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Abstract. In this paper we introduce an [m,C]-isometric operator T on a complex Hilbert space H and
study its spectral properties. We show that if T is an [m,C]-isometric operator and N is an n-nilpotent
operator, respectively, then T + N is an [m + 2n − 2,C]-isometric operator. Finally we give a short proof of
Duggal’s result for tensor product of m-isometries and give a similar result for [m,C]-isometric operators.

1. Introduction

LetH be a complex Hilbert space andL(H) be the set of bounded linear operators onH . For an integer
m ∈N and an operator T ∈ L(H) is said to be an m-isometric operator if

m∑
j=0

(−1) j
(
m
j

)
T∗m− jTm− j = 0.

In 1995, J. Agler and M. Stankus [1] introduced an m-isometric operator and showed nice results. An
antilinear operator C onH is said to be conjugation if C satisfies C2 = I and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H .
An operator T ∈ L(H) is said to be complex symmetric if CTC = T∗. In [11], S. Jung, E. Ko, M. Lee and J. Lee
studied spectral properties of complex symmetric operators. In [4], M. Chō, E. Ko and J. Lee introduced
(m,C)-isometric operators with conjugation C as follows; For an operator T ∈ L(H) and an integer m ≥ 1,
T is said to be an (m,C)-isometric operator if there exists some conjugation C such that

m∑
j=0

(−1) j
(
m
j

)
T∗m− j

· CTm− jC = 0.

According to definitions of m-isometry, (m,C)-isometry and complex symmetric, we define an [m,C]-
isometry T as follows; An operator T is said to be an [m,C]-isometric operator if there exists some conjugation
C such that

m∑
j=0

(−1) j
(
m
j

)
CTm− jC · Tm− j = 0.
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It is easy to see that if T is complex symmetric and an [m,C]-isometry, then T is an m-isometry. Throughout
the paper, let I be the identity operator onH .

2. Example

(i) LetH = C2 and let C be a conjugation onH given by C
(
x
y

)
=

(
y
x

)
.

If T =

(
1 1
0 1

)
on C2, then CTC =

(
1 0
1 1

)
= T∗. Since T∗2 =

(
1 0
2 1

)
, it follows that

2∑
j=0

(−1) j
(
2
j

)
T∗2− j

· CT2− jC =

(
1 0
4 1

)
− 2

(
1 0
2 1

)
+ I = 0.

Therefore, T is a (2,C)-isometric operator. On the other hand, T is not a [2,C]-isometric operator due to
the fact that

2∑
j=0

(−1) j
(
2
j

)
CT2− jC · T2− j =

(
1 2
2 5

)
− 2

(
1 1
1 2

)
+ I =

(
0 0
0 2

)
, 0.

(ii) Under the same spaceH and the same conjugation C to (i), let S be an operator given by S =

(
i

√
2

√
2 −i

)
.

Then CSC =

(
i

√
2

√
2 −i

)
and CSC = S , S∗. Moreover, it holds CSC · S − I =

(
1 0
0 1

)
− I = 0 and hence S is a

[1,C]-isometry. But S∗ · CSC − I =

(
2 −2

√
2 i

2
√

2 i 2

)
, 0 and hence S is not a (1,C)-isometry.

(iii) Let F and J be conjugations on a Hilbert space H such that JF , I. Define T and C by T =

(
0 FJ
I 0

)
and C =

(
0 J
J 0

)
. Then it is easy to see that C is a conjugation on H ⊕H , CTC · T =

(
I 0
0 I

)
and T∗ · CTC =(

JF 0
0 JF

)
,

(
I 0
0 I

)
. Hence T is a [1,C]-isometric operator and not a (1,C)-isometric operator.

3. [m,C]-Isometric Operators

For an operator T ∈ L(H) and a conjugation C, we define the operator λm(T; C) by

λm(T; C) =

m∑
j=0

(−1) j
(
m
j

)
CTm− jC · Tm− j.

Then T is an [m,C]-isometry if and only if λm(T; C) = 0. Moreover, it holds that

CTC · λm(T; C) · T − λm(T; C) = λm+1(T; C). (1)

Hence if T is an [m,C]-isometry, then T is an [n,C]-isometry for every n ≥ m.

