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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. The concept of Hausdorff metric-like has been initiated in [7]. Using this concept, we introduce
Ćirić-Berinde type contractive multi-valued mappings via α-admissible mappings on metric-like spaces
and we establish several fixed point results. We show that many known fixed point results in literature
are simple consequences of our theorems. Our obtained results are supported by some examples and an
application.

1. Introduction and preliminaries

In 2012, Samet et al. [31] introduced the notions of α−ψ−contractive mappings and α−admissible map-
pings in metric spaces and obtained many nice fixed point results. Since then, several authors investigated
fixed point results in this direction, for more details see [2, 3, 5, 11, 15, 19, 20, 30, 31]. The study of fixed
points for multi-valued contractions using the Hausdorff metric was initiated by Nadler [26]. Recently, Ali
et al. [2] generalized and extended the notion of α − ψ−contractive mappings by introducing the notion of
(α,ψ, ξ)−contractive multi-valued mappings and gave fixed point theorems in the setting of complete metric
spaces. In 2015, Kutbi and Sintunavarat[23] extended this notion in the class of α−complete metric spaces
and they established new fixed point results. Very recently, Cho [13] introduced a class of Ćirić-Berinde
type contractive multi-valued mappings using α-admissible functions and established some fixed point
results on metric spaces. On the other hand, Aydi et al. [9, 10] introduced the notion of a partial Hausdorff
metric and provided some (common) fixed point results. Very recently, Aydi et al. [7, 8] introduced the
concept of Hausdorff metric-like.

The purpose of this paper is to introduce the notion of Ćirić-Berinde type contractive multi-valued
mappings on α−complete metric-like spaces via α-admissible mappings and the Hausdorff metric-like
concept. We will establish some fixed point theorems involving such contractions on α−complete metric-
like spaces. Some examples and an application will be provided.
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Mention that metric-like spaces have been rediscovered by Amini-Harandi [18]. Some fixed point results
in the setting of metric-like spaces have also been established in [18]. For more other fixed point results on
metric-like spaces, see [1, 4, 6, 14, 16, 17, 21, 22, 32–35].

At first, denote R+ the set of nonnegative reals.

Definition 1.1. Let X be a nonempty set. A function σ : X × X→ R+ is said to be a metric-like (dislocated metric)
on X if for any x, y, z ∈ X, the following conditions hold:

(P1) σ(x, y) = 0 =⇒ x = y;

(P2) σ(x, y) = σ(y, x);

(P3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X, σ) is then called a metric-like (or a dislocated metric) space.

It is known that a partial metric [24] is also a metric-like. So a trivial example of a metric-like space is the
pair (R+, σ), where σ : R+

×R+
→ R+ is defined as σ(x, y) = max{x, y}.

In the following example, we give a metric-like which is neither a metric nor a partial metric.

Example 1.1. (see [12]) Take X = {1, 2, 3} and consider the metric-like σ : X2
→ R+ given by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2
3
,

σ(1, 2) = σ(2, 1) =
9
10
, σ(2, 3) = σ(3, 2) =

4
5
,

and

σ(1, 3) = σ(3, 1) =
7
10
.

Having σ(2, 2) , 0, so σ is not a metric and due to σ(2, 2) > σ(1, 2), so σ is not a partial metric [24].

Each metric-like σ on X generates a T0 topology τσ on X which has as a base the family of open σ-balls
{Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈ X : |σ(x, y) − σ(x, x)| < ε}, for all x ∈ X and ε > 0.

Observe that a sequence {xn} in a metric-like space (X, σ) converges to a point x ∈ X, with respect to τσ,
if and only if σ(x, x) = lim

n→∞
σ(x, xn).

Definition 1.2. Let (X, σ) be a metric-like space and α : X × X→ [0,∞) be a given mapping.

(a) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

σ(xn, xm) exists and is finite.

(b) (X, σ) is said to be α−complete if every Cauchy sequence {xn} in X verifying α(xn, xn+1) ≥ 1 for all n ≥ 1,
converges to a point x ∈ X, that is, lim

n→∞
σ(x, xn) = σ(x, x) = lim

n,m→∞
σ(xn, xm).

Remark 1. If X is a complete metric-like space, then X is also an α−complete metric-like space. But, the converse is
not true. The following example asserts this statement.

