCn,4
k

) is trivial [4] if k = 3n − 1, n ∈ N \ {1} because
it is k-contractible.

The following notion of ‘simply k-connected’ in [11] has been often used in digital topology for calculating
digital fundamental groups of some digital images, classifying digital images, studying an automorphism
group of a digital covering and so forth [5, 6, 11, 14, 17].

Definition 5.3. ([11]) A pointed k-connected digital image (X, x0) is called simply k-connected if πk(X, x0) is a
trivial group.

Since our definition of k-contractility requires a digital image (X, k) to shrink k-continuously to a point
over a finite time interval, we cannot say that Z is 2-contractible. However, we can establish the simply
2-connectedness of Z [11]. Even though the paper [6] used the property of simply k-connectedness of Zn,
the present paper speaks out that the property was already proven in [13] (see [28]) as follows:

Lemma 5.4. ([13, 28]) For each n ∈ N, (Zn, 0n) is simply k(m, n)-connected, where 0n is the origin in Zn and
m ∈ [1, n]Z.

Since both unique lifting theorem and digital homotopy lifting theorem have often used to study digital
images from the viewpoint of digital homotopy theory, let us recall them as follows.

Lemma 5.5. (Unique lifting theorem) ([11]) For pointed digital images ((E, e0), k0) in Zn0 and ((B, b0), k1) in Zn1 ,
let p : (E, e0)→ (B, b0) be a pointed (k0, k1)-covering map. Any k1-path f : [0,m]Z → B beginning at b0 has a unique
digital lifting to a k0-path f̃ in E beginning at e0.

Lemma 5.6. (Digital homotopy lifting theorem) [10] Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images.
Let p : (E, e0)→ (B, b0) be a radius 2-(k0, k1)-covering map. For k0-paths 10, 11 in (E, e0) that start at e0, if there is a
k1-homotopy in B from p ◦ 10 to p ◦ 11 that holds the endpoints fixed, then 10 and 11 have the same terminal point,
and there is a k0-homotopy in E from 10 to 11 that holds the endpoints fixed.

By the use of the digital homotopy lifting theorem, we obtain the following.
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Lemma 5.7. ([5, 19]) Let ((E, e0), k0), ((B, b0), k1) be pointed digital images in Zn0 and Zn1 , respectively. Let
p : (E, e0) → (B, b0) be a pointed radius 2-(k0, k1)-covering map, then the map p∗ : πk0 (E, e0) → πk1 (B, p(e0)) is a
monomorphism.

Definition 5.8. ([14]) For digital images ((E, e0), k0) and ((B, b0), k1), let p : (E, e0) → (B, b0) be a pointed
(k0, k1)-covering map. If p∗π

k0 (E, e0) is a normal subgroup of πk1 (B, b0), then ((E, e0), p, (B, b0)) is called a
regular (k0, k1)-covering.

Let us now recall generalized digital lifting theorem in [19] as follows.

Theorem 5.9. ([6, 19]) Let ((E1, e1), p1, (B, b0)) and ((E2, e2), p2, (B, b0)) be a pointed (k1, k)- and a pointed radius
2-(k2, k)-covering, respectively. Then, there is a (k1, k2)-covering homomorphism φ : (E1, k1) → (E2, k2) such that
φ(e1) = e2 and p2 ◦ φ = p1 if and only if (p1)∗π

k1 (E1, e1) ⊂ (p2)∗π
k2 (E2, e2).

Let ((E, e0), k0) and ((B, b0), k1) be two digital images in Zn0 and Zn1 , respectively. Consider a (k0, k1)-
covering map p : ((E, e0), k0)→ ((B, b0), k1). A self k0-isomorphism of the (k0, k1)-covering map p, denoted by
h : (E, k0)→ (E, k0), such that p ◦ h = p is called an automorphism or a covering transformation [19].

Definition 5.10. ([19]) A (k1, k2)-covering homomorphism φ : (E1, k1) → (E2, k2) over a base space (B, k) is
called a (k1, k2)-covering isomorphism if there is a (k2, k1)-covering homomorphism ψ : (E2, k2) → (E1, k1)
such that both compositions ψ ◦ φ and φ ◦ ψ are identity maps. Two digital coverings ((E1, k1), p1, (B, k))
and ((E2, k2), p2, (B, k)) are called (k1, k2)-isomorphic if there is a (k1, k2)-covering isomorphism φ : (E1, k1)→
(E2, k2) over the given space (B, k).