Let C be a conjugation on H . Then C satisfies ‖Cx‖ = ‖x‖ and C(αx) = αCx for all x ∈ H and all α ∈ C.
Moreover, since C2 = I, it follows that (CTC)n = CTnC and (CTC)∗ = CT∗C for every positive integer n
(see [10] for more details). For an operator T ∈ L(H), let σp(T) and σa(T) be the point spectrum and the
approximate point spectrum of T, respectively. We denote the range of T by R(T). Then we have
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Theorem 3.1. Let T ∈ L(H) be an [m,C]-isometric operator. Then the following statements hold:
(i) T is bounded below.
(ii) 0 < σa(T).
(iii) T is injective and R(T) is closed.

Proof. If 0 ∈ σa(T), then there exists a sequence of unit vectors {xn} ofH such that lim
n→∞

Txn = 0. Since T is an
[m,C]-isometric operator, it follows that

m−1∑
j=0

(−1) j
(
m
j

)
CTm− jC · Tm− j = (−1)m+1I. (2)

Moreover, since lim
n→∞

m−1∑
j=0

(−1) j
(
m
j

)
CTm− jC · Tm− j

 xn = 0, it follows from (2) that lim
n→∞

xn = 0, which is a

contradiction. Hence 0 < σa(T). Since (i), (ii), and (iii) are equivalent, this completes the proof.

Theorem 3.2. Let T ∈ L(H) be an [m,C]-isometric operator. If α ∈ σa(T), then α −1
∈ σa(T). In particular, if α is

an eigenvalue of T, then α −1 is an eigenvalue of T.

Proof. Let {xn} be a sequence of unit vectors such that lim
n→∞

(T − α)xn = 0. Since T is an [m,C]-isometric

operator, C is bounded, and lim
n→∞

(Tk
− αk)xn = 0 for all k ∈N, it holds that

0 = lim
n→∞

 m∑
j=0

(−1) j
(
m
j

)
CTm− jC · Tm− jxn


= C lim

n→∞

 m∑
j=0

(−1) j
(
m
j

)
Tm− j αm− j

 Cxn = C lim
n→∞

(αT − 1)mCxn.

Moreover, since C2 = I, it holds lim
n→∞

(αT − 1)mCxn = 0. Since ‖Cxn‖ = 1 and α , 0 by Theorem 3.1, it follows

that lim
n→∞

(T − α−1)mCxn = 0 and hence α −1
∈ σa(T).

Corollary 3.3. Let T ∈ L(H) be an [m,C]-isometric operator. Then ‖T‖ ≥ 1.

Proof. If 0 < ‖T‖ < 1, then there exists α ∈ σ(T) and a sequence {xn} of unit vectors such that 0 < |α| < 1 and
‖(T − α)xn‖ −→ 0. By Theorem 3.2, it holds α−1

∈ σ(T). Since |α−1
| > 1, it is a contradiction.

Theorem 3.4. Let C be a conjugation onH and let T ∈ L(H). Then the following assertions hold.
(i) If T is an invertible, then T is an [m,C]-isometric operator if and only if so is T−1.
(ii) If T is an [m,C]-isometric operator, then Tn is also an [m,C]-isometric operator for any n ∈N.

Proof. (i) Suppose that T is invertible and an [m,C]-isometry. Since C2 = I, it follows that

0 = (CT−mC)
[ m∑

j=0

(−1) j
(

m
j

)
(CTm− jC)Tm− j

]
T−m

=

m∑
j=0

(−1) j
(

m
j

)
(C(T−1)

j
C) (T−1) j.

Since
m∑

j=0

(−1) j
(

m
j

)
(C(T−1)m− jC)(T−1)m− j = 0
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is equivalent to
m∑

j=0

(−1) j
(

m
j

)
(C(T−1) jC)(T−1) j = 0,

T−1 is an [m,C]-isometry. Hence the statement (i) holds.
(ii) Since

an
− 1)m = (a − 1)m

(
an−1 + an−2 + an−3 + · · · + a + 1

)m

= (a − 1)m
(
ξ0am(n−1) + ξ1am(n−1)−1 + ξ2am(n−1)−2 + · · · + ξm(n−1)

)
where ξi are coefficients (i = 0, ...,m(n − 1)), it follows that

λm(Tn; C) =

m(n−1)∑
i=0

ξi CTm(n−1)−iC · λm(T; C) · Tm(n−1)−i. (3)

From (3), if λm(T; C) = 0, then λm(Tn; C) = 0. Hence Tn is an [m,C]-isometric operator for any n ∈N. So this
completes the proof.

