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Abstract. Let X,Y be topological spaces and {Fn : n ∈ ω} be a sequence of set-valued maps from X to Y
with the pointwise topological limit G and with the topological graph limit F. We give an answer to the
question from ([19]): which conditions on X,Y and/or {F,G,Fn : n ∈ ω} are needed to F = G.

1. Introduction

The topological (Painlevè-Kuratowski) convergence of graphs of set-valued maps was studied in many
books and papers (see for example ([1]), ([2]), ([5]), ([8]), ([9]), ([19]), ([26]). In the books ([1]), ([2]), ([26])
we can find many applications of this convergence to variational and optimization problems, differential
equations and approximation theory. We will call this convergence topological graph convergence of set-
valued maps. Topological graph convergence of preference relations is used also in mathematical economics
([3]).

In our paper we will be interested in pointwise topological convergence and in topological graph
convergence of set-valued maps. Our paper is motivated by the question of S. Kowalczyk in ([19]):

Let X,Y be topological spaces and {Fn : n ∈ ω} be a sequence of set-valued maps from X to Y with the
pointwise topological limit G and with the topological graph limit F. Which conditions on X,Y and/or
{F,G,Fn : n ∈ ω} are needed to ensure F = G. The main result of our paper is the following one:

Theorem 1.1. Let X be a Baire topological space and let Y be a regular T1 locally countably compact space. Let
{F,Fn : n ∈ ω} be lower quasicontinuous set-valued maps from X to Y. Suppose {Fn : n ∈ ω} is topologically graph
convergent to F and {Fn : n ∈ ω} is pointwise topologically convergent to a second set-valued function G with closed
graph. Then F = G.

Our Theorem 1.1 generalizes Theorem 5 from ([19]) which is stated for locally compact Hausdorff spaces
X and Y and for lower semicontinuous set-valued maps.

Notice that the pointwise and graph upper (Painlevè-Kuratowski) limits of a sequence of lower quasi-
continuous set-valued maps were also studied by M. Matejdes in ([22]).
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2. Definitions and Preliminaries

Let Z be a topological space. Let {Cn : n ∈ ω} be a sequence of nonempty subsets of Z. The lower limit
LiCn and the upper limit LsCn of {Cn : n ∈ ω} are defined as follows (see ([21]): LiCn (resp. LsCn) is the set of
all points z ∈ Z each neighbourhood of which meets all but finitely (resp. infinitely many) sets Cn. We say
that {Cn : n ∈ ω} topologically converges to a set C if LiCn = LsCn = C and we denote it by LtCn = C.

In what follows let X,Y be T1 topological spaces. By a set-valued map from X to Y we mean a map
which assigns to every point of X a nonempty subset of Y. If F is a set-valued map from X to Y, we denote
it by F : X Y.

A sequence {Fn : n ∈ ω} (Fn : X  Y,n ∈ ω) pointwise topologically converges to F : X  Y iff
LtFn(x) = F(x) for every x ∈ X.

If F : X Y, by Gr(F) we denote the graph of F, i.e.

Gr(F) = {(x, y) ∈ X × Y : y ∈ F(x)}.

A sequence {Fn : n ∈ ω} (Fn : X  Y,n ∈ ω) topologically graph converges to F : X  Y iff
LtGr(Fn) = Gr(F).

In the paper ([18]) Kempisty introduced a notion of quasicontinuity for real-valued functions defined
in R. For general topological spaces this notion can be given the following equivalent formulation ([23]).

Definition 2.1. A function f : X→ Y is called quasicontinuous at x ∈ X if for every open set V ⊂ Y, f (x) ∈ V
and open set U ⊂ X, x ∈ U there is a nonempty open set W ⊂ U such that f (W) ⊂ V. If f is quasicontinuous
at every point of X, we say that f is quasicontinuous.

Notice that the topological graph convergence of continuous and quasicontinuous functions was studied
in ([5]) and ([6]).