The set of all covering transformations of a pointed digital (k0, k1)-covering p forms a group under the
operation of composition, called an automorphism group (or deck transformation group) of ((E, e0), k0) over
((B, b0), k1) [19], and denoted by Aut((E, e0)| (B, b0)), for brevity, Aut(E|B) if there is no danger of ambiguity
[19].

Using Massey’s program of an automorphism group [34], we obtain a connection between Aut(E |B) and
the action of πk1 (B, b0) on p−1(b0) which represents digital topological versions of Proposition 7.1, Theorem
7.2 and Corollary 7.3 in [34], as follows: Let ((E, e0), p, (B, b0))) be a radius 2-(k0, k1)-covering. For any
automorphism φ ∈ Aut(E |B), any point ẽ ∈ p−1(b0) and any α ∈ πk1 (B, b0), we obtain that [13, 17]

φ(ẽ · α) = (φẽ) · α, (5.2)

where the operation “·” in (5.2) is easily induced from [17] as follows: Take α = [ f ] ∈ πk1 (B, b0), where
f : [0,m f ]Z → (B, b0) represents α. Consider the digital lifting f̃ of f [10, 11] and φ f̃ : [0,m f ]Z → E such that

φ f̃ (0) = φ(ẽ), φ f̃ (m f ) = φ(ẽ · α) and pφ f̃ = p f̃ = f . Thus φ f̃ is a digital lifting of f . Therefore, we obtain

φ(ẽ) · α = φ f̃ (m f ) = φ(ẽ · α).

In other words, each element φ ∈ Aut(E |B) induces an automorphism of the set p−1(b0) which is
considered as a right πk1 (B, b0)-space [17] (see also [24]). Further, we can state the following:

Theorem 5.11. ([17]) Let ((E, e0), p, (B, b0)) be a radius 2-(k0, k1)-covering. Then, Aut(E |B) is isomorphic to the
group of automorphisms of the set p−1(b0), which is considered as a right πk1 (B, b0)-space.

In relation to the study of an automorphism group of a digital covering space, this kind of approach
used in Theorem 5.11 has some limitations because Theorem 5.11 are only valid under the hypothesis that
given a digital covering is a radius 2-(k0, k1)-covering. However, if a (k0, k1)-covering does not satisfy a
radius 2 local isomorphism, then we have an obstacle to the study of the digital homotopic properties of
a digital covering as well as its automorphism group (see [19]) because we cannot use digital homotopic
tools such as the digital homotopy lifting theorem in [10] (see [24] for more details).

Further, in the study of a transitive action πk1 (B, b0) on the set p−1(b0), we defined the following:



S.-E. Han / Filomat 31:9 (2017), 2787–2803 2799

Definition 5.12. ([24]) For a (k0, k1)-covering ((E, e0), p, (B, b0)) we say that Aut(E|B) acts transitively on p−1(b0)
if for any two distinct points e0 and e1 in p−1(b0) there is φ ∈ Aut(E|B) such that φ(e0) = e1.

Lemma 5.13. ([14, 24]) If a radius 2-(k0, k1)-covering map p : (E, e0) → (B, b0) is regular, then Aut(E|B) acts
transitively on p−1(b0).

Theorem 5.14. ([13, 14]) (see also [6, 29]) For two digital images (E, k0) in Zn0 and (B, k1) in Zn1 , let p : (E, e0) →
(B, b0) be a radius 2-(k0, k1)-covering map and let (B, b0) be k1-connected. Then for any b0, b1 ∈ B, the sets p−1(b0)
and p−1(b1) have the same cardinality.

Even though the following property was used in [6], the original version was shown in [13] (see also
[29] for more details).

Theorem 5.15. ([14]) Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images in Zn0 and Zn1 , respectively. Let
p : (E, e0)→ (B, b0) be a pointed radius 2-(k0, k1)-covering map and (B, b0) be k1-connected. Then, there is a surjection
Φ : πk1 (B, b0)→ p−1(b0). If (E, e0) is simply k0-connected, then Φ is a bijection.

