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Abstract. In view of the relationship with the Krétzel function, we derive a new series representation
for the A-generalized Hurwitz-Lerch Zeta function introduced by H.M. Srivastava [Appl. Math. Inf. Sci.
8 (2014) 1485-1500] and determine the monotonicity of its coefficients. An integral representation of the
Mathieu (a, A)-series is rederived by applying the Abel’s summation formula (which provides a slight
modification of the result given by Pogany [Integral Transforms Spec. Funct. 16 (8) (2005) 685-689]) and
this modified form of the result is then used to obtain a new integral representation for Srivastava’s A-
generalized Hurwitz-Lerch Zeta function. Finally, by making use of the various results presented in this

paper, we establish two sets of two-sided inequalities for Srivastava’s A-generalized Hurwitz-Lerch Zeta
function.

1. Introduction

Throughout our present investigation, we use the following notations:
N:={1,2,---}, No:=INU{0}, Z":={-1,-2,---} and Z; :=Z U {0},
where Z denotes the set of integers. The symbols R, R, and C denote the set of real, positive real, and

complex numbers, respectively. The normalized Fox-Wright function p‘I/;[- ;z] is defined by (see [18, p. 516,
Eq. (1)] and [20, p. 493, Eq. (2.1)])

* (/\Pf p]ﬂ) — * (Alz Pl), Tty (Ap, pp) _ = ([/\p])ppn i
i [(”P’GP)’Z] =t [(“1"’1)f"' (s GP)IZ] - ;5 ([ttg])o,n ! @

()\j,ykeC and pjor€R, (j=1,--- ,p;k:1,~-,q)),
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where ([Ap])p,n := [Alpin -+~ [Aplp,n and [A] p (A, p € €) is defined in terms of gamma functions by

[A],J:M:{l (p=0;, A eC\{0})

(1) AA+1)---(A+n-1) (p=neN; LeQ).

As usual, let

A:=Zq:0]-—zp:pj and V:= [ﬁ p].”f][li[ajf].

j=1 j=1 j=1 j=1

The series given by (1) converges in the whole complex z-plane when A > —1; and when A = 0, the series
(1) converges for |z| < V.

The A-generalized Hurwitz-Lerch Zeta function which is introduced and investigated by Srivastava [14]
is here defined by

(p.o) . P10 .,gl, st mat=k g |AprPp). ot
CI))W (z,8,a;b,A) = q)/\l it (z s,a;b,\) = F( ) f t p\I’q [(Hprf’p)/ze dt 2)
(min{R (@), R (s)} >0; R()>0; A >0).

The series representation of ®{” :) (z,s,4;b, A) involving Fox’s H-function is given by (see [14, p. 1489,
Theorem 1]; see also [16, p. 260, Eq. (1.2)], [17, p. 1020, Eq. (1.9)] and [9, p. 106, Theorem 2.1])

(ApDoyn

CD(p”)zsab/\ H20 a+n)bi Z
( e Z [ Dout 02| @+ 1)

(5,1),(0,1)] @+

(min{R (a), R (s)} > 0; R(b)>0; A >0),

where/\j eC(j=1,-- ,p)and‘u]v EC\ZE (Gj=1,-- ,q);pj >0(G=1,--- ,p);oj >0(G=1,---,9,1+A>20,
and the equality in the convergence condition holds true for |z| < V.
It is worth mentioning here that by using the fact that (see [9, p. 106, Remark 2.2])

lim Hy3 |(a + m) bt L|=Are @0,
(S/ 1)/(0/ X)

the series representation (3) reduces to the following form (see also [19]):

= (Do 27
(p,0) (p,o) ri/pp
CDP (z,5,a4;0,1) = CI)" (z,8,a) = ZO Tty Dot @ + 1)

and this family of Hurwitz-Lerch Zeta functions is defined along with its conditions of convergence in
[18, p. 517, Definition] and [20]. It now becomes apparent that the function (2) contains the Hurwitz (or
generalized) Zeta function and the Riemann Zeta function as its special cases. For more information about
the Hurwitz (or generalized) Zeta function and the Riemann Zeta function, we may refer to [13], [15] and
[20].