Example 1.2. Let X = (0,∞) and consider the metric-like σ : X × X → [0,∞) defined by σ(x, y) = x + y for all
x, y ∈ X. Define α : X × X→ [0,∞) by

α(x, y) =

1, x, y ∈ [1, 2]
0, otherwise.
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Note that (X, σ) is not a complete metric-like space. Indeed, we argue by contradiction, that is, we suppose that (X, σ) is
a complete metric-like space. Take the sequence {xn} = {

1
n } in X.We have σ(xn, xm) = 1

n + 1
m . Then, lim

n,m→∞
σ(xn, xm) = 0

and so {xn} is a Cauchy sequence. It follows that, there exists x ∈ X such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm) = 0.

Then, x = 0, which is a contradiction. Hence, (X, σ) is not a complete metric-like space.
Now, we shall prove that (X, σ) is an α−complete metric-like space. In fact, if {xn} is a Cauchy sequence in (X, σ)

such that α(xn, xn+1) ≥ 1 for all n ≥ 1, then xn ∈ [1, 2] for all n ≥ 1.Moreover, it is easy to see [1, 2] is a closed subset
of (R+, σ) and since (R+, σ) is a complete metric-like space, it follows that ([1, 2], σ) is a complete metric-like space.
Hence, there exists x? ∈ [1, 2] such that lim

n→∞
xn = x? in (X, σ). Then, (X, σ) is an α−complete metric-like space.

We need in the sequel the following trivial inequality:

σ(x, x) ≤ 2σ(x, y) for all x, y ∈ X. (1)

Following [7, 8], let CBσ(X) be the family of all nonempty, closed and bounded subsets of the metric-like
space (X, σ), induced by the metric-like σ. Note that the boundedness is given as follows: A is a bounded
subset in (X, σ) if there exist x0 ∈ X and M > 0 such that for all a ∈ A, we have a ∈ Bσ(x0,M), that is,

|σ(x0, a) − σ(a, a)| < M.

The closedness is taken in (X, τσ) (where τσ is the topology induced by σ). Let Ā be the closure of A with
respect to the metric-like σ. We have

Definition 1.3.

a ∈ Ā⇐⇒ Bσ(a, ε) ∩ A , ∅ for all ε > 0
⇐⇒ there exists {xn} ⊂ A, xn → a in (X, σ).

If A ∈ CBσ(X), then Ā = A.

For A,B ∈ CBσ(X) and x ∈ X, define

σ(x,A) = inf{σ(x, a), a ∈ A}, δσ(A,B) = sup{σ(a,B) : a ∈ A} and
δσ(B,A) = sup{σ(b,A) : b ∈ B}.

Lemma 1.1. (see [7, 8]) Let (X, σ) be a metric-like space and A any nonempty set in (X, σ), then

if σ(a,A) = 0, then a ∈ Ā. (2)

Also, if {xn} is a sequence in (X; σ) that is τσ-convergent to x ∈ X, then

lim
n→∞
|σ(xn,A) − σ(x,A)| = σ(x, x). (3)

Let (X, σ) be a metric-like space. For A,B ∈ CBσ(X), define Hσ : CBσ(X) × CBσ(X)→ [0,∞) by

Hσ(A,B) = max {δσ(A,B), δσ(B,A)} .

In the following, we present some properties of Hσ.

Proposition 1.1. (see [7, 8]) Let (X, σ) be a metric-like space. For any A,B,C ∈ CBσ(X), we have the following:

(i) : Hσ(A,A) = δσ(A,A) = sup{σ(a,A) : a ∈ A};
(ii) : Hσ(A,B) = Hσ(B,A);

(iii) : Hσ(A,B) = Hσ(B,A) = 0 implies that A = B;
(iv) : Hσ(A,B) ≤ Hσ(A,C) + Hσ(C,B).
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Remark 2. The converse of Proposition 1.1, (ii) is not true in general as it is clear from the following example.

Example 1.3. (see [7, 8]) Let X = {0, 1} be endowed with the metric-like σ : X × X→ R+ defined by

σ(1, 1) = 2 and σ(0, 0) = σ(0, 1) = σ(1, 0) = 1.

Note that σ is not a partial metric since σ(1, 1) > σ(1, 0). From (i) of Proposition 1.1, we have

Hσ(X,X) = δσ(X,X) = sup{σ(x,X), x ∈ {0, 1}}
= max{σ(0, {0, 1}), σ(1, {0, 1})} = 1 , 0.

Remark 3. Mention that a Hausdorff metric is a Hausdorff metric-like. The converse is not true ( see Example 1.3).

In view of Proposition 1.1, the mapping Hσ : CBσ(X) × CBσ(X) → [0,+∞) is called a Hausdorff metric-like
induced by σ. We also call it a dislocated Hausdorff metric.

