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Abstract. This study is an attempt to prove the following main results.
LetA be a Banach algebra and A = A

⊕
C be its unitization. By

∏
c(A), we denote the set of all primitive

ideals P of A such that the quotient algebra A

P
is commutative. We prove that if A is semi-prime and

dim(
⋂
P∈Πc(A)P) ≤ 1, thenA is commutative. Moreover, we prove the following:

LetA be a semi-simple Banach algebra. Then,A is commutative if and only if S(a) = {ϕ(a) | ϕ ∈ ΦA}
⋃
{0}

orS(a) = {ϕ(a) | ϕ ∈ ΦA} for every a ∈ A, whereS(a) and ΦA denote the spectrum of an element a ∈ A, and
the set of all non-zero multiplicative linear functionals onA, respectively.

1. Introduction and Preliminaries

Throughout this paper, A denotes a Banach algebra over the complex field C. If A is unital, then 1
stands for its unit element. We denote the center ofA by Z(A), i.e. Z(A) = {x ∈ A | ax = xa f or all a ∈ A}.
Moreover, A is called semi-prime if aAa = {0} implies that a = 0. Recall that a linear mapping d : A → A
is called a derivation if it satisfies the Leibnitz rule d(ab) = d(a)b + ad(b) for all a, b ∈ A. We call d an inner
derivation if there exists an element x ∈ A such that d(a) = [x, a] = xa − ax for all a ∈ A.

A non-zero linear functional ϕ onA is called a character if ϕ(ab) = ϕ(a)ϕ(b) holds for every a, b ∈ A. By
ΦA we denote the set of all characters onA. It is well known that, kerϕ the kernel of ϕ is a maximal ideal of
A, whereϕ is an arbitrary element of ΦA. IfA is a Banach ∗-algebra, then we denote the set of all projections
inA by PA (,i.e. PA = {p ∈ A | p2 = p, p∗ = p}), and by SA we denote the set of all self-adjoint elements of
A (,i.e. SA = {a ∈ A | a∗ = a}). The set of those elements inA which can be represented as finite real-linear
combinations of mutually orthogonal projections, is denoted byOA. Hence, we havePA ⊆ OA ⊆ SA. Note
that if A is a von Neumann algebra, then OA is norm dense in SA. More generally, the same is true for
AW∗-algebras. Recall that a W∗-algebra is a weakly closed self-adjoint algebra of operators on a Hilbert
space, and an AW∗-algebra is a C∗-algebra satisfying:
(i) In the partially ordered set of projections, any set of orthogonal projections has a least upper bound
(LUB),
(ii) Any maximal commutative self-adjoint subalgebra is generated by its projections. That is, it is equal to
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the smallest closed subalgebra containing its projections.
The above-mentioned definitions and results can be found in [6, 10, 17]. This paper, has been motivated by
[7, 8, 15]. An algebra A can always be embedded into an algebra with identity as follows. Let A denote
the set of all pairs (x, λ), x ∈ A, λ ∈ C, that is, A = A

⊕
C. Then A becomes an algebra if the linear

space operations and multiplication are defined by (x, λ) + (y, µ) = (x + y, λ + µ), µ(x, λ) = (µx, µλ) and
(x, λ)(y, µ) = (xy + λy + µx, λµ) for x, y ∈ A and λ, µ ∈ C. A simple calculation shows that the element
e = (0, 1) ∈ A is an identity for A. Moreover, the mapping x → (x, 0) is an algebra isomorphism of A onto
an ideal of codimension one in A. Obviously, A is commutative if and only ifA is commutative.

Now suppose thatA is a normed algebra. We introduce a norm on A by ‖(x, λ)‖ = ‖x‖ + |λ|, for x ∈ A,
λ ∈ C. It is straightforward that this turns A into a normed algebra. Clearly, ifA is a Banach algebra, then
A is a Banach algebra, too. Some authors call A the unitization ofA.

Let B be a subset ofA, the commutant of B is denoted by B′ and defined by B′ = {a ∈ A | ab = ba f or every b ∈
B}. The double commutant of B is denoted by B′′, and we have B′′ = {a ∈ A | ax = xa f or every x ∈ B′}. A
straightforward verification shows that B′ is a closed subalgebra of A, B ⊆ B′′, and if B is a commutative
set, then so is B′′. Indeed, if B is commutative, then B′′ is a commutative Banach algebra (see p. 293 of [16]).