For a digital product SCn1 ,l1
k1
× SCn2 ,l2

k2
with a C-compatible k-adjacency, since the calculation of its digital

k-fundamental group is very important in digital homotopy theory, we need to study the following:

Theorem 5.16. ([21]) Assume that SCni ,li
ki

is not ki-contractible, i ∈ {1, 2}. If there is a C-compatible k-adjacency of

SCn1,l1
k1
× SCn2,l2

k2
, then πk(SCn1 ,l1

k1
× SCn2 ,l2

k2
, (c0, d0)) is isomorphic to πk1 (SCn1 ,l1

k1
, c0) × πk2 (SCn2 ,l2

k2
, d0).

By Theorem 5.16, we obtain the following:

Theorem 5.17. Let (SCn1 ,l1
k1

, p1, SCn2,l2
k2

) be a radius 2-(k1, k2)-covering and let (SCn3 ,l3
k3

, p2, SCn4,l4
k4

) be a radius 2-

(k3, k4)-coverings, where SCn1 ,l1
k1

:= (ai)i∈[0,l1−1]Z
, SCn2 ,l2

k2
:= (bi)i∈[0,l2−1]Z

, SCn3 ,l3
k3

:= (ci)i∈[0,l3−1]Z
, and SCn4 ,l4

k4
:=

(di)i∈[0,l4−1]Z
. Assume that SCn1 ,l1

k1
× SCn3 ,l3

k3
and SCn2 ,l2

k2
× SCn4 ,l4

k4
have C-compatible k- and k′-adjacencies, respectively.

Then we obtain that Aut(SCn1 ,l1
k1
×SCn3,l3

k3
| SCn2,l2

k2
×SCn4,l4

k4
) is isomorphic to (Zm×Zn,+), where l1 := ml2 and l3 := nl4.

Proof. Using (5.1), Theorem 5.16 and the method similar to the proof of Theorem 4.7, we prove this theorem.

First, with the hypothesis we need to prove that the natural product map p := p1 × p2 : SCn1 ,l1
k1
× SCn3 ,l3

k3
→

SCn2,l2
k2
×SCn4 ,l4

k4
is a radius 2-(k, k′)-covering map. By Theorem 4.7, since the product map p is a (k, k′)-covering

map, we suffice to prove that the map p is a radius 2 local (k, k′)-isomorphism. Namely, we need to prove
that

p|Nk((ai ,c j),2) : Nk((ai, c j), 2)→ Nk′ ((bi, d j), 2) (5.4)

is a (k, k′)-isomorphism, where (ai, c j) ∈ p−1(bi, d j).
By the hypothesis, since p1 and p2 are, respectively, radius 2 local (k1, k2)- and radius 2 local (k3, k4)-

isomorphisms, we obtain
p1|Nk1

(ai ,2) : Nk1
(ai, 2)→ Nk2

(b j, 2) as a (k1, k2)-isomorphism and
p2|Nk3

(ci ,2) : Nk3
(ci, 2)→ Nk4

(d j, 2) as a (k3, k4)-isomorphism.

Since SCn1 ,l1
k1
×SCn3 ,l3

k3
and SCn2 ,l2

k2
×SCn4,l4

k4
have, respectively, C-compatible k- and k′-adjacencies, we obtain



























Nk((ai, ci), 2) = Nk((ai, ci), 1) ∪Nk((ai±1(mod l1), ci), 1) ∪Nk((ai, ci±1(mod l3)), 1) ⊂ SCn1,l1
k1
× SCn3,l3

k3

and

Nk′((b j, d j), 2) = Nk′((b j, d j), 1) ∪Nk′((b j±1(mod l2), d j), 1) ∪Nk′((b j, d j±1(mod l4)), 1) ⊂ SCn2 ,l2
k2
× SCn4 ,l4

k4



























(5.5)

so that Nk((ai, ci), 2) is (k, k′)-isomorphic to Nk′ ((b j, d j), 2). Thus the product map p is proved to be a radius 2
local (k, k′)-isomorphism.
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Indeed, in view of the given two digital coverings (SCn1,l1
k1

, p1, SCn2,l2
k2

) and ((SCn3,l3
k3

, p2, SCn4 ,l4
k4

)), we may

assume that


























p1 : SCn1,l1
k1
→ SCn2,l2

k2
is an m-fold (k1, k2)-covering map; and

p2 : SCn3,l3
k3
→ SCn4 ,l4

k4
is an n-fold (k3, k4)-covering map,

where l1 := ml2, l3 := nl4.

