
Filomat 31:7 (2017), 2045–2052
DOI 10.2298/FIL1707045K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We extend notion and theorem of [21] to the case of a multivalued mapping defined on a metric
space endowed with a finite number of graphs. We also construct an example to show the generality of our
result over existing results. Finally, we give an application to nonlinear integral equations.

1. Introduction

Graph theory is a powerful tool in solving various optimization problems of interest in pure and applied
sciences. Thus, we refer to the usual notions and notations of graph theory, see for instance [9]. On the
other hand, fixed point theory is also useful in dealing with practical situations, where the problem under
investigation can be equivalently formulated as a fixed point problem. Both topics are investigated not
only by a theoretical point of view, but also are used to obtain suitable algorithms for approximation of
the problems under investigation. Jachymski in [9], merged above theories to have a generalization of the
Banach contraction principle for mappings of a metric space endowed with a graph. Then, Beg et al. [3]
extended some results of Jachymski to multivalued mappings; other generalizations of [9] are available in
[1, 4, 5, 10, 15, 17, 18]. For completeness, we recall that Nadler [14] first extended the Banach contraction
principle to multivalued mappings; then, Nadler’s fixed point theorem has been generalized and extended
in several directions, see for example [2, 6, 8, 11–13, 16, 19]. On these bases, we extend the recent results
in [21] to the case of multivalued mappings defined on a metric space endowed with a finite number of
graphs. Also, we give an example and an application to nonlinear integral equations.
We recollect some concepts for our further use. Let (V, d) be a metric space and G = {Gi : 1 ≤ i ≤ q} be a
family of graphs such that Gi = (V,Ei), Ei ⊆ V × V for each i ∈ {1, 2, · · · , q}. Let CB(V) stand for the set of all
non-empty closed and bounded subsets of V.

Definition 1.1. [20] Let (V, d) be a metric space endowed with a graph G = (V,E). A mapping f : V → CB(V) is
said to be graph-preserving multivalued mapping if

(x, y) ∈ E⇒ (v,w) ∈ E for each v ∈ f x and w ∈ f y.
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Example 1.2. Let G = (V,E), where V = {1, 2, 3, 4, 6, 8} and
E = {(1, 1), (1, 3), (2, 2), (2, 4), (2, 6), (2, 8), (4, 2), (4, 4), (4, 6), (4, 8), (6, 8)}.
Define f : V → CB(V) by:

f x =


{2, 4} if x ∈ {1, 4},
{6, 8} if x = 3,
{2} if x ∈ {2, 6, 8}.

Clearly, f is graph-preserving multivalued mapping.

Definition 1.3. [21] The pair (G, d) is said to be regular if the following condition holds:
if {xn} is a sequence in V and x is a point in V such that

(i) for all i ∈ {1, 2, · · ·, q}, there exists a subsequence {xmi,k } of {xn} with (xmi,k , xmi,k+1 ) ∈ Ei, for all k,

(ii) d(xn, x)→ 0 as n→∞,

then there exists a subsequence {xnk } of {xn} and a rank j ∈ {1, 2, · · ·, q} such that (xnk , x) ∈ E j for all k.

Example 1.4. Let G = (V,E) be a graph with V = C([0, 1],R), the set of continuous real functions defined on [0, 1],
and E ⊆ V × V given by

(x, y) ∈ E⇔ x(t) ≤ y(t) for all t ∈ [0, 1].

Choose the metric d on V defined by

d(x, y) = sup
t∈[0,1]

|x(t) − y(t)| for all x, y ∈ V.

Let {xn} be a sequence in V and x ∈ V such that

(a) there exists a subsequence {xmk } of {xn} such that xmk (t) ≤ xmk+1 (t), holds for all k ∈N and t ∈ [0, 1],

(b) d(xn, x)→ 0 as n→∞,

then (xmk , x) ∈ E for all k ∈N. Thus, (G, d) is regular.

Let R+ = [0,∞) and let Ψ represent the class of functions ψ : R+ → R+ satisfying the following conditions:

(i) ψ is increasing;

(ii)
∑
∞

n=1 ψ
n(t) < ∞ for each t > 0.