Easy examples show that in the context of metric spaces, pointwise (topological) convergence of a
sequence of continuous functions does not ensure topological graph convergence, and topological graph
convergence does not ensure pointwise convergence. However, if both limits exist for a sequence of
functions as single-valued functions themselves, then they must coincide.

The notion of lower quasicontinuity (upper quasicontinuity) for set-valued maps was introduced in
([23]). First we will mention the notion of lower (upper) semicontinuity for set-valued maps.

A set-valued map F : X Y is lower (upper) semicontinuous at a point x ∈ X, if for every open set V
such that F(x) ∩ V , ∅ (F(x) ⊂ V), there exists an open neighbourhood U of x such that

F(z) ∩ V , ∅ for every z ∈ U (F(U) = ∪{F(u) : u ∈ U} ⊂ V).

F is (lower) upper semicontinuous if it is (lower) upper semicontinuous at each point of X.

A set-valued map F : X Y is lower (upper) quasicontinuous at a point x ∈ X, if for every open set V
in Y with F(x)∩V , ∅ (F(x) ⊂ V) and every neighbourhood U of x there is a nonempty open set G ⊂ U such
that

F(z) ∩ V , ∅ (F(z) ⊂ V) for every z ∈ G.

A set-valued map F : X Y is lower (upper) quasicontinuous if it is lower (upper) quasicontinuous at
each point of X.

We will mention some important examples of lower quasicontinuous set-valued maps.
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Lemma 2.2. Let X,Y be topological spaces and f : X → Y be a quasicontinuous function. Then Gr( f ) is the graph
of a lower quasicontinuous set-valued map.

The above Lemma in conjuction with Theorem 2.1 below show that every minimal usco map with values
in a regular T1-space is lower quasicontinuous.

Following Christensen ([12]) we say that a set-valued mapping F is usco if it is upper semicontinuous
and takes nonempty compact values. Finally, a set-valued mapping F is said to be minimal usco ([10]) if it
is a minimal element in the family of all usco maps (with domain X and range Y); that is if it is usco and
does not contain properly any other usco map.

A very useful characterization of minimal usco maps using quasicontinuous subcontinuous selections
was given in ([15]) and it will be important also for our analysis.

A function f : X → Y is subcontinuous at x ∈ X ([11]) if for every net {xi : i ∈ I} (I is a directed set)
convergent to x, there is a convergent subnet of { f (xi) : i ∈ I}. If f is subcontinuous at every x ∈ X, we say
that f is subcontinuous.

Theorem 2.3. Let X,Y be topological spaces and Y be a regular T1-space. Let F : X Y be a set-valued map. The
following are equivalent:

(1) F is a minimal usco map;
(2) Every selection f of F is quasicontinuous, subcontinuous and Gr( f ) = Gr(F);
(3) There exists a quasicontinuous, subcontinuous selection f of F with Gr( f ) = Gr(F).

Minimal usco maps are a very convenient tool in functional analysis, in optimization, in selection
theorems, in the study of differentiability of Lipschitz functions ([16]).

3. Main Results

In the main result of our paper we will use Oxtoby’s characterization of Baire spaces. In ([13]), ([17]),
([27]) we can find the following definition of the Choquet game and a characterization of Baire spaces using
the Choquet game proved by Oxtoby in ([25]).

Definition 3.1. Let X be a nonempty topological space. The Choquet game GX of X is defined as follows:
Players I and II take turns in playing nonempty open subsets of X

I ... U0...U1

II .. V0...V1

so that U0 ⊇ V0 ⊇ U1 ⊇ V1.... We say that II wins this run of the game if
⋂

n Vn(=
⋂

n Un) , ∅. (Thus I
wins if

⋂
n Un(=

⋂
n Vn) = ∅.)