From now on, we denote by

M(x, y) := max{σ(x, y), σ(x,Tx), σ(y,Ty),
1
4
{σ(x,Ty) + σ(y,Tx)}}

for a multi-valued map T : X→ CBσ(X) and x, y ∈ X.
We denote by Γ the class of all functions ξ : [0,∞)→ [0,∞) such that

(Γ1) ξ is continuous at 0 and ξ−1({0}) = {0};
(Γ2) ξ is nondecreasing on [0,∞);
(Γ3) ξ is subadditive (i.e, ξ(a + b) ≤ ξ(a) + ξ(b) for all a, b ≥ 0).

Remark 4. If ξ ∈ Γ, we get ξ(t) > 0 for all t > 0.

Example 1.4. Let ξ : [0,∞)→ [0,∞) be defined by ξ(t) =
t

1 + t
for all t ≥ 0. It is easy to see that ξ ∈ Γ.

Example 1.5. (see [23]) Let ξ : [0,∞)→ [0,∞) be defined by

ξ(t) =

∫ t

0
φ(s)ds

for any t ≥ 0, where φ : [0,∞) → [0,∞) is a Lebesgue integrable mapping, summable on each compact subset of
[0,∞) and satisfies the following conditions:
(i) for each ε > 0, we have

∫ ε
0 φ(s)ds > 0;

(ii) for each a, b > 0, we have ∫ a+b

0
φ(s)ds ≤

∫ a

0
φ(s)ds +

∫ b

0
φ(s)ds.

Then, ξ ∈ Γ.

Now, let L ≥ 0 be a real number and we denote by ΨL the family of increasing functions ψ : [0,∞) →
[−2L,∞) such that

∑
n(ψ + 2LId)n(t) < ∞ for each t > 0, where ψn is the n−th iterate of ψ and Id(t) = t for all

t ≥ 0.
A simple example of ψ ∈ ΨL is ψ(t) = (k − 2L)t where k ∈ (0, 1). We have the following useful lemma.

Lemma 1.2. If ψ ∈ ΨL, the following properties hold:
(i) 0 < ψ(t) + 2Lt < t for any t > 0,
(ii) ψ is continuous at 0 and ψ(0) = 0

Let (X, σ) be a metric-like space and let α : X × X→ [0,∞) be a given function.
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Definition 1.4. A function f : X → [0,∞) is called α−lower semi-continuous if for any x ∈ X and {xn} ⊂ X with
α(xn, xn+1) ≥ 1 for all n ≥ 1 and lim

n→∞
xn = x in (X, σ), we have

f (x) ≤ lim inf
n→∞

f (xn).

For a multi-valued map T : X→ CBσ(X), consider fT : X→ [0,∞) defined by

fT(x) = σ(x,Tx).

Lemma 1.3. Let (X, σ) be a metric-like space. If ξ ∈ Γ, then (X, ξ o σ) is a metric-like space too.

Definition 1.5. Let (X, σ) be a metric-like space and T : X→ CBσ(X) be a multi-valued mapping. Then, we say that
(1) T is called α?−admissible [5] if

α(x, y) ≥ 1 implies α?(Tx,Ty) ≥ 1,

where α?(Tx,Ty) := in f {α(a, b) : a ∈ Tx, b ∈ Ty};
(2) T is called α−admissible [25] if for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we have α(x, z) ≥ 1 for all z ∈ Ty.

We have the following analog lemma as in [13].

Lemma 1.4. Let (X, σ) be a metric-like space and T : X→ CBσ(X) be a multi-valued mapping. If T is α?−admissible,
then it is α−admissible.

We consider the following condition:
(H): for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n → ∞, then there

exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k ∈N.
In this paper, we introduce the concept of Ćirić-Berinde type contractive multi-valued mappings on

metric-like spaces via α-admissible mappings and Hausdorff metric-like concept. We establish some fixed
point results for multi-valued mappings involving the above contractions. We will present some concrete
examples and an illustrated application on fixed point results in metric-like spaces endowed with a graph.

2. Fixed point of multi-valued contraction mappings

We start with the following simple useful lemma. One may find its analogous for the metric case in [13].

Lemma 2.1. Let (X, σ) be a metric-like space, and let ξ ∈ Γ and B ∈ CBσ(X). If a ∈ X and ξ(σ(a,B)) < c where c > 0,
then there exists b ∈ B such that ξ(σ(a, b)) < c.

Now, we state and prove our main result.