The spectrum of an element a is the set S(a) = {λ ∈ C | λ1 − a is not invertible}. The spectral radius of a is
r(a) = sup{|λ| : λ ∈ S(a)}. The element a is said to be quasi-nilpotent if r(a) = 0. We shall henceforth find it
convenient to write λ1 simply as λ.

LetA be a commutative Banach algebra. It follows from Theorem 1.3.4 of [14] that
(1) ifA is unital, then S(a) = {ϕ(a) | ϕ ∈ ΦA},
(2) ifA is non-unital, then S(a) = {ϕ(a) | ϕ ∈ ΦA}

⋃
{0}.

In this article, we are going to study the converse of this result. Indeed, we will show that if A is a semi-
simple Banach algebra, then A is commutative if and only if S(a) = {ϕ(a) | ϕ ∈ ΦA} or S(a) = {ϕ(a) | ϕ ∈
ΦA}

⋃
{0} for every a ∈ A. Moreover, we prove that if δ : A → A is a bounded derivation such that

S(δ(a)) = {ϕ(δ(a)) | ϕ ∈ ΦA} or S(δ(a)) = {ϕ(δ(a)) | ϕ ∈ ΦA}
⋃
{0} for every a ∈ A, then δ(A) ⊆ rad(A),

where rad(A) denotes the Jacobson radical of A. By
∏

c(A), we denote the set of all primitive ideals P of
A such that the quotient algebra A

P
is commutative. Moreover, the set of all maximal idealsM of A such

that the quotient algebra A
M

is commutative, is denoted by Mc(A). We prove that if A is semi-prime and
dim(

⋂
P∈Πc(A)P) ≤ 1, thenA is commutative.

2. Results and Proofs

We begin with the following theorems which will be used to prove our main results.

Theorem 2.1. [[19], Theorem 4.4] LetA be a commutative Banach algebra and δ : A→A be a derivation. Then,
δ(A) ⊆ rad(A).

Theorem 2.2. [[11], page 246] Let d be a derivation on a Banach algebra A. Then, the following three conditions
are equivalent:
(i) [a, d(a)] ∈ rad(A) for all a ∈ A;
(ii) d is spectrally bounded;
(iii) d(A) ⊆ rad(A);

Note that each member of ΦA is continuous (see Proposition 5.1.1 of [5]). In this study, we assume that ΦA
is a non-empty set. The following theorem is motivated by [7, 8, 15].

Theorem 2.3. Let δ : A → A be a bounded derivation. Then, δ(A) ⊆
⋂
P∈Πc(A)P ⊆

⋂
M∈Mc(A)M ⊆

⋂
ϕ∈ΦA kerϕ.

In particular, ifA is semi-prime and dim(
⋂
P∈Πc(A)P) ≤ 1, then δ = 0.

Proof. First, we define ∆ : A → A by ∆(a, α) = (δ(a), 0) = δ(a). Clearly, ∆ is a bounded derivation. Hence,
if P is an arbitrary primitive ideal of A, then ∆(P) ⊆ P (see Theorem 6.2.3 of [5]). Assume that P is an
arbitrary element of

∏
c(A). It means that A

P
is commutative. Furthermore, according to Proposition 1.4.44
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(ii) of [6], A
P

is a primitive algebra, and so A
P

is semi-simple. Now, we define the linear map D : A
P
→

A
P

by
D((a, α) +P) = ∆(a, α) +P. If (a, α) +P = (b, β) +P, then (a− b, α− β) ∈ P. Since ∆(P) ⊆ P, ∆(a− b, α− β) ∈ P.
Hence, ∆(a, α) +P = ∆(b, β) +P and it means that D is well-defined. For convenience, (a, λ) is denoted by aλ
for all a ∈ A, λ ∈ C. A straightforward verification shows that D is a derivation. It follows from Theorem
2.1 that D(A