Recently, the study of Srivastava’s A-generalized Hurwitz-Lerch Zeta function and its special cases has
attracted remarkable interest and many papers have appeared subsequently on this subject. Two-sided
inequalities for some special cases of this A-generalized Hurwitz-Lerch Zeta function, especially, the line
of approach adopted by using the Mathieu (a, A)-series have been considered by Jankov et al. [4] and
Srivastava et al. [18]. Motivated essentially by these works, we consider in the present paper establishing
of similar two-sided inequalities for the Srivastava A-generalized Hurwitz-Lerch Zeta function.
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2. Some Prerequisite Results

In this section, we establish several important results which give some useful characteristics of the
A-generalized Hurwitz-Lerch Zeta function defined above by (2).

The Krétzel function is defined for x > 0, p € R and v € C being such that R (v) < 0 when p <0, by the
integral (see [7, p. 110, Eq. (1.1)]; see also [1] and [6])

Z) (x) = f e =i dt.
0

Lemma 2.1. Leta,b,A > 0ands € R. Then

¥ ottt 1 s o
j; ple Tl = 73 (a'D), (4)

s/A

where the function Z

(uAb) is a decreasing function of u on (0, 00).

Proof. The formula (4) follows immediately by using the substitution t = %v% in the integral on the left-hand

side. To show that Zi//’}l ( Ab) is a decreasing function of u on (0, o), we rearrange (4) in the following form:

S/ /) * — _M
Ziwe)= [ ot e ®

Differentiating (5) with respect to u, we have

L2300 (1'6) = ~bu Tz (') < 0

and thus the function Zi//A\ ( Ab) is decreasing on (0, c0). [

Remark 2.2. The Kriitzel function Zy (x) (v, p € R; x > 0) is completely monotonic on (0, ©), implying thereby that

(=1)" (di)m Z5() =0

X

forall x >0 and m € Ny (see [1, p. 718, Theorem 1, (b)]). For m = 1, the above inequality clearly shows that Z{ (x)
is decreasing on (0, 00), but it fails to show that the function Zi//AA (uAb) of u is also decreasing on (0, o0) by using only
the complete monotonicity property of the Kritzel function. However, in view of the paper [8, p. 391, Corollary 1], we

infer that the function Zj (uAb) (0 <A <1,b > 0) is completely monotonic on (0, o) and this fact shows that only
for 0 < A <1, the function Zi//};\ (uAb) of u is decreasing on (0, 00).

Applying the above Lemma 2.1 to (2), we get the following series representation for the function
q)(p”)(z s,a;b,A).

Theorem 2.3. Let a,b, A and s be positive real numbers. Then

1’!

)”Pp Zs//\ (( + ) b)

(p,o)
YT (z,8,a;0,A) = )LF(S) Z [#q])mq 1/A @a+ny

(6)

(AjeR( =1, prandpj e R\Zy (j =1, ,q); p; > 0( =1, ,p); 0;>0( =1, ,q); 1+A 2 0). (7)
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Proof. By making use of the series representation of the normalized Fox-Wright function (1) occurring in
the integrand of (2) and integrating the series term by term, we get

])l’l) " —
(p,0) plinpy 2 s—1 —(a+n)t— \
CI)P (z,8,a;b,A) = (s) E ([ ' f e dt, (8)

‘I "Gﬂ

which with the help of Lemma 2.1 leads to the series representation (6). [

Remark 2.4. The Kriitzel function Z} (x) of real variable x (x > 0) can be extended to complex z by considering its
H-function representation ([7]; see also [6]). For p > 0,v € Cand z € C (z # 0), one can express

1
7' (z) = =H*?|z .
p 0,2
P ©,1),(%2)

Thus, the integral in (8) can be expressed in terms of the H-function and holds true for some suitable complex
parameters. That is

f prlgemifgp . L Hy) |(@+n) bt ,
0 Afa+n)y

(5,1),(0,%)
which evidently leads us to the series representation (3).

We now state the following useful inequalities which hold true rather independently. These inequalities
provide simple extensions to the inequality given earlier by Pogény and Srivastava [11, p. 131, Theorem 3].