Theorem 2.1. Let (X, σ) be a metric-like space and α : X×X→ [0,+∞) be a function. Suppose that T : X→ CBσ(X)
is an α−admissible multi-valued mapping such that for all x, y ∈ X, with α(x, y) ≥ 1, we have

ξ(Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (4)

where L ≥ 0, ξ ∈ Γ and ψ ∈ ΨL.
Suppose also that the following conditions are satisfied:

1. (X, σ) is an α−complete metric-like space;

2. there exit x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

3. (H) is verified or fT is α−lower semi- continuous.

Then, T has a fixed point in X.
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Proof. By condition (2), there exist x0 ∈ X and x1 ∈ Tx0 such that

α(x0, x1) ≥ 1.

Let c = 1 + ξ(σ(x0, x1)). Take ψL(t) = ψ(t) + 2Lt for all t ≥ 0 where ψ ∈ ΨL.
Clearly, if x0 = x1 or x1 ∈ Tx1, we deduce that x1 is a fixed point of T and so this completes the proof.

Now, we assume that x0 , x1 and x1 < Tx1. So, σ(x1,Tx1) > 0. Since σ(x1,Tx1) ≤ Hσ(Tx0,Tx1), then by (4)
and triangular inequality, we have

0 < ξ(σ(x1,Tx1)) ≤ ξ(Hσ(Tx0,Tx1)))
≤ ψ[ξ(max{σ(x0, x1), σ(x0,Tx0), σ(x1,Tx1),

1
4

(σ(x0,Tx1) + σ(x1,Tx0))})] + Lξ(σ(x1,Tx0))

≤ ψ[ξ(max{σ(x0, x1), σ(x0, x1), σ(x1,Tx1),
1
4

(σ(x0,Tx1) + σ(x1, x1))})] + Lξ(σ(x1, x1))

≤ ψ[ξ(max{σ(x0, x1), σ(x1,Tx1),
1
4

(σ(x1,Tx1) + 3σ(x0, x1))})] + 2Lξ(σ(x0, x1))

≤ ψ[ξ(max{σ(x0, x1), σ(x1,Tx1)})] + 2Lξ(M(x0, x1))
= ψL(ξ(max{σ(x0, x1), σ(x1,Tx1)})).

If σ(x1,Tx1) > σ(x0, x1), then we have

0 < ξ(σ(x1,Tx1)) ≤ ψL[ξ(σ(x1,Tx1))] < ξ(σ(x1,Tx1)),

which is a contradiction. Since ψL is increasing, we have

0 < ξ(σ(x1,Tx1)) ≤ ψL[ξ(σ(x0, x1))] < ψL(c).

Hence by lemma 2.1, there exists x2 ∈ Tx1 such that

ξ(σ(x1, x2)) < ψL(c).

Since T is α−admissible and x2 ∈ Tx1, we have

α(x1, x2) ≥ 1.

If x2 ∈ Tx2 then x2 is a fixed point. Let x2 < Tx2, then σ(x2,Tx2) > 0.
Since σ(x2,Tx2) ≤ Hσ(Tx1,Tx2) and α(x1, x2) ≥ 1, then by (4), we have

0 < ξ(σ(x2,Tx2)) ≤ ξ(Hσ(Tx1,Tx2))) ≤ ψ[ξ(max{σ(x1, x2), σ(x2,Tx2), σ(x1,Tx1),
1
4

(σ(x1,Tx2) + σ(x2,Tx1))})] + Lξ(σ(x2,Tx1))

≤ ψL[ξ(max{σ(x1, x2), σ(x2,Tx2),
3
4
σ(x1, x2) +

1
4
σ(x2,Tx2))}] + 2Lξ(σ(x1, x2))

≤ ψL[ξ(max{σ(x1, x2), σ(x2,Tx2)})].

If σ(x1, x2) < σ(x2,Tx2), we have

0 < ξ(σ(x2,Tx2)) ≤ ψL[ξ(σ(x2,Tx2))] < ξ(σ(x2,Tx2)),

which is a contradiction. Since ψL is increasing, we have

0 < ξ(σ(x2,Tx2)) ≤ ψL[ξ(σ(x1, x2))] < ψ2
L(c).
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By lemma 2.1, there exists x3 ∈ Tx2 such that

ξ(σ(x2, x3)) < ψ2
L(c).

Since T is α−admissible and x3 ∈ Tx2, we have α(x2, x3) ≥ 1.
By induction, we construct a sequence {xn} ⊂ X such that, for all n ∈N,
α(xn, xn+1) ≥ 1, xn < Txn, xn+1 ∈ Txn, and

ξ(σ(xn, xn+1)) < ψn
L(c).