P
) ⊆ rad(A

P
) = {0}, and it implies that ∆(A) ⊆

⋂
P∈Πc(A)P. Since A is unital, every (maximal)

ideal of A is a (maximal) modular ideal (see the last paragraph of page 4 of [14]). Moreover, it follows
from Proposition 1.4.34 (iv) of [6] that each maximal modular ideal in A is a primitive ideal. Therefore,
Mc(A) ⊆ Πc(A) and it implies that

⋂
P∈Πc(A)P ⊆

⋂
M∈Mc(A)M, where Πc(A) and Mc(A) were introduced in

the introduction. According to Proposition 3.1.2 of [5], kerϕ̃ is a maximal ideal of A for every ϕ̃ ∈ ΦA.
Note that ϕ̃(aαbβ) = ϕ̃(aα)ϕ̃(bβ) = ϕ̃(bβ)ϕ̃(aα) = ϕ̃(bβaα) for all aα, bβ ∈ A. Hence, aαbβ − bβaα ∈ kerϕ̃. Thus,
(aα + kerϕ̃)(bβ + kerϕ̃) = (bβ + kerϕ̃)(aα + kerϕ̃), and it means that A

kerϕ̃ is a commutative algebra. Hence,
{kerϕ̃ | ϕ̃ ∈ ΦA} ⊆ Mc(A) and it is concluded that

⋂
P∈Πc(A)P ⊆

⋂
M∈Mc(A)M ⊆

⋂
ϕ̃∈ΦA kerϕ̃. Therefore, we

have ∆(A) ⊆
⋂
P∈Πc(A)P ⊆

⋂
M∈Mc(A)M ⊆

⋂
ϕ̃∈ΦA kerϕ̃. Based on the offered discussion in the first paragraph

of page 15 of [14], we obtain that
⋂
ϕ̃∈ΦA kerϕ̃ =

⋂
ϕ∈ΦA kerϕ. Hence, δ(A) ⊆

⋂
P∈Πc(A)P ⊆

⋂
M∈Mc(A)M ⊆⋂

ϕ∈ΦA kerϕ, and it completes the first part of our proof.
Suppose that A is semi-prime and dim(

⋂
P∈Πc(A)P) ≤ 1. It is obvious that if dim(

⋂
P∈Πc(A)P) = 0, then

δ(A) = {0}. Now, assume that dim(
⋂
P∈Πc(A)P) = 1. Since dim(

⋂
P∈Πc(A)P) = 1, there exists a non-zero

element xλ of A such that
⋂
P∈Πc(A)P = {αxλ | α ∈ C}. Since δ(A) ⊆

⋂
P∈Πc(A)P, we can consider the function

ψ : A → C such that δ(a) = (δ(a), 0) = ψ(a)xλ = ψ(a)(x, λ) = (ψ(a)x, ψ(a)λ) for all a ∈ A. So, ψ(a)λ = 0,
and it implies that either ψ(a) = 0 or λ = 0. If λ , 0, then ψ(a) = 0 for every a ∈ A, and consequently, δ
is zero. In this case, our goal is achieved. Now, we suppose λ = 0. We want to show that δ is identically
zero. To obtain a contradiction, assume δ is a non-zero derivation. Therefore, there is an element a0 of A
such that δ(a0) , 0. Clearly, ψ(a0) , 0, too. Thus, we have δ(a0) = ψ(a0)x. Putting b = 1

ψ(a0) a0, we obtain
δ(b) = δ( 1

ψ(a0) a0) = 1
ψ(a0)ψ(a0)x = x and it implies that ψ(b) = 1. We will show that ax + xa is a scalar multiple

of x for any a in A. Let a be an arbitrary element of A. Then, δ(a2) = ψ(a2)x (*). On the other hand,
we have δ(a2) = δ(a)a + aδ(a) = ψ(a)xa + aψ(a)x = ψ(a)(xa + ax) (**). Comparing (*) and (**) , we find that

ψ(a2)x = ψ(a)(ax + xa). If ψ(a) , 0, then ax + xa =
ψ(a2)
ψ(a) x. If ψ(a) = 0, then