Lemma 2.5. Let the real-valued function f > 0 be twice continuously differentiable at the origin. Suppose also that

£(0)=1and f(0) > f(0) > [f" (0)]>. Then

SO f @ <[L-f O]+ f 0 x> 0) ©)
and

eSOV f ) <= O]+ F O (x>0), (10)
where the equality signs in (9) and (10) hold true when x = 0.
Proof. For the proofs of the inequalities (9) and (10), one may refer to [11, p. 131]. O

Thus, for the normalized Fox-Wright function defined by (1) and following the arguments and details
verified in [11, pp. 131-132], we have from Lemma 2.5 that

S [(A,,, op). ] 1O+ (1> 0) (11)
1 (g, 09)
and
e < w [("P' Pr). _ ] <1-Q'+Q¢™ (x>0), (12)
1 (g, 09)
where
. ([AP])PP

=Ty, <1 ™4 Cwkappod) €0,QT).
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The parameter space ,ID, (Q, T) is defined by ([11, p. 132, Eq. (27)])

P q
2
qu (Qr T) = (>\p/ Mg, Pp, Uq) € ]R+(p+q) : H Q (A] +Pj P] H Q ujt+oj, G]
-1 =1

q |4
and H T(y]-, i+ 20;) < H T(Ajr Aj+ 291
j=1 j=1

where Q (1, v) denotes the Gautschi quotient defined by (see [5])

Fu+o) .
Qu,v):= T [ul, (min{u,v} > 0),
and
T (u,0) := LI (o) (minfu, v} > 0)

2
[r()
is the Gurland ratio (see [5]). It may be pointed out here that (11) and (12) are simple extensions to the

inequality given by Pogany and Srivastava [11, p. 133, Theorem 4].
Next, we consider the Mathieu (a, A)-series which is defined formally by ([10, Eq. (2)])

S(@,#,a,/\)=;% (1,0>0).

The series is tacitly assumed to be convergent and the sequences a := {a (1)},en, and A := {A (n)},en, are
assumed to be nonnegative. We also require that the sequence {A (n)},cn, is steadily increasing to infinity,
that is,

A0SA©O <A@ < and lim A(n) = oo, (13)

More generally, we can define two functions a : [0, c0) — [0,00) and A : [0, 00) — [0, o0) such that a|n, = a
and Aln, = A and the inverse function A7 of A is well-defined. One of the most important results for
the Mathieu (a, A)-series is its integral representation which has been established by Pogény [10, p. 687,
Theorem 1]. In the following theorem, we provide an improved version for this result.

Theorem 2.6. Let u, 0> 0,and leta € C'0, ) be a nonnegative function such that
AMB)e™ -0 as t— oo,

where x > 0 and A(t) is defined below by (20).
Suppose that A : [0, 00) — [0, c0) is a function such that (13) is satisfied. Then, for convergent S (g, i, a, X), we
have

(o) uﬂ(u)
Sopa)= (A (0)+Q)” f 1)f (t+@)“+1d udt (9

where the operator d,, is defined by

b, =1+ {M}a,

and {u} = u — [u] and [u], respectively, stand for the fractional and the integer parts of u.
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To prove (14), we make use of the Abel’s summation formula instead of the Laplace integral expression
of Dirichlet series. Many different versions of Abel’s summation formula can be found in literature. Here,
we adopt the following version given by Chandrasekharan (see [2, p. 78, Theorem 6] and [3, p. 22]).

Theorem 2.7. (Abel’s summation formula) Let 0 < A (1) < A(2) < --- be a sequence of real numbers such that
A(n) — oo asn — oo, and let {a (n)} be a sequence of complex numbers. Let A(x) = ), Amy<x @ (1) and @ (x) be a
complex-valued function defined for x > 0. Then

k k-1
Y ameAm)=AQA®)eA®) - Y AXE)[pA@+1)-eXm)]. (15)
n=1

n=1
If @ has a continuous derivative in (0, o), and x > A (1), then (15) can be written as

X

Y, ae(m) =Awew- [

A(D) ¢’ (Hdt.
An)<x A)

If, in addition, A (x) ¢ (x) — 0as x — oo, then

Y ame ) =- f AWM ¢’ (t)dt, (16)
n=1 A

provided that either side is convergent.

Proof of Theorem 2.6. It is easy to observe that

1 00 (o]
S(o,u,a,\) = — p=1,-ox —Amx | 4
(0 1,a,N) r(y)j(; xtle [;a(n)e ] X
__ a0 I G .
_(A(o>+g)*‘+r(u)fo v ”(;“(’”E ]dx- 17)

The series occurring in the last integral in (17) can be summed up by using the Abel’s summation formula
(16). Suppose that ¢ (t) = e and A(t) = ) A<t @ (1), then we have

Za (n) e Mx = — A @’ (t)dt = x f e A(t)dt. (18)
=1 A1) A1)
Substituting (18) into (17) and integrating with respect to x, we get
a(0) f AW
S(o,p,a,A) = ——F—— + ——dt. (19)
(o p ) (A(0) + 0)" H A (E+ o)

Since the sequence {A (1)},eN satisfies 0 < A (1) < A(2) < -+, the function A (t) can be expressed as

ZSO)!