Due to a C-compatible k-adjacency of SCn1 ,l1
k1
× SCn3,l3

k3
and a C-compatible k′-adjacency of SCn2 ,l2

k2
× SCn4 ,l4

k4
, by

(5.4) and (5.5) we observe that p := p1 × p2 : SCn1 ,l1
k1
× SCn3,l3

k3
→ SCn2 ,l2

k2
× SCn4 ,l4

k4
is a radius 2-(k, k′)-covering

map.
Furthermore, by (5.1) and Lemmas 5.4 and 5.7 and Theorem 5.16, the map p is a regular (k, k′)-covering

map and further, we obtain that Aut(SCn1,l1
k1
× SCn3 ,l3

k3
| SCn2,l2

k2
× SCn4 ,l4

k4
) is isomorphic to the quotient group



























N[p∗π
k(SCn1,l1

k1
× SCn3 ,l3

k3
)]/p∗π

k(SCn1 ,l1
k1
× SCn3 ,l3

k3
)

= πk′ (SCn2,l2
k2
× SCn4 ,l4

k4
)/p∗π

k(SCn1,l1
k1
× SCn3 ,l3

k3
)

≃ l2Z × l4Z/l1Z × l3Z ≃ Zm × Zn,

where l2/l1 := m and l4/l3 := n.
Concretely, we obtain that Aut(SCn1,l1

k1
× SCn3 ,l3

k3
| SCn2,l2

k2
× SCn4,l4

k4
) is isomorphic to (Zm × Zn,+).

Example 5.18. In this paper we assume that SC2,12
8

is the set N4((x, y), 3) − N4((x, y), 2). Further, consider

SC2,6
8

and SC2,8
8

in Figure 1. Let us consider an (8, 8)-covering (SC2,12
8

:= (ai)i∈[0,11]Z
, p1, SC2,6

8
:= (b j) j∈[0,5]Z

) and

an (8, 8)-covering (SC2,16
8

:= (ci)i∈[0,15]Z
, p2, SC2,8

8
:= (d j) j∈[0,7]Z

), where















p1 : SC2,12
8
→ SC2,6

8
with p1(ai) = bi(mod 6);

p2 : SC2,16
8
→ SC2,8

8
with p2(ci) = di(mod 8).

By Theorem 3.8, each of the digital products SC2,12
8
×SC2,16

8
and SC2,6

8
×SC2,8

8
has a C-compatible 32-adjacency.

Furthermore, we obtain a regular radius 2-32-covering map p1 × p2 : SC2,12
8
× SC2,16

8
→ SC2,6

8
× SC2,8

8
with

p1 × p2(ai, c j) = (bi(mod 6), d j(mod 8)). Thus, by Theorem 5.16, we obtain that Aut(SC2,12
8
× SC2,12

8
| SC3,6

18
× SC2,6

8
) is

isomorphic to (Z2 × Z2,+).

Theorem 5.19. In Theorem 5.17, let us replace SCn3,l3
k3

by Z and put k1 = 2n1. Let (Z, p2, SCn4,l4
k4

) be a radius

2-(2, k4)-covering. Then Aut(SCn1,l1
k1
× Z | SCn2,l2

k2
× SCn4 ,l4

k4
) is isomorphic to (Zm × l4Z,+), where l1 := ml2.

Proof. With the hypothesis, we can assume that



























p1 : SCn1,l1
k1
→ SCn2,l2

k2
is an m-fold (k0, k1)-covering map; and

p2 : Z→ SCn4 ,l4
k4

is an infinite fold (2, k4)-covering map,

where l1 := ml2.

Since the product SCn1 ,l1
2n1
×Z has a C-compatible 2(n1+1)-adjacency and SCn2 ,l2

k2
×SCn4 ,l4

k4
has a C-compatible

k′-adjacency, by using the method similar to the proof of Theorem 5.17, we complete the assertion.