A strategy for I in this game is a ”rule” that tells him how to play, for each n, his nth move Un, given II’s
previous moves V0, ...,Vn−1. Formally, this is defined as follows: Let T be the tree of legal positions in the
Choquet game Gx, i.e. consists of all finite sequences (W0, ...,Wn), where Wi are nonempty open subsets of
X and W0 ⊇W1 ⊇ ... ⊇Wn. A strategy for I in GX is a subtree σ ⊂ T such that

1) σ , ∅;

2) if (U0,V0, ...,Un) ∈ σ, then for all open nonempty Vn ⊆ Un, (U0,V0, ..., Un,Vn) ∈ σ;

3) if (U0,V0, ...Un−1,Vn−1) ∈ σ, then for a unique Un, (U0,V0, ..., Un−1, Vn−1,Un) ∈ σ.

Intuitevely, the strategy σ works as follows: I starts playing U0 where (U0) ∈ σ (and this is unique by
3); II then plays any nonempty open V0 ⊆ U0; by 2) (U0,V0) ∈ σ. Then I responds by playing the unique
nonempty open U1 ⊆ V0 such that (U0,V0,U1) ∈ σ, etc.
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A position (W0, ...,Wn) ∈ T is compatible with σ if (W0, ...,Wn) ∈ σ. A run of the game (U0,V0,U1,V1, ...)
is compatible with σ if for every n ∈ ω we have

(U0,V0, ...,Un−1,Vn−1,Un) ∈ σ and (U0,V0, ...,Un,Vn) ∈ σ.

The strategy σ is a winning strategy for I if he wins every compatible with σ run (U0,V0, ...)(i.e., if
(U0,V0, ...) is a run compatible with σ, then

⋂
n Un =

⋂
n Vn = ∅).

The corresponding notions of strategy and winning strategy for II are defined mutatis mutandis.

Theorem 3.2. ([25]) A nonempty topological space X is a Baire space if and only if player I has no winning
strategy in the Choquet game GX.

Proof of Theorem 1.1.

Proof. Clearly Gr(G) ⊂ Gr(F). Let us assume that Gr(F) * Gr(G). Let (x, y) ∈ Gr(F) \ Gr(G). There are open
sets U ⊂ X, V ⊂ Y, such that x ∈ U, y ∈ V, V is countably compact and

(1) (U × V) ∩ Gr(G) = ∅.

The lower quasicontinuity of F at x implies that there is a nonempty open set H ⊂ U with

(2) F(z) ∩ V , ∅ for every z ∈ H.

We will define the following strategy σ for the first player I in the Choquet game: Since LtGr(Fn) = Gr(F),
there is n0 ≥ 1 such that Gr(Fn0 ) ∩ (H × V) , ∅. Let (xn0 , yn0 ) ∈ Gr(Fn0 ) ∩ (H × V). The lower quasicontinuity
of Fn0 at xn0 implies that there is a nonempty open set Hn0 ⊂ H such that Fn0 (z) ∩ V , ∅ for every z ∈ Hn0 .

Define the first move U0 of I as follows: U0 = Hn0 .
If (U0,V0) ∈ σ, we will define U1. Since V0 ⊂ U0 ⊂ H, for every z ∈ V0 we have F(z) ∩ V , ∅. There is

n1 > max{1,n0} such that
Gr(Fn1 ) ∩ (V0 × V) , ∅.

Let (xn1 , yn1 ) ∈ Gr(Fn1 ) ∩ (V0 × V). There is a nonempty open set Hn1 ⊂ V0 such that Fn1 (z) ∩ V , ∅ for
every z ∈ Hn1 . Define the second move U1 of I as follows: U1 = Hn1 .

Suppose now that (U0,V0,U1,V1, ...Uk−1,Vk−1) ∈ σ, where Ui = Hni , n0 < n1 < ...nk−1 and ni > i for every
i ≤ k− 1. We will define Uk. Since Vk−1 ⊂ H, F(z)∩V , ∅ for every z ∈ Vk−1, by (2). There is nk > max{nk−1, k}
such that

Gr(Fnk ) ∩ (Vk−1 × V) , ∅.

Let (xnk , ynk ) ∈ Gr(Fnk ) ∩ (Vk−1 × V). There is a nonempty open set Hnk ⊂ Vk−1 such that Fnk (z) ∩ V , ∅ for
every z ∈ Hnk . Define Uk = Hnk .