ψ(ab + ba)x = δ(ab + ba)
= δ(a)b + aδ(b) + δ(b)a + bδ(a)
= ψ(a)xb + aψ(b)x + ψ(b)xa + bψ(a)x
= ax + xa

and this proves that ax + xa is a scalar multiple of x for any a in A. Next, it will be shown that x2 = 0.
Suppose that ψ(x) = 0. We have ψ(b2)x = δ(b2) = δ(b)b + bδ(b) = ψ(b)xb + bψ(b)x = xb + bx. Applying δ on
this equality and then using the fact that δ(x) = ψ(x)x = 0, we obtain that x2 = 0. Now, suppose ψ(x) , 0.
Therefore, we have

ψ(x2)x = δ(x2) = δ(x)x + xδ(x) = ψ(x)x2 + ψ(x)x2 = 2ψ(x)x2. (1)

If ψ(x2) = 0, then it follows from previous equality that x2 = 0. Assume that ψ(x2) , 0; so x2 =
ψ(x2)
2ψ(x) x.

Simplifying the notation, we put γ =
ψ(x2)
2ψ(x) . Replacing x2 by γx in 2ψ(x)x2 = δ(x2), we have 2ψ(x)γx = γδ(x) =

γψ(x)x. Since ψ(x) , 0, γx = 0 and it implies that either γ = 0 or x = 0, which is a contradiction. This
contradiction shows that ψ(x2) = 0 and by using (1) it is obtained that x2 = 0. We know that xa + ax = µx,
where µ ∈ C. Multiplying the previous equality by x and using the fact that x2 = 0, we see that xax = 0 for
any a inA. SinceA is semi-prime, x = 0. This contradiction shows that δ must be zero.

We are now ready for the following conclusions.
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Corollary 2.4. LetA be a Banach algebra and δ : A→A be a bounded derivation. IfS(δ(a)) = {ϕ(δ(a)) | ϕ ∈ ΦA}
or S(δ(a)) = {ϕ(δ(a)) | ϕ ∈ ΦA}

⋃
{0} for every a ∈ A, then δ(A) ⊆ rad(A). In particular, ifA is semi-simple, then

δ is zero.

Proof. It follows from Theorem 2.3 that δ(A) ⊆
⋂
ϕ∈ΦA kerϕ. This fact and our assumption concerningS(δ(a))

imply that S(δ(a)) = {0} for every a ∈ A. It means that δ is spectrally bounded. At this moment, Theorem
2.2 completes the proof.

Remark 2.5. Let {dn} be a higher derivation on an algebra A with d0 = I, where I is the identity mapping on A.
Based on Proposition 2.1 of [12] there is a sequence {δn} of derivations onA such that

(n + 1)dn+1 =

n∑
k=0

δk+1dn−k

for each non-negative integer n. Therefore, we have

d0 = I,
d1 = δ1,

2d2 = δ1d1 + δ2d0 = δ1δ1 + δ2,

d2 =
1
2
δ2

1 +
1
2
δ2,

3d3 = δ1d2 + δ2d1 + δ3d0 = δ1(
1
2
δ2

1 +
1
2
δ2) + δ2δ1 + δ3,

d3 =
1
6
δ3

1 +
1
6
δ1δ2 +

1
3
δ2δ1 +

1
3
δ3.

Now, assume that {dn} is a bounded higher derivation (,i.e. dn is a bounded linear map for every non-negative integer
n). Obviously, δ1 = d1 is bounded. Hence, δ2 = 2d2 − δ2

1 is also bounded. Based on the d3 formula, we have
δ3 = 3d3 −

1
2δ

3
1 −

1
2δ1δ2 − δ2δ1. Using the boundedness of d3, δ1 and δ2, we obtain that δ3 is a bounded derivation. In

the next step, we will show that every δn is a bounded derivation for every n ∈N. To reach this aim, we use induction
on n. According to the above-mentioned discussion, δ1, δ2 and δ3 are bounded derivations. Now, suppose that δk is a
bounded derivation for k ≤ n. We will show that δn+1 is also a bounded derivation. Based on the proof of Theorem 2.3
in [12], we have

δn+1 = (n + 1)dn+1 −

n+1∑
i=2

( ∑
∑i

j=1 r j=n+1

(n + 1)ar1,...,riδr1 ...δri

)
(2)

where the inner summation is taken over all positive integers r j with
∑i

j=1 r j = n+1. From
∑i

j=1 r j = r1 +r2 + ...+ri =
n + 1 along with the condition that r j is a positive integer for every 1 ≤ j ≤ i, we find that 1 ≤ r j ≤ n for every
1 ≤ j ≤ i. Since we are assuming dn and δk are bounded linear mappings for all non-negative integer n and k ≤ n, it
follows from (2) that δn+1 is a bounded derivation.