Example 5.20. Let us consider the maps in Example 5.18 replacing SC2,16
4

by Z (see the map p2). Let us

consider a (4, 8)-covering (SC2,12
4

:= (ai)i∈[0,11]Z
, p1, SC2,6

8
:= (b j) j∈[0,5]Z

) and a (2, 8)-covering (Z, p2, SC2,8
8

:=
(d j) j∈[0,7]Z

), where














p1 : SC2,12
4
→ SC2,6

8
with p1(ai) = bi(mod 6);

p2 : Z→ SC2,8
8

with p2(i) = di(mod 8).
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Then the digital products SC2,12
4
×Z and SC2,6

8
×SC2,8

8
are considered with C-compatible 6- and 32-adjacencies,

respectively. Furthermore, by Theorem 5.19, we obtain a regular radius 2-(6, 32)-covering map p1 × p2 :

SC2,12
8
× Z → SC2,6

8
× SC2,8

8
with p1 × p2(ai, j) = (bi(mod 6), d j(mod 8)). Thus, by Theorem 5.17, we obtain that

Aut(SC2,12
4
× Z| SC3,6

18
× SC2,6

8
) is isomorphic to (Z2 × 6Z,+).

Corollary 5.21. In Theorem 5.17, let us replace both SCn1 ,l1
k1

and SCn3,l3
k3

by Z. Let (Z, p2, SCn2,l2
k2

) and (Z, p2, SCn4 ,l4
k4

)

be radius 2-(2, k2)- and radius 2-(2, k4)-coverings, respectively. Then we obtain that Aut(Z × Z| SCn2,l2
k2
× SCn4 ,l4

k4
) is

isomorphic to (l2Z × l4Z,+)).

In general, for a (k0, k1)-covering ((E, e0), p, (B, b0)) Aut(E |B) need not act transitively on p−1(b0) (see
Example 2 in [24]). In order to deal with this problem, we need to establish the following notion which is
different from the notion of a regular (k0, k1)-covering.

Definition 5.22. ([24]) A (k0, k1)-covering ((E, e0), p, (B, b0)) is called an ultra regular (for brevity, UR-) (k0, k1)-
covering if Aut(E |B) acts transitively on p−1(b0).

Let us now recall the following property of a UR-(k0, k1)-covering which characterizes a UR-(k0, k1)-
covering.

Theorem 5.23. ([24]) The following are equivalent.
(1) A (k′, k)-covering ((E, e0), p, (B, b0)) is ultra regular.
(2) For a (k′, k)-covering ((E, e0), p, (B, b0)) we assume a closed k-curve α : [0,m]Z → (B, k) with α(0) = b0 ∈ B.

Either each of all the liftings of α on (E, k′) is a k′-closed curve or none of them is a k′-closed curve.

Due to Theorem 5.23 hereafter, regardless of the requirement of a radius 2 local isomorphism of a (k′, k)-
covering, we now have a very convenient method of determining if a digital covering is UR-(k′, k)-regular
and further, we can study Aut(E |B) without using the digital homotopic tools of a digital covering (E, p,B).

Since the following theorem holds in case SCni ,li
ki

is ki-contractible, its utility can be expanded.

Theorem 5.24. With the hypothesis of Theorem 5.23, Aut(Z×Z | SCn1,l1
k1
×SCn2,l2

k2
) is isomorphic to the group l1Z×l2Z,

where SCn1 ,l1
k1
× SCn2 ,l2

k2
has a C-compatible k-adjacency and the (2, ki)-covering map (Z, pi, SCni ,li

ki
) need not satisfy a 2

local (2, ki)-isomorphism, i ∈ {1, 2}.