An operator N ∈ L(H) is said to be n-nilpotent if Nn = 0 (n ∈ N). In [2] T. Bermúdes, A. Martinón, V.
Müller and A.J. Noda proved the following.

Proposition 3.5. (Theorem 3.1, [2]) Let T be an m-isometry on H and N be an n-nilpotent operator such that
TN = NT. Then T + N is an (m + 2n − 2)-isometry.

We have following similar result.

Theorem 3.6. Let T be an [m,C]-isometric operator on H and N be an n-nilpotent operator such that TN = NT.
Then T + N is an [m + 2n − 2,C]-isometry.

Proof. In the proof, we denote λm(T; C) by λm(T) simply. First we show

λm(T + N) =
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC · CN jC · λk(T) · T j

·Ni, (4)

where
(

m
i, j, k

)
=

m!
i! · j! · k!

and λ0(∗) = I. It is easy to see that (4) holds for m = 1. Assume that (4) holds for m.

Then by (1) we have

λm+1(T + N) = C(T + N)C · λm(T + N) · (T + N) − λm(T + N)

= (C(T + N)C)[
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN jCλk(T) T j Ni](T + N)

−

∑
i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN jCλk(T) T j Ni

=
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN jC

(
CTCλk(T) T − λk(T)

)
T j Ni

+
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN j+1Cλk(T) T j+1 Ni

+
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)i+1C CN jCλk(T) T j Ni+1
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=
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN jCλk+1(T) T j Ni

+
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)iC CN j+1Cλk(T) T j+1 Ni

+
∑

i+ j+k=m

(
m

i, j, k

)
C(T + N)i+1C CN jCλk(T) T j Ni+1

=
∑

i+ j+k=m+1

(
m + 1
i, j, k

)
C(T + N)iC CN jCλk(T) T j Ni.

Hence (4) holds for m + 1 and holds for any m ∈N. By (4) it holds

λm+2n−2(T + N) =
∑

i+ j+k=m+2n−2

(
m + 2n − 2

i, j, k

)
C(T + N)iC CN jCλk(T)T jNi.

(i) If max{i, j} ≥ n, then CN jC = 0 or Ni = 0.
(ii) If max{i, j} ≤ n − 1, then k ≥ m and hence λk(T) = 0.
By (i) and (ii), we have λm+2n−2(T + N) = 0. Therefore, T + N is an [m + 2n − 2,C]-isometric operator.

Remark 3.7. Let T ∈ L(H). If βm(T) is defined by

βm(T) =

m∑
j=0

(−1) j
(
m
j

)
T∗m− jTm− j,

then T is an m-isometric operator if and only if βm(T) = 0. Since, for any commuting pair (T,S), it follows that

βm(T + S) =
∑

i+ j+k=m

(
m

i, j, k

)
(T + S)∗i · S∗ j · βk(T) · T j

· Si.

So we have other proof of Proposition 3.5.

From Theorem 3.6, we get the following corollary.

Corollary 3.8. If T is a [1,C]-isometric operator on H and N is an n-nilpotent operator such that TN = NT, then
T + N is an [2n − 1,C]-isometry.

Example 3.9. Let C be a conjugation given by C(z1, z2, z3) = (z3, z2, z1) on C3. If T =

1 0 a
0 1 0
0 0 1

 on C3, then

T = I + N where N =

0 0 a
0 0 0
0 0 0

. Thus we have T2 =

1 0 2a
0 1 0
0 0 1

, T3 =

1 0 3a
0 1 0
0 0 1

, CTC =

1 0 0
0 1 0
a 0 1

,

CT2C =

 1 0 0
0 1 0
2a 0 1

, and CT3C =

 1 0 0
0 1 0
3a 0 1

. Then we have

λ3(T; C) = CT3CT3
− 3CT2CT2 + 3CTCT − I = 0.

On the other hand, since N2 = 0, it follows from Theorem 3.6 that T is a [3,C]-isometric operator.
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For an operator T ∈ L(H), the numerical range W(T) of T is W(T) = {〈Tx, x〉 : x ∈ H , ‖x‖ = 1 }. An
operator T ∈ L(H) is said to be convexoid if W(T) = co σ(T), that is, the closure of W(T) is equal to the convex
hull of σ(T). An operator T is called power bounded if there exists a positive number M such that ‖Tn

‖ ≤ M
for all n ∈N.