Remark 1.5. Since each functionψ ∈ Ψ satisfies condition (ii) above by definition, then we have that limn→∞ ψn(t) =
0, for each t > 0. Also, notice that conditions (i) and (ii) imply that ψ(t) < t, for each t > 0.

Lemma 1.6. [14] Let (X, d) be a metric space and A,B ∈ CB(X) such that H(A,B) > 0. Then, for each q > 1 and for
each a ∈ A there exists b ∈ B such that d(a, b) < qH(A,B).

2. Main Results

We start this section by introducing the notion of G-monotone multivalued mapping.

Definition 2.1. Let (V, d) be a metric space endowed with a finite number of graphs {Gi}
q
i=1. A multivalued mapping

f : V → CB(V) is said to be G-monotone, if (x, y) ∈ Ei implies (u, v) ∈ Ei+1 for all v ∈ f x and w ∈ f y, for each
i ∈ {1, 2, · · ·, q}, with Eq+1 = E1.
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Example 2.2. Consider the sets V = N,E1 = {(2k − 1, 2k + 1) : k ∈ N} ∪ {(1, 1)} and E2 = {(2k, 2k + 2) : k ∈
N} ∪ {(2k, 2k + 4) : k ∈ N} ∪ {(2k, 2k) : k ∈ N} ∪ {(4, 2)}. Let G = {Gi : i = 1, 2} be the family of graphs
Gi = (V,Ei), i ∈ {1, 2}. Define f :N→ CB(N) by:

f x =

{2n, 2n + 2} if x = 2n − 1,
{1} if x = 2n,

where n ∈ N. Let (x, y) ∈ E1. If (x, y) = (2n − 1, 2n + 1), then f x = {2n, 2n + 2}, f y = {2n + 2, 2n + 4} and
(2n, 2n + 2) ∈ E2, (2n, 2n + 4) ∈ E2, (2n + 2, 2n + 2) ∈ E2, (2n + 2, 2n + 4) ∈ E2.
Also if (x, y) = (1, 1), then f 1 = {2, 4} and (2, 2), (2, 4), (4, 2), (4, 4) ∈ E2.
Now consider (x, y) ∈ E2. If (x, y) = (2n, 2n + 2) or (x, y) = (2n, 2n + 4) or (x, y) = (2n, 2n) or (x, y) = (4, 2), then
f x = f y = {1} and (1, 1) ∈ E1. Hence f is G-monotone.

Now, we state our result.

Theorem 2.3. Let (V, d) be a complete metric space endowed with a finite number of graphs {Gi}
q
i=1 and let f : V →

CB(V) be a G-monotone multivalued mapping. Suppose that the following conditions hold:

(a) there exist x0 ∈ V and u ∈ f x0 such that (x0,u) ∈ E1;

(b) (G, d) is regular;

(c) there exist ψ ∈ Ψ and a lower semi-continuous function ϕ : V → [0,∞) such that

H( f x, f y) + ϕ(u) + ϕ(w) 6 ψ(d(x, y) + ϕ(x) + ϕ(y)), (1)

for all u ∈ f x and for all w ∈ f y, whenever (x, y) ∈ Ei, for any i ∈ {1, 2, · · · , q}, with Eq+1 = E1.

Then f has a fixed point.

Proof. By hypothesis of theorem, we have x0 ∈ V and x1 ∈ f x0 with (x0, x1) ∈ E1. If x1 = x0, then x0 is a fixed
point of f . Therefore, suppose that x1 , x0 and denote

t0 = d(x0, x1) + ϕ(x0) + ϕ(x1).

By Lemma 1.6, it follows that for q > 1, there exists x2 ∈ f x1 such that

d(x1, x2) + ϕ(x1) + ϕ(x2) < q(H( f x0, f x1) + ϕ(x1) + ϕ(x2))
≤ q(ψ(d(x0, x1) + ϕ(x0) + ϕ(x1)))
= qψ(t0).

Since ψ ∈ Ψ is increasing, we have

ψ(d(x1, x2) + ϕ(x1) + ϕ(x2)) < ψ(qψ(t0)).