In view of
∑

n

ψn
L(c) < ∞, we have for all p ≥ 0

ξ(σ(xn, xn+p)) ≤
n+p−1∑

k=n

ξ(σ(xk, xk+1)) ≤
n+p−1∑

k=n

ψk
L(c) ≤

∞∑
k=n

ψk
L(c)→ 0 as n→∞.

Let ε > 0. There exists n ∈N such that for all n ≥ N

ξ(σ(xn, xn+p)) ≤
∞∑

k=n

ψk
L(c) < ξ(ε).

By symmetry of σ, we get σ(xn, xm) < ε for all m,n ≥ N, so

lim
n,m→∞

σ(xn, xm) = 0.

Hence, {xn} isσ−Cauchy sequence in X. Sinceα(xn, xn+1) ≥ 1 for all n ∈N, it follows from theα−completeness
of (X, σ) that exists x? ∈ X such that

lim
n→∞

σ(xn, x?) = σ(x?, x?) = lim
n,m→∞

σ(xn, xm) = 0.

Now, we should prove that x? is a fixed point of T.
Since α(xn, xn+1) ≥ 1 for all n ∈N and xn → x?, then by hypothesis (H), there exists a subsequence {xn(k)}

of {xn} such that α(xn(k), x?) ≥ 1 for all k ∈N. Assume that σ(x?,Tx?) > 0.
Let k ∈N. We have

σ(x?,Tx?) ≤ σ(x?, xn(k)+1) + σ(xn(k)+1,Tx?)
≤ σ(x?, xn(k)+1) + Hσ(Txn(k),Tx?).

From (4), we get

ξ(σ(x?,Tx?)) ≤ ξ(σ(x?, xn(k)+1)) + ξ(Hσ(Txn(k),Tx?))
≤ ξ(σ(x?, xn(k)+1)) + ψL[ξ(M(xn(k), x?))]

where

M(xn(k), x?) = max{σ(xn(k), x?), σ(x?,Tx?), σ(xn(k),Txn(k)),
1
4

(σ(xn(k),Tx?) + σ(x?,Txn(k)))}.

Since lim
n→∞

σ(xn, x?) = σ(x?, x?) = 0, all sequences {σ(xn(k), x?)}, {σ(xn(k),Txn(k))}, {σ(x?,Txn(k))} converge to 0

and lim
k→∞

σ(xn(k),Tx?) = σ(x?,Tx?). These facts ensure that there exists N ∈ N such that for all k ∈ N with

k ≥ N

M(xn(k), x?) = σ(x?,Tx?).
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Then for all k ≥ N, we have

ξ(σ(x?,Tx?)) ≤ ξ(σ(x?, xn(k)+1)) + ψL[ξ(σ(x?,Tx?))].

Having in mind that ξ is continuous at 0 and ξ(0) = 0, so we have

lim
k→∞

ξ(σ(x?, xn(k)+1)) = 0.

Thus, by taking k→∞

ξ(σ(x?,Tx?)) ≤ ψL[ξ(σ(x?,Tx?))] < ξ(σ(x?,Tx?))

which is a contradiction. We deduce that σ(x?,Tx?) = 0. By lemma 1.1, we have x? ∈ Tx? = Tx?. Then, x?

is a fixed point of T.
Now, passing to the case where fT is α−lower semi-continuous, we obtain

fT(x?) ≤ lim inf
n→∞

σ(xn,Txn) ≤ lim
n→∞

σ(xn, xn+1) = 0.

Thus σ(x?,Tx?) = 0 and so x? ∈ Tx?.

2.1. Some consequences
We state the following simple corollaries as consequences of Theorem 2.1.

Corollary 2.1. Let (X, σ) be a metric-like space andα : X×X→ [0,+∞) be a function. Suppose that T : X→ CBσ(X)
is an α−admissible multi-valued mapping such that for all x, y ∈ X, with α(x, y) ≥ 1, we have

ξ(α(x, y)Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (5)

where L ≥ 0, ξ ∈ Γ and ψ ∈ ΨL.
Suppose also that the following conditions are satisfied:

1. (X, σ) is an α−complete metric-like space;

2. there exit x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

3. (H) is verified or fT is α−lower semi- continuous.

Then T has a fixed point in X.

Corollary 2.2. (see [7]) Let (X, σ) be a complete metric-like space. If T : X → CBσ(X) is a multi-valued mapping
such that for all x, y ∈ X, we have

Hσ(Tx,Ty) ≤ k M(x, y) (6)

where k ∈ [0, 1) and

M(x, y) = max
{
σ(x, y), σ(x,Tx), σ(y,Ty),

1
4
(
σ(x,Ty) + σ(y,Tx)

)}
.