Theorem 3.10. Let T be a [2,C]-isometric operator. If T is power bounded and CTC · T − I is convexoid, then T is a
[1,C]-isometric operator.

Proof. For the proof, we will show that W(CTC · T − I) = {0}. Assume that W(CTC · T − I) , {0}. Since
CTC · T − I is convexoid, it holds W(CTC · T − I) = co σ(CTC · T − I). Then there exist a non-zero a ∈ C and a
sequence {xn} of unit vectors inH such that lim

n→∞
(CTC ·T − I− a)xn = 0. Since T is a [2,C]-isometric operator,

it holds lim
n→∞

(CT2C · T2
− (1 + 2a))xn = 0. Inductively, we have

lim
n→∞

(
CTnC · Tn

− (1 + na)
)
xn = 0.

Therefore, it holds that ‖CTnC · Tn
‖ ≥ |1 + na|. Since a , 0, it follows that lim

n→∞
|1 + na| = ∞. Since T is power

bounded, so is CTnC · Tn and hence it is a contradiction.

4. Tensor Products of [m,C]-Isometric Operators

For a complex Hilbert spaceH , letH ⊗H denote the completion of the algebraic tensor product ofH
andH endowed a reasonable uniform cross-norm. For operators T ∈ L(H) and S ∈ L(H), T⊗S ∈ L(H⊗H)
denote the tensor product operator defined by T and S. Note that T ⊗ S = (T ⊗ I)(I ⊗ S) = (I ⊗ S)(T ⊗ I). Then
B. Duggal in [9] proved the following result.

Proposition 4.1. (Theorem 2.10, [9]) Let T and S be an m-isometry and an n-isometry on H , respectively. Then
T ⊗ S is an (m + n − 1)-isometry onH ⊗H .

Since Duggal’s proof is long and difficult, we firstly give a short proof. A pair of operators (T,S) is said
to be a doubly commuting pair if (T,S) satisfies TS = ST and T∗S = ST∗. Then, for a doubly commuting pair
(T,S), it holds

βm(TS) =

m∑
k=0

(
m
k

)
T∗k · βm−k(T) · Tk

· βk(S). (5)

Equation (5) is a result of Lemma 3.1 of [3]. It comes from the following equation;

(ab − 1)m =
(
(a − 1) + a(b − 1)

)m
=

m∑
k=0

(
m
k

)
(a − 1)m−k ak (b − 1)k.

Proposition 4.2. Let T and S be an m-isometry and an n-isometry onH , respectively. If (T,S) is a doubly commuting
pair, then TS is an (m + n − 1)-isometry onH .

Proof. By Equation (5), we have

βm+n−1(TS) =

m+n−1∑
k=0

(
m + n − 1

k

)
T∗k · βm+n−1−k(T) · Tk

· βk(S).

(i) If 0 ≤ k ≤ n − 1, then m + n − 1 − k ≥ m and hence βm+n−1−k(T) = 0.
(ii) If k ≥ n, then βk(S) = 0.
Therefore, βm+n−1(TS) = 0 and so TS is an (m + n − 1)-isometry.
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Proof of Proposition 4.1. It is clear that T ⊗ I and I ⊗ S are an m-isometry and an n-isometry on H ⊗ H ,
respectively. Since (T ⊗ I, I ⊗ S) is a doubly commuting pair, by Proposition 4.2, (T ⊗ I)(I ⊗ S) = T ⊗ S is an
(m + n − 1)-isometry onH ⊗H .

Next we show following similar result of Proposition 4.1. For [m,C]-operators, let (T,S) be a commuting
pair and satisfy S · CTC = CTC · S, where C is a conjugation. Then it holds

λm(TS; C) =

m∑
k=0

(
m
k

)
CTkC · λm−k(T; C) · Tk

· λk(S; C). (6)

Then, by a similar proof of Proposition 4.2, we have

Theorem 4.3. Let T and S be an [m,C]-isometry and an [n,C]-isometry onH , respectively. If (T,S) is a commuting
pair and satisfies S · CTC = CTC · S, then TS is an [m + n − 1,C]-isometry onH .

Proof. By Equation (6), it holds

λm+n−1(TS; C) =

m+n−1∑
k=0

(
m + n − 1

k

)
CTkC · λm+n−1−k(T; C) · Tk

· λk(S; C).