Corollary 2.6. Let A be a Banach algebra such that S(a) = {ϕ(a) | ϕ ∈ ΦA}
⋃
{0} or S(a) = {ϕ(a) | ϕ ∈ ΦA}

for every a ∈ A. If {dn} is a bounded higher derivation ( that means dn is a bounded linear map for every n), then
dn(A) ⊆ rad(A) for every n ≥ 1.

Proof. This is an immediate conclusion from Corollary 2.4, Remark 2.5, and Theorem 2.3 of [12].

In the next corollary, we offer a spectrum criterion for the commutativity of Banach algebras.

Corollary 2.7. Let A be a semi-simple Banach algebra. Then, A is commutative if and only if S(a) = {ϕ(a) | ϕ ∈
ΦA}

⋃
{0} or S(a) = {ϕ(a) | ϕ ∈ ΦA} for every a ∈ A.
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Proof. Suppose thatA is a commutative Banach algebra. It follows from Theorem 1.3.4 of [14] that S(a) =
{ϕ(a) | ϕ ∈ ΦA}

⋃
{0} or S(a) = {ϕ(a) | ϕ ∈ ΦA} for every a ∈ A. To prove the converse statement we assume

that S(a) = {ϕ(a) | ϕ ∈ ΦA}
⋃
{0} or S(a) = {ϕ(a) | ϕ ∈ ΦA} for every a ∈ A. Evidently, δa0 (a) = [a, a0] is a

bounded derivation on A, where a0 is an arbitrary fixed element of A. Corollary 2.4 then yields that δ is
zero, and since a0 is arbitrary,A is commutative.

Corollary 2.8. Let δ : A → A be a derivation and P be a primitive ideal of A such that δ(P) ⊆ P. If S(a + P) =
{ϕ(a +P) | ϕ ∈ ΦA

P

}
⋃
{0} or S(a +P) = {ϕ(a +P) | ϕ ∈ ΦA

P

} for every a ∈ A, then δ(A) ⊆ P.

Proof. According to Proposition 1.4.44 (ii) of [6], A
P

is a primitive algebra, and so A
P

is semi-simple. Let us
define ∆ : A

P
→
A

P
by ∆(a+P) = δ(a)+P. One can easily show that ∆ is a derivation. It follows from Theorem

2.3.2 of [18] that ∆ is a bounded derivation, and so, Corollary 2.4 implies that ∆ is zero. Consequently,
δ(A) ⊆ P.

In the following two corollaries, we extend Corollary 2.5 and Corollary 2.6 in [8] to any semi-prime
Banach algebra.

Corollary 2.9. LetA be a semi-prime Banach algebra such that dim(
⋂
P∈Πc(A)P) ≤ 1. ThenA is commutative.

Proof. Let x0 be a non-zero arbitrary fixed element ofA. Define dx0 : A→A by dx0 (a) = ax0−x0a. Obviously,
dx0 is a bounded derivation. It follows from Theorem 2.3 that dx0 (a) = 0, i.e. ax0 = x0a for all a ∈ A. Since x0
is arbitrary,A is commutative. This is exactly what we had to prove.

Corollary 2.10. LetA be a semi-prime Banach algebra, and {dn} be a bounded higher derivation fromA intoA. If
dim(

⋂
P∈Πc(A)P) ≤ 1, then dn = 0 for all n ∈N.

Proof. Let {dn} be the above-mentioned higher derivation. According to Theorem 2.3 of [12] there exists a
sequence {δn} of derivations onA such that

dn =

n∑
i=1

( ∑
∑i

j=1 r j=n

( i∏
j=1

1
r j + ... + ri

)
δr1 ...δri

)

, where the inner summation is taken over all positive integers r j with
∑i

j=1 r j = n. It follows from Remark
2.5 that δn is a bounded derivation for every positive integer n. At this moment, Theorem 2.3 completes the
proof.