Then, T has a fixed point in X.

Proof. It suffices to take α(x, y) = 1, for all x, y ∈ X and ψ(t) = kt where k ∈ (0, 1) and L = 0 in Corollary
2.1.

Corollary 2.3. Let (X, σ) be a metric-like space and α : X × X→ [0,+∞) be a function. Suppose that T : X→ X is
an α−admissible mapping such that for all x, y ∈ X, with α(x, y) ≥ 1, we have

ξ(Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (7)

where L ≥ 0, ξ ∈ Γ and ψ ∈ ΨL.
Suppose also that the following conditions are satisfied:
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1. (X, σ) is an α−complete metric-like space;

2. there exits x0 ∈ X such that α(x0,Tx0) ≥ 1;

3. (H) is verified or fT is α−lower semi- continuous.

Then T has a fixed point in X.

Proof. It suffices to take T as a single-valued mapping in Theorem 2.1.

Definition 2.1. Let (X, σ) be a metric-like space, a is given point in X and let T : X → CBσ(X) be a multi-valued
mapping.

(a) (X, σ) is said to be (a,T)−complete if every Cauchy sequence {xn} in X, such that a ∈ Txn ∩ Txn+1 for all n ≥ 1,
converges to a point x? ∈ X, that is, lim

n→∞
σ(x?, xn) = σ(x?, x?) = lim

n,m→∞
σ(xn, xm).

(b) A function f : X → [0,∞) is called (a,T)−lower semi-continuous if, for any y ∈ X and {xn} ⊂ X with
a ∈ Txn ∩ Txn+1 for all n ≥ 1 and lim

n→∞
xn = y in (X, σ), we have

f (y) ≤ lim inf
n→∞

f (xn).

We also provide the following result.

Theorem 2.2. Let (X, σ) be a metric-like space and T : X → CBσ(X) be a multi-valued mapping. Take a ∈ X.
Assume that, there exist two functions ξ ∈ Γ and ψ ∈ ΨL such that

ξ(Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (8)

for all x, y ∈ X, with a ∈ Tx ∩ Ty. Suppose also that

1. (X, σ) is (a,T)−complete metric-like space;

2. there exist x0 ∈ X and x1 ∈ Tx0 such that a ∈ Tx0 ∩ Tx1;

3. for each x ∈ X and y ∈ Tx with a ∈ Tx ∩ Ty, we have a ∈ Ty ∩ Tz for all z ∈ Ty;

4. fT is (a,T)−lower semi-continuous or for a sequence {xn} ⊂ X with a ∈ Txn ∩ Txn+1, for all n ∈N and xn → x
in (X, σ), then there exists a subsequence {xn(k)} of {xn} such that x? ∈ Txn(k) ∩ Tx, for all k ∈N.

Then T has a fixed point in X.

Proof. Let the function α : X × X→ [0,∞) be such that

α(x, y) =

1 i f a ∈ Tx ∩ Ty
0 otherwise.

By condition (1), (X, σ) is an α−complete metric-like space. The multi-valued mapping T is α−admissible.
In fact, if x ∈ X and y ∈ Ty with α(x, y) ≥ 1, then a ∈ Tx ∩ Ty. By condition (2), we have a ∈ Ty ∩ Tz for all
z ∈ Ty, then α(y, z) ≥ 1. By (8), T also verifies (4) of theorem 2.1. Finally, by condition (3), the sequence {xn}

verifies hypothesis (H). Thus, all hypotheses of Theorem 2.1 are satisfied and hence T has a fixed point.

Remark 5. Theorem 2.1 is the analogous of Theorem 2.1 of Cho [13] on metric-like spaces. Corollary 2.2 extends
Corollary 2.5 of Aydi et al. [10] to metric-like spaces.
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2.2. Fixed point theory in ordered metric-like spaces

The study of fixed points in partially ordered sets has been developed in [27–29]. In this subsection, we
give some results of fixed point for multi-valued mappings in the concept of metric-like space endowed
with a partial order. Thus, a metric-like space (X, σ,�) may be naturally endowed with a partial ordering,
that is, if (X,�) is a partially ordered set, then (X, σ,�) is called an ordered metric-like space. Finally, we say
that, x, y ∈ X are comparable if x � y or y � x holds. For A,B ⊆ X, we also have A � B whenever for each
a ∈ A there exists b ∈ B such that a � b.

Definition 2.2. Let (X, σ,�) be an ordered metric-like space and T : X→ CBσ(X) be a multi-valued mapping.