Let q1 =
ψ(qψ(t0))

ψ(d(x1,x2)+ϕ(x1)+ϕ(x2)) > 1. If x1 = x2, then x1 is a fixed point. Suppose x1 , x2. Since f is G-monotone,
we have (x1, x2) ∈ E2. Again by using (1) and Lemma 1.6 there exists x3 ∈ f x2 such that

d(x2, x3) + ϕ(x2) + ϕ(x3) < q1(H( f x1, f x2) + ϕ(x2) + ϕ(x3))
≤ q1ψ(d(x1, x2) + ϕ(x1) + ϕ(x2))
= ψ(qψ(t0)).

Continuing in the same manner, we obtain a sequence {xn} ⊂ V such that xn+1 ∈ f xn, and also xn+1 , xn for
each n ∈ {0} ∪N. Since f is G-monotone, for each n ∈ {0} ∪N, there exists i = i(n) ∈ {1, 2, · · · , q} such that
(xn, xn+1) ∈ Ei and

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1) < ψn−1(qψ(t0)).
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Letting n→∞ in above inequality and by using property (ii) of ψ and Remark 1.5, we obtain

lim
n→∞

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1) = 0.

Consequently,

d(xn, xn+1)→ 0 and ϕ(xn)→ 0 as n→∞.

From
∞∑

n=1

d(xn, xn+1) ≤

∞∑
n=1

[d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)]

≤

∞∑
n=1

ψn−1(qψ(t0)) < ∞,

we get that {xn} is a Cauchy sequence. Completeness of (V, d) ensures the existence of x∗ ∈ V such that
xn → x∗ as n→∞. Since (G, d) is regular, there exist a subsequence {xnk } of {xn} and j ∈ {1, 2, · · · , q} such that
(xnk , x

∗) ∈ E j for all k. Since ϕ is lower semi-continuous, we get

ϕ(x∗) ≤ lim inf
n→∞

ϕ(xn) = 0

and hence ϕ(x∗) = 0. As (xnk , x
∗) ∈ E j for all k, by using triangular inequality, (1) and ψ(t) < t for all t > 0, we

get

d(x∗, f x∗) ≤ d(x∗, xnk+1 ) + d(xnk+1 , f x∗)
≤ d(x∗, xnk+1 ) + H( f xnk , f x∗)
≤ d(x∗, xnk+1 ) + ψ(d(xnk , x

∗) + ϕ(xnk ) + ϕ(x∗))
< d(x∗, xnk+1 ) + d(xnk , x

∗) + ϕ(xnk ) + ϕ(x∗),

for all k. Letting k→∞ in above inequality, we get d(x∗, f x∗) = 0.

Letting ψ(t) = αt for each t ≥ 0, where α ∈ [0, 1). Theorem 2.3 reduces to following corollary.

Corollary 2.4. Let (V, d) be a complete metric space endowed with a finite number of graphs {Gi}
q
i=1 and let f : V →

CB(V) be a G-monotone multivalued mapping. Suppose that the following conditions hold:

(a) there exist x0 ∈ V and u ∈ f x0 such that (x0,u) ∈ E1;

(b) (G, d) is regular;

(c) there exist α ∈ [0, 1) and a lower semi-continuous function ϕ : V → [0,∞) such that

H( f x, f y) + ϕ(u) + ϕ(w) 6 α[(d(x, y) + ϕ(x) + ϕ(y)],

for all u ∈ f x and for all w ∈ f y, whenever (x, y) ∈ Ei for any i ∈ {1, 2, · · · , q}, with Eq+1 = E1.

Then f has a fixed point.

Corollary 2.4, reduces to following corollary by taking V = X, q = 1 and E1 = X × X.

Corollary 2.5. Let (X, d) be a complete metric space and let f : X→ CB(X) be a multivalued mapping. Also suppose
that there exist α ∈ [0, 1) and a lower semi-continuous function ϕ : X→ [0,∞) such that

H( f x, f y) + ϕ(u) + ϕ(w) 6 α[(d(x, y) + ϕ(x) + ϕ(y)], (2)

for all x, y ∈ X, u ∈ f x and w ∈ f y. Then f has a fixed point.