Proof. By Theorem 5.23, the Cartesian product map p1 × p2 : Z × Z → SCn1 ,l1
k1
× SCn2 ,l2

k2
:= (ci)i∈[0,11−1]Z

×

(d j) j∈[0,12−1]Z
is an ultra regular (4, k)- covering map. For convenience, for the point (c0, d0) ∈ SCn1 ,l1

k1
× SCn2 ,l2

k2
,

consider the set (p1×p2)−1((c0, d0)). Then the set {(p1×p2)−1((c0, d0))} is equal to the set l1Z× l2Z. Thus we can

see that Aut(Z × Z | SCn1,l1
k1
× SCn2 ,l2

k2
) is isomorphic to the group l1Z × l2Z. To be specific, since the restriction

map of p1 × p2 on [0, l1 − 1]Z × [0, l2 − 1]Z, i.e. p1 × p2|[0,l1−1]Z×[0,l2−1]Z
: [0, l1 − 1]Z × [0, l2 − 1]Z → SCn1 ,l1

k1
× SCn2 ,l2

k2
,

is a (4, k)-isomorphism because Z × Z has a C-compatible 4-adjacency, we can consider transformations of
[0, l1 − 1]Z × [0, l2 − 1]Z in Z × Z associated with the ultra regular (4, k)-covering map p1 × p2 in terms of a
vertical or a parallel movement such as

[0, l1 − 1]Z × [0, l2 − 1]Z → [l1, 2l1 − 1]Z × [0, l2 − 1]Z or [0, l1 − 1]Z × [l2, 2l2 − 1]Z,

and so forth, we can conclude that Aut(Z × Z | SCn1,l1
k1
× SCn2 ,l2

k2
) is isomorphic to the infinite group (l1Z ×

l2Z,+).

Let us move into the case that the given (k1, k2)-covering does not satisfy a local 2-isomorphism.

Corollary 5.25. Let (SCn1,l1
k1

, p1, SCn2 ,l2
k2

) be a (k1, k2)-covering and let (SCn3,l3
k3

, p2, SCn4,l4
k4

) be a (k3, k4)-covering, where

each of the spaces SCni ,li
ki
, i ∈ {1, 2, 3, 4}may be ki-contractible. Assume that SCn1 ,l1

k1
× SCn3 ,l3

k3
and SCn2,l2

k2
× SCn4 ,l4

k4
have

C-compatible k- and k′− adjacencies, respectively. Then we obtain that

Aut(SCn1,l1
k1
× SCn3 ,l3

k3
| SCn2 ,l2

k2
× SCn4,l4

k4
) is isomorphic to (Zm × Zn,+), where l1 := ml2 and l3 := nl4.



S.-E. Han / Filomat 31:9 (2017), 2787–2803 2802

Example 5.26. For (x, y) ∈ Z2, in this paper we assume that SC2,12
8

is the set N4((x, y), 3) − N4((x, y), 2) in

Z2. Let us consider the (8, 18)-covering (SC2,12
8

:= (ai)i∈[0,11]Z
, p1, SC3,6

18
:= (b j) j∈[0,5]Z

)(see Figure 1) and the

(8, 8)-covering (SC2,12
8

:= (ci)i∈[0,12]Z
, p2, SC2,6

8
:= (d j) j∈[0,5]Z

)(see Figure 1), where p1 : SC2,12
8
→ SC3,6

18
given

by p1(ai) = bi(mod 6) and p2 : SC2,12
8
→ SC2,6

8
with p2(ci) = di(mod 6). Then digital products SC2,12

8
× SC2,12

8
and

SC3,6
18
×SC2,6

8
have C-compatible 32- and 50-adjacencies, respectively. Furthermore, we obtain an ultra regular

(32, 50)-covering map, p1 × p2 : SC2,12
8
×SC2,12

8
→ SC3,6

18
×SC2,6

8
with p1 × p2(ai, a j) = (bi(mod 6), d j(mod 6)). Thus, by

Corollary 5.25, we obtain that Aut(SC2,12
8
× SC2,12

8
| SC3,6

18
× SC2,6

8
) is isomorphic to (Z2 × Z2,+).

6. Concluding Remarks

Motivated by the normal product adjacency in [1], we have used a C-compatible adjacency of a digital
product to study both the multiplicative property of a digital fundamental group and an automorphism
group of a digital covering which need not satisfy a radius local 2-isomorphism. Owing to Theorems
3.8, 3.10, 4.7, 5.17 and 5.24 and Corollary 5.25, the paper address the unsolved problem related to the
product property of digital topological properties of digital products (see Remark 3.7). Thus it turns out
that a C-compatible k-adjacency of a digital product can be a suitable property of which a digital product
of two digital coverings makes a digital covering and leads to the multiplicative property of the digital
k-fundamental group.
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