Hence TS is an [m + n − 1,C]-isometry onH .

Theorem 4.4. Let T and S be an [m,C]-isometry and an [n,D]-isometry on H , respectively. Then T ⊗ S is an
[m + n − 1,C ⊗D]-isometry onH ⊗H .

For conjugations C and D onH , we define C ⊗D onH ⊗H by

(C ⊗D)(
n∑

j=1

α jx j ⊗ y j) =

n∑
j=1

α jCx j ⊗Dy j.

First we prepare the following lemma.

Lemma 4.5. Let C and D be conjugations onH . Then C ⊗D is a conjugation onH ⊗H .

Proof. Let x =

n∑
i=1

αix1
i ⊗ x2

i and y =
∑m

j=1 β jy1
j ⊗ y2

j ∈ H ⊗H where αi, β j ∈ C. Since C and D are isometric, it

follows that

〈(C ⊗D)x, (C ⊗D)y〉 = 〈(C ⊗D)(
n∑

i=1

αix1
i ⊗ x2

i ), (C ⊗D)(
m∑

j=1

βiy1
j ⊗ y2

j )〉

=

n∑
i=1

m∑
j=1

αi〈Cx1
i ,Cy1

j 〉 · β j〈Dx2
i ,Dy2

j 〉

=

n∑
i=1

m∑
j=1

αi〈y1
j , x

1
i 〉 · β j〈y2

j , x
2
i 〉

= 〈

m∑
j=1

β jy1
j ⊗ y2

j ,
n∑

i=1

αix1
i ⊗ x2

i 〉 = 〈y, x〉. (7)

Moreover, since C and D are involutive, it follows that

(C ⊗D)2 = (C2
⊗D2) = I ⊗ I (8)

on the algebraic tensor product ofH ⊗H . Since C and D are bounded, it follows from (7) and (8) that C⊗D
is a conjugation onH ⊗H .
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Proof of Theorem 4.4. By Lemma 4.5, C⊗D is a conjugation. It is clear that T⊗I and I⊗S are [m,C⊗D]-isometry
and [n,C ⊗D]-isometry onH ⊗H , respectively. Since

(
T ⊗ I, I ⊗ S

)
is a commuting pair and satisfies

(I ⊗ S) ·
(
(C ⊗D)(T ⊗ I)(C ⊗D)

)
=

(
(C ⊗D)(T ⊗ I)(C ⊗D)

)
· (I ⊗ S),

by Theorem 4.3, (T ⊗ I)(I ⊗ S) = T ⊗ S is an [m + n − 1,C ⊗D]-isometry.

For an (m,C)-isometric operator T, Λm(T; C) is defined by

Λm(T; C) =

m∑
j=0

(−1) j
(
m
j

)
T∗m− j

· CTm− jC.

Let a commuting pair (T,S) satisfy S∗ · CTC = CTC · S∗, where C is a conjugation. Then it holds

Λm(TS; C) =

m∑
k=0

(
m
k

)
T∗k ·Λm−k(T; C) · CTkC ·Λk(S; C). (9)

By similar proofs of Proposition 4.2 and Theorems 4.3 and 4.4, we have following results.

Theorem 4.6. Let T and S be an (m,C)-isometry and an (n,C)-isometry onH , respectively. If (T,S) is a commuting
pair and satisfies S∗ · CTC = CTC · S∗, then TS is an (m + n − 1,C)-isometry onH .

Proof. The proof follows from Equation (9).

Theorem 4.7. Let T and S be an (m,C)-isometry and an (n,D)-isometry on H , respectively. Then T ⊗ S is an
(m + n − 1,C ⊗D)-isometry onH ⊗H .

Proof. Operators T⊗ I and I⊗S are (m,C⊗D)-isometry and (n,C⊗D)-isometry onH⊗H , respectively. Since(
T⊗ I, I⊗S

)
is a commuting pair and satisfies (I⊗S)∗ ·

(
(C⊗D)(T⊗ I)(C⊗D)

)
=

(
(C⊗D)(T⊗ I)(C⊗D)

)
· (I⊗S)∗,

by Theorem 4.6 (T ⊗ I)(I ⊗ S) = T ⊗ S is an (m + n − 1,C ⊗D)-isometry onH ⊗H .
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