The question under which conditions all derivations are zero on a given Banach algebra have attracted
much attention of authors (for instance, see [7, 8, 11, 15, 20]). In the following propositions, we also
concentrate on this topic.

Proposition 2.11. Let A be a Banach ∗-algebra such that OA = SA and δ : A → A be a bounded derivation.
Suppose that B = {δ(p) | p ∈ PA} is a commutative set, and furthermore, if ϕ ∈ ΦB′′ , then ϕ(p) exists for every
p ∈ PA. Then, δ(A) ⊆ rad(A). In particular, ifA is semi-simple, then δ is zero.

Proof. Since B is commutative, we have δ(p)δ(q) = δ(q)δ(p) for all p, q ∈ PA. Let a1 and b1 be two arbitrary
elements of SA = OA. Hence, there are two sequences {xr} and {ys} in OA such that limr→∞ xr = a1 and
lims→∞ ys = b1. From this and using the fact that B is a commutative set, we deduce that

δ(a1)δ(b1) = δ(b1)δ(a1) f or all a1, b1 ∈ SA. (3)
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It is well-known that if a is an arbitrary element ofA, then there exist two self-adjoint elements a1, a2 such
that a = a1 + ia2. This fact with (3) imply that δ(a)δ(b) = δ(b)δ(a) for all a, b ∈ A. Assume that a1 ∈ SA = OA.
Then, there is a sequence {xr} ⊆ OA such that limr→∞ xr = a1. We have

δ(a1) = δ(lim
r→∞

xr) = lim
r→∞

δ(xr)

= lim
r→∞

δ
( nr∑

kr=1

αkr pkr

)
= lim

r→∞

nr∑
kr=1

αkrδ(pkr )

It is evident that,
∑nr

kr=1 αkrδ(pkr ) is a sequence in B′′ and since B′′ is a commutative Banach algebra,
limr→∞

∑nr
kr=1 αkrδ(pkr ) = δ(a1) ∈ B′′ . Hence, δn(a) ∈ B′′ for every natural number n and each a ∈ A. Since B′′

is a commutative Banach algebra, ΦB′′ is a non-empty set (see Theorem 2.3.25 of [6]). If we define dn = δn

n!
with d0 = I, the identity mapping onA, then we have

dn(ab) =
1
n!
δn(ab) =

1
n!

n∑
k=0

(n

k

)
δn−k(a)δk(b)

=

n∑
k=0

1
n!
.

n!
(n − k)!k!

δn−k(a)δk(b)

=

n∑
k=0

dn−k(a)dk(b).

Define F(t) =
∑
∞

n=0 dn(p)tn, where |t| < 1 and p is an arbitrary, non-trivial fixed element of PA (see [13]).
Note that

‖dn‖ = ‖
δn

n!
‖ ≤

1
n!
‖δ‖n <

∞∑
n=0

‖δ‖n

n!
= e‖δ‖

It means that {dn} is a uniformly bounded sequence of linear mappings. Hence, we have

‖

∞∑
n=0

dn(p)tn
‖ ≤

∞∑
n=0

‖dn(p)tn
‖

=

∞∑
n=0

‖dn(p)‖|tn
|

≤

∞∑
n=0

‖dn‖‖p‖|tn
|

≤

∞∑
n=0

e‖δ‖‖p‖|tn
| = e‖δ‖‖p‖

1
1 − |t|

< ∞.

This fact ensures that F is well-defined. Hence, the m-th derivative of F exists and is given by the formula
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F(m)(t) =
∑
∞

n=m
n!

(n−m)! dn(p)tn−m. Furthermore, we have

F(t)F(t) =
( ∞∑

n=0

dn(p)tn
)( ∞∑

n=0

dn(p)tn
)

=

∞∑
n=0

( n∑
k=0

dn−k(p)dk(p)
)
tn

=

∞∑
n=0

dn(p)tn

= F(t).