A) = Z a(n) = Z a(n). (20)

mA(n)<t n=1

The finite sum A (t) given by (20) can be further summed up by using the Euler-Maclaurin formula [12, p.
2365, Eq. (3)]:

Zm: aj = jk‘m v,a (u)du (bu = 1+{u}%),

j=k+1
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that is,
(A1)
A = f d,a (u) du. (21)
0
The integral representation (14) now follows by substituting (21) into (19). O

Remark 2.8. If A (0) = 0, then our result coincides with the one derived by Pogdny [10, p. 687, Theorem 1], that is,

Z0)
S(omaX) = (0) f f L a(u)ﬂd dt.
A1) (t+0)"

Howeuver, it is interesting to note that our result Theorem 2.6 above holds also for A (0) # 0.

We now apply Theorem 2.6 to Srivastava’s A-generalized Hurwitz-Lerch Zeta function defined by (6).
For convenience, we write

0 () = %zm ((@+1'b) = (5; 5 (22)
and
a(u) = Mg(u% (23)
= T(A)
then (6) can be expressed as
O 25,00, A) = )\1"1(5) g (aaf:q))s (20 =2 ('0))- (24)

By specializing the formula (14) with g = a, p = s, A (u) = u, A7 (u) = u and a (u) = a(u), then in view of
Theorem 2.6 and Eqns. (22) to (24), we obtain the following theorem.

Theorem 2.9. Let a,b, A, s be positive real numbers, and also let the conditions in (7) be satisfied. Then we have

P (z,5,0;5, 1) = Zin@) | s T f f " g () dudt
A AT (s)as AT (s) H’?_ (M) a+t)s+1
IT] F(y [t
s Hl=1m N f f dudt , 25)
"I, T e

where the function g (u) is given by (22).

3. Two-Sided Inequalities for Srivastava’s A-Generalized Hurwitz-Lerch Zeta Function

In this section, we establish certain two-sided inequalities for Srivastava’s A-generalized Hurwitz-Lerch
Zeta function. The methods applied here are inherited partially from [4] and [18], and we present below
more general results.
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Theorem 3.1. Let a,b, A, s be positive real numbers, and let ()\p, Kq, Pp, O'q) € ,ID,(Q, T). For z > 0, we have

z21" (atb T” m+1ﬂb T” a‘b
Aa°T (s) 2 (a+1)°T(s) AaT(s)
and
70 01 ()
* —z 1/A (pa') 1/A
QO'e AT () <OY" (=z,8,4;b,A) < AT () (27)
Proof. We first prove (26). For the upper bound, we use (2), (4) and (11) to find that
, 0 —a -4 * A 4 )) —
CDP b A B 1 t m \P (( 14 pp t dr
p Gt =1 f [((up,ap» ¢
1 - Q* L b —t
< 1 Tk gy
I'(s) fo 1"(S) 0
- s/A (A g - s—1 —at—L et
Aaﬂj@)zUA( b)+ plem i e dt, (28)

I'(s)

Since the function ¢ (z > 0)is a deceasing function of t on (0, o) and is such that ¢ € (1,¢%), hence the
last integral in (28) can be estimated in the following manner:

fo plem i e d < ezﬁ Fle™ it dt = A—Zj//g( Ab). (29)

Combining (28) with the estimate (29), we get

1-0r QOe?
p,o s/IA [ A S/A
Dy (zs,a,b,2) < /\QSF(S)ZUA (a b)+ T 1/A( b)

By using (2), (11) and the elementary inequality that e* > 1 + x (x € R), we obtain that

D7 (2,5,8,b, 1) —r()f p1pat= ik oz dt>if tsl—“f—*(1+Qze—f)dt

—I'(s)
Czh(@y) z (@ 1))
T el () Aa+1°Te)

which proves the lower bound of (26).
The derivation of (27) is similar. Making use of (2), (4) and (12), it is easy to see that

Q’(‘
p,o S//\ s-1, —at—% _—ze™
q))\ (zsab)\)_/\sr()lM F(s)ft ‘at.
Since the function e (z > 0) is a increasing function of ¢ on (0, c0) and satisfies e %" € (e7%,1), we have
o z7) (a'D)
o s//\ P f -1 —ut—7 f= “1ya\" ")
A (“““)—Asr() i (0 £ U= T0T®