Remark 2.6. From Corollary 2.5, we obtain Nadler’s fixed point theorem, by taking ϕ(x) = 0 for each x ∈ X.
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3. Example and Application

3.1. Example
We give an example in which Nadler’s fixed point theorem is not applicable, but Corollary 2.5 works.

Example 3.1. Let X = [0, 1] endowed with the usual metric d(x, y) = |x − y| for all x, y ∈ X. Define f : X→ CB(X)
by

f x =


{0} if x ∈ [0, 1

2 ),
{0, 1

4 } if x ∈ [ 1
2 , 1),

{0, 1
2 } if x = 1.

Take α = 1
2 and observe that for x ∈ ( 3

4 , 1) and y = 1, we have |x − y| < 1
4 = H( f x, f y). This implies that f is not a

multivalued contraction. Thus Nadler’s fixed point theorem is not applicable in this case.
Now, consider the mapping ϕ : X→ [0,∞) defined by ϕ(x) = x, for each x ∈ X. By following cases, we show that (2)
holds true.

Case 1 If x = y = 1, then H( f x, f y) = 0. For each w ∈ f x and for each v ∈ f y, H( f x, f y) +ϕ(w) +ϕ(v) attains the
values 0, 1

2 , 1. On the other hand, d(x, y) + ϕ(x) + ϕ(y) = 1 + 1 = 2.

Case 2 If x ∈ [ 1
2 , 1) and y = 1, then H( f x, f y) = 1

4 . For each w ∈ f x and for each v ∈ f y, H( f x, f y) + ϕ(w) + ϕ(v)
attains the values 1

4 ,
1
2 ,

3
4 , 1. On the other hand, d(x, y) + ϕ(x) + ϕ(y) = |x − 1| + x + 1 = 2.

Case 3 If x = 1 and y ∈ [0, 1
2 ), then H( f x, f y) = 1

2 . For each w ∈ f x and for each v ∈ f y, H( f x, f y) + ϕ(w) + ϕ(v)
attains the values 1

2 , 1. On other hand, d(x, y) + ϕ(x) + ϕ(y) = |1 − y| + 1 + y = 2.

Case 4 If x ∈ [ 1
2 , 1) and y ∈ [0, 1

2 ), then H( f x, f y) = 1
4 . For each w ∈ f x and for each v ∈ f y, H( f x, f y)+ϕ(w)+ϕ(v)

attains the values 1
4 ,

1
2 . On other hand, 1 ≤ d(x, y) + ϕ(x) + ϕ(y) < 2.

Case 5 If x, y ∈ [ 1
2 , 1), then H( f x, f y) = 0. For each w ∈ f x and for each v ∈ f y, H( f x, f y) + ϕ(w) + ϕ(v) attains

the values 0, 1
4 ,

1
2 . On the other hand, 1 ≤ d(x, y) + ϕ(x) + ϕ(y) < 2.

Case 6 If x, y ∈ [0, 1
2 ), then H( f x, f y) = 0. For each w ∈ f x and for each v ∈ f y, H( f x, f y) + ϕ(w) + ϕ(v) = 0.

From above six cases, we deduce that

H( f x, f y) + ϕ(w) + ϕ(v) ≤
1
2

[d(x, y) + ϕ(x) + ϕ(y)],

for all x, y ∈ X, w ∈ f x and v ∈ f y. Since all the conditions of Corollary 2.5 holds, therefore f has a fixed point.

3.2. Application to nonlinear integral equation
We prove the existence of solution for certain nonlinear integral equations, by using an equivalent

fixed point problem. We consider the set of all closed bounded real continuous functions on [0, 1], say
X = CB([0, 1],R), endowed with the metric d : X × X→ R given by

d(x, y) =
∥∥∥x − y

∥∥∥
∞

= sup
t∈[0,1]

|x(t) − y(t)|, for all x, y ∈ X.