(a) The metric-like space (X, σ) is said to be (�,T)−complete if every Cauchy sequence {xn} in X,with Txn � Txn+1,
for all n ≥ 1 converges to a point x? ∈ X such that lim

n→∞
σ(x?, xn) = σ(x?, x?) = lim

n,m→∞
σ(xn, xm).

(b) A function f : X → [0,∞) is called (�,T)−lower semi-continuous if, for any x ∈ X and {xn} ⊂ X with
Txn � Txn+1, for all n ≥ 1 and lim

n→∞
xn = x in (X, σ), we have

f (x) ≤ lim inf
n→∞

f (xn).

We have the following theorem.

Theorem 2.3. Let (X, σ,�) be an ordered metric-like space. Suppose that T : X → CBσ(X) is a multi-valued
mapping. Assume that, there exist two functions ξ ∈ Γ and ψ ∈ ΨL such that

ξ(Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (9)

for all x, y ∈ X, with Tx � Ty. Suppose also that

1. (X, σ,�) is (�,T)−complete metric-like space;

2. there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 � Tx1;

3. for each x ∈ X and y ∈ Tx with Tx � Ty, we have Ty � Tz for all z ∈ Ty;

4. fT is (�,T)−lower semi-continuous or for a sequence {xn} ⊂ X with Txn � Txn+1, for all n ∈N and xn → x in
(X, σ), then there exists a subsequence {xn(k)} of {xn} such that Txn(k) � Tx, for all k ∈N.

Then T has a fixed point in X.

Proof. Let the function α : X × X→ [0,∞) such that

α(x, y) =

1 i f Tx � Ty
0 otherwise.

By condition (1), (X, σ,�) is an α−complete metric-like space. The multi-valued mapping T is α−admissible.
In fact, if x ∈ X and y ∈ Ty with α(x, y) ≥ 1, then Tx � Ty. By condition (2), we have Ty � Tz for all z ∈ Ty,
then α(y, z) = 1. By (9), T also verifies the contraction (4) of Theorem 2.1. Finally, by condition (3), the
sequence {xn} verifies hypothesis (H). Thus all hypotheses of Theorem 2.1 are satisfied and hence T has a
fixed point.
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3. Examples

We give the following illustrative examples.

Example 3.1. Let X = [0,∞) and σ(x, y) = x + y for all x, y ∈ X.Mention that (X, σ) is a complete metric-like space
and σ is not a partial metric on X. Define a multi-valued mapping T : X→ CBσ(X) by

Tx =

{ 14 x, 1
9 x} i f 0 ≤ x ≤ 1

{
3x

x+1 } i f x > 1.

Let ξ(t) =
√

t and ψ(t) =
1
2

t for all t ≥ 0. Then, ξ ∈ Γ and ψ ∈ ΨL for 0 ≤ L < 1
4 .

Let α : X × X→ [0,∞) be defined by

α(x, y) =

cosh(x + y) i f 0 ≤ x, y ≤ 1
1

x+y+1 otherwise.

Condition (1) of Theorem 2.1 is satisfied with x0 = 1 and x1 = 1
3 . Obviously, condition (H) is satisfied. We will show

that (4) of Theorem 2.1 is satisfied.
For this, let x, y ∈ X such that α(x, y) ≥ 1, then 0 ≤ x, y ≤ 1. We have

ξ(Hσ(Tx,Ty)) = (max{δσ(Tx,Ty), δσ(Ty,Tx)})
1
2

= (max{
x
9

+
y
4
,

x
4

+
y
9
})

1
2

≤
1
2

(x + y)
1
2 = ψ(ξ(σ(x, y))) ≤ ψ(ξ(M(x, y)))

≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)).

Thus, (4) is satisfied.
Now, we show that T is α−admissible. Given x ∈ X and let y ∈ Tx be such that α(x, y) ≥ 1. Then 0 ≤ x, y ≤ 1. So
Ty = {

y
9 ,

y
4 }. Thus, for all z ∈ Ty, we have α(y, z) ≥ 1. Hence T is α−admissible. Thus all hypotheses of Theorem 2.1

are satisfied and T has a fixed point which is u = 0.

Example 3.2. Let X = [0,∞) and σ(x, y) =
√

x + y for all x, y ∈ X. It’s easy to show that that (X, σ) is a complete
metric-like space. σ is neither a metric, nor a partial metric on X. Define the multi-valued mapping T : X→ CBσ(X)
by

Tx =

{0, 1
4 x} i f 0 ≤ x ≤ 2

[1, 3] i f x > 2.