Since X is a Baire space, there is no winning strategy for the first player I. Thus, for an appropriate choice
of V0,V1, ...,Vn, ...,

⋂
n Un , ∅. Let p ∈

⋂
n Un.

For every k ∈ ω let snk ∈ Fnk (p) ∩ V. The countable compactness of V implies that there is a cluster point
y0 of the sequence {snk : k ∈ ω}. Then y0 ∈ LtFn(p) = G(p), thus (p, y0) ∈ Gr(G), which contradicts (1).

Notice that the above theorem generalizes Theorem 5 from ([19]).
The following Theorem shows that the Baireness of X in Theorem 1.1 is necessary.

Theorem 3.3. If X is not a Baire space, then for every T1 topological space Y with at least two different points, there
are lower quasicontinuous set-valued maps {F,G,Fn : n ∈ ω} from X to Y such that LtFn(x) = G(x) for every x ∈ X,
G has a closed graph, LtGr(Fn) = Gr(F) and F , G.
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Proof. There is a nonempty open set O in X which is of the first Baire category. Let {Kn : n ∈ ω} be a sequence
of subsets of O such that Kn ∩ O is nowhere dense in O for every n ∈ ω and O =

⋃
n∈ω Kn ∩ O. For every

n ∈ ω we put

Un = O \
⋃
i≤n

Ki.

Then each set Un is open and dense in O. For every n ∈ ω let Fn : X  Y be a lower semicontinuous
set-valued map defined as follows:

Fn(x) =

{
A if x ∈ Un,
B if x < Un,

where A and B are two closed and different subsets of Y such that B ⊂ A. Then LtFn(x) = G(x) for every
x ∈ X, where G is a set-valued map identically equal to B.

Note that LtGr(Fn) = Gr(F), where F is a set-valued map defined as follows:

F(x) =

{
A if x ∈ O,
B if x < O.

Moreover F is a lower quasi-continuous set-valued map.

For single-valued functions there was in ([5]) a Baire category result that says that if X is a complete
metric space and Y is any metric space and { fn : n ∈ ω} topologically graph converges to f , { f , fn : n ∈ ω} are
continuous functions from X to Y, then there exists a Gδ-set A such that for each x ∈ A, f (x) is a subsequential
limit of { fn(x) : n ∈ ω}. S. Kowalczyk showed in ([19]) that for set-valued maps this is not true even if X and
Y are compact. However, if the limit set-valued map is minimal usco, then we have this variant of Beer’s
result under certain connectivity assumptions.

Theorem 3.4. Let X be a Baire locally connected space and Y be a locally compact metric space. Let {Fn : n ∈ ω} be a
sequence of set-valued maps from X to Y which preserve connected sets. Let F : X Y be a minimal usco map such
that LtGr(Fn) = Gr(F). There is a dense Gδ-set H such that F(x) = LtFn(x) for every x ∈ H.

Proof. Since, by assumption, F : X  Y is a minimal usco set-valued map, there is a quasicontinuous
selection f of F with Gr( f ) = Gr(F), by Theorem 2.1. By quasicontinuity of f , the set C( f ) of all continuity
points of f , is a dense Gδ-subset of X. Note that

(1) |F(x)| = 1 for every x ∈ C( f ).

Indeed, if not, then there is y ∈ F(x) such that y , f (x). Then there are open sets U ⊂ Y and V ⊂ Y such that

(2) y ∈ U, f (x) ∈ V and U ∩ V = ∅.

Since x ∈ C( f ), there is an open set G ⊂ X such that x ∈ G and f (G) ⊂ V. Moreover y ∈ F(x), thus
(x, y) ∈ Gr(F) = Gr( f ). Since G × U is an open neighbourhood (x, y), G × U ∩ Gr( f ) , ∅, which contradicts
(2).Therefore (1) is true.