Clearly, (X, d) is a complete metric space, which can be equipped with the graph G(V,E) with V = X and
E ⊆ X × X given by

(x, y) ∈ E⇔ x(t) ≤ y(t) for all t ∈ [0, 1].

Thus, (G, d) is regular, see also Example 1.4.
It is well-known that nonlinear integral equations play a crucial role in modelling and solving many control
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problems, arising in various sciences, see [7]. Here, we will prove the existence of solution for the following
type of integral equation:

x(t) = p(t) +

∫ t

0
S(t,u)1(u, x(u))du, t ∈ [0, 1] (3)

where 1 : [0, 1]×R→ R, p : [0, 1]→ R are two closed bounded continuous functions and S : [0, 1]× [0, 1]→
[0,∞) is a function such that S(t, ·) ∈ L1([0, 1]) for all t ∈ [0, 1].

Now, we consider the operator f : X→ X defined by

f (x)(t) = p(t) +

∫ t

0
S(t,u)1(u, x(u))du (4)

and observe that each fixed point of f is a solution of integral equation (3). Of course, f is well-defined
since 1 and p are two closed bounded continuous functions. Thus, we state and prove the following result
of existence of fixed point for (4), which reduces to a result of existence of solution for (3).

Theorem 3.2. Let f : X→ X be the integral operator given by (4). Suppose that the following conditions hold:

(a) there exists x0 ∈ X such that (x0, f (x0)) ∈ E;

(b) 1(u, ·) : R→ R is increasing, for every u ∈ [0, 1];

(c) for x, y ∈ X with (x, y) ∈ E, we have

0 ≤ 1(u, y(u)) − 1(u, x(u)) ≤
1
2

ln (1 + |x(u) − y(u)|)

for every u ∈ [0, 1];

(d) for every u ∈ [0, 1], we have ∥∥∥∥∥∥
∫ 1

0
S(t,u)du

∥∥∥∥∥∥
∞

< 1.

Then f has a fixed point.

Proof. By condition (b), the operator f is nondecreasing and hence f is trivially G-monotone. Also, by
condition (c), for x, y ∈ X with (x, y) ∈ E(G), we write

| f (x)(t) − f (y)(t)| =

∣∣∣∣∣∣
∫ t

0
S(t,u)[1(u, x(u)) − 1(u, y(u))]du

∣∣∣∣∣∣
≤

∫ t

0
S(t,u)|1(u, x(u)) − 1(u, y(u))|du

≤

∫ t

0
S(t,u)

ln (1 + |x(u) − y(u)|)
2

du

≤
1
2

ln (1 + ‖x − y‖∞).

Then we have∥∥∥ f (x) − f (y)
∥∥∥
∞
≤

1
2

ln (1 + ‖x − y‖∞)

and hence, for x, y ∈ X with (x, y) ∈ E, we deduce that

d( f (x), f (y)) ≤ ψ(d(x, y)),

whereψ(r) = 1
2 ln (1 + r) is such thatψ ∈ Ψ. Thus, all the conditions of Theorem 2.3 are immediately satisfied

with ϕ(x) = 0 for each x ∈ X and hence the operator f has a fixed point, which is a solution of the integral
equation (3).
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As special case of Theorem 3.2, we give the following result for a fractional-order integral equation.

Corollary 3.3. Let f : X→ X be the integral operator defined by

f (x)(t) = p(t) +

∫ t

0

(t − u)α−1

Γ(α)
1(u, x(u))du, t ∈ [0, 1], α ∈ (0, 1),

where Γ is the Euler gamma function given by Γ(α) =
∫
∞

0 tα−1e−tdt. Suppose that the following conditions hold:

(a) there exists x0 ∈ X such that (x0, f (x0)) ∈ E;

(b) 1(u, ·) : R→ R is increasing, for every u ∈ [0, 1];

(c) for x, y ∈ X with (x, y) ∈ E, we have

0 ≤ 1(u, y(u)) − 1(u, x(u)) ≤
Γ(α + 1)

2
ln (1 + |x(u) − y(u)|)

for every u ∈ [0, 1].

Then f has a fixed point.
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