Let ξ(t) =
√

t and ψ(t) =
1
√

2
t for all t ≥ 0. Then ξ ∈ Γ and ψ ∈ ΨL for 0 ≤ L < 2−

√
2

4 .

Let α : X × X→ [0,∞) be defined by

α(x, y) =

2 + cos(x + y) i f 0 ≤ x, y ≤ 2
1
2 otherwise.

Condition (1) of Theorem 2.1 is satisfied with x0 = 2 and x1 = 1
2 . Obviously, condition (H) is satisfied. We will show

that (4) of Theorem 2.1 is satisfied.
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For this, let x, y ∈ X such that α(x, y) ≥ 1. Then, 0 ≤ x, y ≤ 2. In this case, we have

Hσ(Tx,Ty) = max{δσ(Tx,Ty), δσ(Ty,Tx)}

= max{
√

x
2
,

√
y

2
}

=
1
2

max{
√

x,
√

y}

=
1
2

max{σ(x,Tx), σ(y,Ty)}.

Then

ξ(Hσ(Tx,Ty)) = ψ(ξ(max{σ(x,Tx), σ(y,Ty)}))
≤ ψ(ξ(M(x, y))) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)).

Thus (4) is satisfied. Given x ∈ X and let y ∈ Tx be such that α(x, y) ≥ 1. Then 0 ≤ x, y ≤ 2, so Ty = {0, y
4 }. Thus,

for all z ∈ Ty, we have α(y, z) ≥ 1. Hence T is α−admissible. Thus, all hypotheses of Theorem 2.1 are satisfied. Then,
T has a fixed point which is u = 0.

4. Fixed point results in metric-like spaces endowed with a graph

In this section, we give fixed point results on metric-like spaces endowed with a graph. Before repre-
senting our results, we give the following notations and definitions.
First, let (X, σ) be a metric-like space. A set {(x, x) : x ∈ X} is called a diagonal cartesian product X × X and
is denoted by ∆. Consider a graph G such that the set V(G) of its vertices coincides with X and the set E(G)
of its edges contains all loops, i.e.,∆ ⊂ E(G). We assume G has no parallel edges, so we can identify G with
the (V(G),E(G)). Moreover, we may treat G as a weighted graph by assigning to each edge the distance
between its vertices.

Definition 4.1. (see [23]) Let X be a nonempty set endowed with a graph G and T : X→ CBσ(X) be a multi-valued
mapping. We say that T weakly preserves edges if for each x ∈ X and y ∈ Tx with (x, y) ∈ E(G),we have (y, z) ∈ E(G)
for all z ∈ Ty.

Definition 4.2. Let (X, σ) be a metric-like space endowed with a graph G.

(a) The metric-like space X is said to be E(G)−complete if for every Cauchy sequence {xn} in X with (xn, xn+1) ∈ E(G)
for all n ∈N, converges in (X, σ).

(b) A function f : X → [0,∞) is called E(G)−lower semi-continuous if for any x ∈ X and {xn} ⊂ X with
(xn, xn+1) ∈ E(G) for all n ∈N and lim

n→∞
xn = x in (X, σ), we have

f (x) ≤ lim inf
n→∞

f (xn).

Definition 4.3. Let (X, σ) be a metric-like space endowed with a graph G. A mapping T : X→ CBσ(X) is called an
(E(G), ψ, ξ)- contractive multi-valued mapping if there exist two functions ξ ∈ Γ and ψ ∈ ΨL such that

∀x, y ∈ X, (x, y) ∈ E(G)⇒ ξ(Hσ(Tx,Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(σ(y,Tx)) (10)

where L ≥ 0 and M(x, y) = max{σ(x, y), σ(x,Tx), σ(y,Ty), 1
4 {σ(x,Ty) + σ(y,Tx)}}.

By using Theorem 2.1, we get the following result.

Theorem 4.1. Let (X, σ) be a metric-like space endowed with a graph G and T : X → CBσ(X) be a (E(G), ψ, ξ)-
contractive mapping. Suppose that the following conditions hold:
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1. (X, σ) is an E(G)−complete metric-like space;
2. T weakly preserves edges;
3. there exit x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);
4. fT is E(G)−lower semi-continuous or for any sequence {xn} in X with (xn, xn+1) ∈ E(G) for all n ∈ N and

xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such that (xn(k), x) ∈ E(G) for all k ∈N.

Then T has a fixed point in X.

Proof. Let the mapping α : X × X→ [0,∞) be defined by

α(x, y) =

1, (x, y) ∈ E(G),
0, otherwise.

It is easy to see that all conditions of Theorem 2.1 are satisfied and so T has a fixed point.
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