Let us put L = {x ∈ X : |F(x)| = 1}. We will show that for every x ∈ L, F(x) = LtFn(x). Let x ∈ L. Note that
if z ∈ LsFn(x), then (x, z) ∈ LsGr(Fn) = Gr(F). Thus

(3) LsFn(x) ⊆ F(x).

If we prove that

(4) F(x) ∈ LiFn(x),
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the assertion follows. So, we will prove (4). Suppose that F(x) < LiFn(x). There is an open set U in Y such
that F(x) ∈ U and

(5) ∀n ∈ ω∃ kn ∈ ω, kn ≥ n, Fkn (x) ∩U = ∅.

Let O be an open set in Y such that

(6) F(x) ∈ O ⊂ O ⊂ U

and O is compact. Put
B(x) = {V : x ∈ V, V is open and connected}.

For every V ∈ B(x) we denote

NV = {n ∈ ω : (xn, yn) ∈ GrFn, xn ∈ V, yn ∈ O \O}.

We claim that for every V ∈ B(x), for every n ∈ ω there is l ≥ n with l ∈ NV.
Indeed, let V ∈ B(x) and n ∈ ω be fixed. Since, by assumption, LtGr(Fn) = Gr(F), there is m ≥ n such that

(V ×O) ∩ Gr(Fl) , ∅, for every l ≥ m.

By (5), there is km ≥ m such that Fkm (x) ∩ O = ∅. Since V is connected and Fkm preserves connected sets,
Fkm (V) is connected too. Thus there must exists

(xkm , ykm ) ∈ Gr(Fkm ), xkm ∈ V, and ykm ∈ O \O,

i.e. km ∈ NV . Thus every NV contains an increasing sequence S(NV) in ω.
The compactness of O \ O implies that for every V ∈ B(x), the sequence {yk : k ∈ S(NV)} has a cluster

point yV ∈ O \O. The net {yV : V ∈ B(x)} has a cluster point y ∈ O \O. Note that

(7) (x, y) ∈ LsGr(Fn).

Indeed, let n ∈ ω, G ∈ B(x) and L be an open neighbourhood of y. There is V ∈ B(x) such that V ⊂ G and
yV ∈ L. Since yV is a cluster point of the sequence {yk : k ∈ S(NV)}, there must exist k ≥ n such that yk ∈ L
and xk ∈ V. Thus (xk, yk) ∈ (V × L) ∩ Gr(Fk) ⊂ (G × L) ∩ Gr(Fk), i.e. (7) is true, contrary to (6) .

Now put H = C( f ).

Finishing our paper it is worthwhile to ask whether our main theorem is true for the nets.

Definition 3.5. ([4]), ([20]) Let Z be a topological space and Σ be a directed set. Let {Gσ : σ ∈ Σ} be a net of
subsets of Z. The lower limit LiGσ and the upper limit LsGσ of {Gσ : σ ∈ Σ} are defined as follows: LiGσ is
the set of all points z ∈ Z such that for every neighbourhood U of z there is σ0 ∈ Σ such that Gσ ∩U , ∅ for
each σ ≥ σ0 and, respectively, LsGσ is the set of all points z ∈ Z such that for every neighbourhood U of z
and for every σ ∈ Σ there is η ≥ σ such that Gη ∩U , ∅.

Claim 3.6. Theorem 1.1 does not work for nets as the following example shows.

Example 3.7. Let X = Y = [0, 1] with the usual Euclidean topology. LetK be the family of all finite sets in X
ordered by the inclusion. ThenK equipped with the set inclusion is a directed set. Define a net {FK : K ∈ K}
of lower semicontinuous set-valued maps from X to Y as follows:

FK(x) =

{
{0} if x ∈ K,
{0, 1} if x < K,

Let a set-valued map G : X Y be given by G(x) = {0} for every x ∈ X. Then Lt{FK(x) : K ∈ K} = G(x) for
every x ∈ X and G has a closed graph. Let F : X Y be a set-valued map given by F(x) = {0, 1} for every
x ∈ X. It is easy to verify that Lt{Gr(FK) : K ∈ K} = Gr(F).
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