Let ϕ be an arbitrary fixed element of ΦB′′ . It is clear that the function G = ϕF : (−1, 1) → C defined
by G(t) = ϕF(t) = ϕ(F(t)) = ϕ(

∑
∞

n=0 dn(p)tn) =
∑
∞

n=0 ϕ(dn(p))tn is continuous on |t| < 1. Hence, G(t)2 =
(ϕ(F(t)))2 = ϕ(F(t)) = G(t) implies that G(t) = 0 or G(t) = 1. It is observed that G(t) is a power series in C.
Thus, the m-th derivative of G exists and is given by G(m)(t) =

∑
∞

n=m
n!

(n−m)!ϕ(dn(p))tn−m. We continue the proof
by using the presented argument in Theorem 2.2 of [8]. Since the function G is constant, we have G(m)(t) = 0
for every m ∈ N\{0} and every |t| < 1. So, ϕ(d1(p)) + 2ϕ(d2(p))t + 3ϕ(d3(p))t2 + 4ϕ(d4(p))t3 + ... = G(1)(t) = 0.
Putting t = 0 in the former equation, it is obtained that ϕ(d1(p)) = 0. Using an argument similar to what was
described concerning ϕ(d1(p)), we conclude that ϕ(d2(p)) = 0. By continuing this procedure, it is proved
that ϕ(dn(p)) = 0 for all n ≥ 1. Our next task is to show that ϕ(dn(a)) = 0 for every a ∈ A. Let x be an
arbitrary element of OA. Hence, x =

∑m
i=1 ripi, where p1, p2, ..., pm are mutually orthogonal projections and

r1, r2, ..., rm are real numbers. We have ϕ(dn(x)) = ϕ(dn(
∑m

i=1 ripi)) =
∑m

i=1 riϕ(dn(pi)) = 0. Since OA = SA,
ϕ(dn(a)) = 0 for every a ∈ SA. It is well-known that each a inA can be represented as a = a1 + ia2, a1, a2 ∈ SA;
therefore, ϕ(dn(a)) = ϕ(dn(a1 + ia2)) = ϕ(dn(a1)) + iϕ(dn(a2)) = 0 for all n ≥ 1, a ∈ A and ϕ ∈ ΦB′′ . It means
that dn(A) ⊆

⋂
ϕ∈Φ

′′

B
kerϕ. According to Theorem 11.22 of [16] and Theorem 1.3.4 of [14], it is achieved that

SA(dn(a)) = SB′′ (dn(a)) = {ϕ(dn(a)) | ϕ ∈ ΦB′′ }
⋃
{0} (or = {ϕ(dn(a)) | ϕ ∈ ΦB′′ }) = {0}. Hence, r(dn(a)) = 0 for all

n ≥ 1 and a ∈ A. It means that dn is spectrally bounded for every n ≥ 1. Since d1 = δ is spectrally bounded,
Theorem 2.2 shows that δ(A) ⊆ rad(A). Evidently, ifA is semi-simple, i.e. rad(A) = {0}, then δ is zero.

Before proving Proposition 2.13, we define the socle ofA. LetA be a semi-simple Banach algebra. Then
the sum of all the minimal left ideals of A coincides with the sum of all the minimal right ideals of A, is
called the socle ofA, and it will be denoted by soc(A). We refer the reader to [2–4] for more information on
the socle of a Banach algebra.

Proposition 2.12. Let A be a semi-simple Banach algebra, and let d be a derivation on A satisfying ]S(d(a)) = 1
for all a ∈ A. Here, ]S(x) denotes the cardinality of the spectrum of x. Then, d is zero.

Proof. It follows from Theorem 1.2 of [4] that d is an inner derivation induced by an element u ∈ soc(A).
It means that d(a) = [u, a] = ua − au for all a ∈ A. According to the aforementioned assumption, we have
1 = ]S(d(a)) = ]S(ua− au) for all a ∈ A. Now, Theorem 5.2.1 of [1] implies that u ∈ Z(A), and consequently,
d is zero.

Now, the article is ended with a problem which has attracted the author’s attention .

Problem 2.13. Let d be a derivation on a given Banach algebra A. Under which conditions, ]S(d(a)) = 1 for all
a ∈ A?
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