To prove the lower bound, we note that the function e=®*" (z > 0;0 < Q" < 1) is an increasing function of ¢

on (0, o) with the property that e™?*" € (e’Q*Z, 1). From this fact, it follows that

00

1 abel oyt
CDf\’,"( z,5,a,b,A) > — e 1m0t e gy

o s/A )\
S E_QZ R P T _ozzlm( b)
T T(s) Jo AasT (s) -~
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In what follows, the Psi (or digamma) function ¢ (z) is defined by ([15, p. 24])

I’ (2)
I'(z)

and possesses the following expansion that

Y (z) = —logF() or 10gF(z)=]l‘Zt/)(t)dt

= (1 1 _
b= Y[ty Geez)
where y is the Euler-Mascheroni constant (see [15, p. 2, Eq. (3)]).

Theorem 3.2. Let a, b, A, s be positive real numbers and let Aj, uy, pj,or € R(j=1,--- ,p;k=1,---,q). Then we
have

(p,o) .
R+L<®P (z,5,a;,0,1) <R, (30)
(z €(0,e7); i, +uoy, 2 Aj+up;>0; o = p;j>0; l,li(/\j + tu) >0; p< q) (31)

where (kl, ‘e ,kp) is a permutation of p indices k; € {1,--- ,q} and

(32)

Zi//ﬁ(”’)+ s H]lry]ff o (u) dudt

T OAT(s)as AL (s) I, T(A)) @+ b’

s H?er(#j) () d 1/A(Ab)

= - . 33
TOTLI0) b @rpm " @r U ATE )
The upper bound in (30) is sharp in the sense that 0 < {u} < 1.

Proof. The main part of this proof is to show that the function

H T /\ + u
] 1 ( up])ZSM ((u+u)}\b) z
1 T(yj +uoj)

g(u):=

1/A

(z €(0,e7); wk +uok, 2 Aj+up;>0; o, =p;>0; lp(/\j +upj) >0, p< q)

(defined above by (22)) is monotonically decreasing for u > 0. Let us rewrite the function g (1) as
g(u) = a1 (1) g2 (),

where

H?:l r (Aj + up]‘) 7t

g () = (y]+uc7)r(” 0

and gy () = Z;/)} (@ +u)"D)

s/A
1/A

function of u on (0, c0) which implies that the function g, () is also decreasing on (0, o), that is, %gz (u) <0.
The monotonicity of g1 (u) has been proved in [18, p. 521], and so we have

are positive functions on (0, o). In Lemma 2.1, we showed that the function Z (uAb) is a decreasing

d
% (u) <0
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(ze(O,e"/); Mk]+uak/2/\j+upj>0; ak/.ij>0; 1/1(/\]-+up]-)>0,' qu).

Hence,

%g(u) = a (1) %91 (1) + g1 (1) %92 (u) <0,

that is, g (1) is monotonically decreasing on (0, o).

To prove now the inequality (30), let us denote the second integral in (25) by L*, then (25) becomes
CD(;’;’: ) (z,5,a;b,A) = R+ L*, where R is given by (32). It remains to prove that L < L* < 0, where L is given by
(33).

From the inequalities: 0 < {u} < 1 and %g (u) < 0, we deduce that

d d
-0 () < (W9 ) <0.
Integrating this estimate over (0, [t]), we have
[t] d
a1 =50) < [l fratdu <0, (34
0 u
Integrating also the inequality (34) over (0, o) with respect to (a + £)~" dt, we get
o> [ f dudt , [*alD=00),
( + t)s+l 0 (ﬂ + t)s+1
“a([th-a(0
- [P0 wp=a,0<i<)
1

(a + t)S+1

[ [T, T 23 )
1 (a+ bt 1 T(y) s@+1y

After a little simplification, we get

ospe s Wale) e gq A5
ALO T, TA) i @+ @+ 1)7ALGs)

and the proof of inequality (30) is complete.
Finally, we need to check that the condition (31) does not violate the condition stated in (7). In fact, from
ok, = pj >0, we have

q p q
Zaj—ij: Z G]+Z p] >0> -1.
j=1 j=1 j=1, ik ky
This ends the proof of the theorem. [

Acknowledgement. The authors are thankful to the referee for valuable suggestions.
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