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On the Pseudo Drazin Inverse of the Sum
of Two Elements in a Banach Algebra

Honglin Zou?, Jianlong Chen?

?Department of Mathematics, Southeast University, Nanjing, 210096, China

Abstract. In this paper, some additive properties of the pseudo Drazin inverse are obtained in a Banach
algebra. In addition, we find some new conditions under which the pseudo Drazin inverse of the sum a + b
can be explicitly expressed in terms of g, at b, bt. In particular, necessary and sufficient conditions for the
existence as well as the expression for the pseudo Drazin inverse of the sum a + b are obtained under certain
conditions. Also, a result of Wang and Chen [Pseudo Drazin inverses in associative rings and Banach
algebras, LAA 437(2012) 1332-1345] is extended.

1. Introduction

Throughout this paper, &/ denotes a complex Banach algebra with unity 1. Fora € &/, we use d(a) to
denote the spectrum of a. &7 ~!, /", 77! stand for the sets of all invertible, nilpotent and quasi-nilpotent
elements (0(a) ={0}) in &7, respectively. The Jacobson radical of .« is defined by

J()=la€ Al +axe o™ for any x € &7}

Let J(&) ={a € |a" € ]() for some n > 1}.
Let us recall that the Drazin inverse [10] of a € 7 is the element x € &/ which satisfies

xax =x, ax =xa, a—a’x e " (1)

The element x above is unique if it exists and is denoted by aP. The set of all Drazin invertible elements of
o/ will be denoted by <.

The generalized Drazin inverse [12] of a € &/ (or Koliha-Drazin inverse of a) is the element x € &7 which
satisfies

xax =x, ax =xa, a—a’x € oM, 2)
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Such x, if it exists, is unique and will be denoted by a?. Let «7? denote the set of all generalized Drazin
invertible elements of 7.

In 2012, Wang and Chen [17] introduced the notion of the pseudo Drazin inverse (or p-Drazin inverse
for short) in associative rings and Banach algebras. An element a € &/ is called p-Drazin invertible if there
exists x € &/ such that

xax = x, ax =xa, a°—a"x e () 3)

for some integer k > 1. Any element x € o satisfying (3) is called a p-Drazin inverse of 4, such element
is unique if it exists, and will be denoted by a*. The set of all p-Drazin invertible elements of .« will be
denoted by «7#P. In [17], Wang and Chen proved that &/ & &7PP ¢ o7

In 1958, Drazin [10] gave the representation of (a + b)® under the condition ab = ba = 0 in a ring. In 2001,
for P,Q € C"™", Hartwig, Wang and Wei [11] gave a formula for (P + Q)P under the condition PQ = 0. Later,
Djordjevi¢ and Wei [9] generalized the result of [11] to bounded linear operators on an arbitrary complex
Banach space. In [4], the expression for (1 + b)” was given under the assumption ab = 0 in the context
of the additive category. In 2004, Castro-Gonzalez and Koliha [2] gave a formula for (a + b)? under the
conditions a™b = b,ab™ = a,b™aba™ = 0 which are weaker than ab = 0 in Banach algebras. In 2010, Deng
and Wei [8] derived a result under the condition PQ = QP, where P, Q are bounded linear operators. In
2011, Cvetkovi¢-1li¢, Liu and Wei [7] extended the result of [8] to Banach algebras. In 2014, Zhu, Chen
and Patricio [19] obtained a result about the p-Drazin inverse of a + b under the conditions a?b = aba and
b*a = bab which are weaker than ab = ba in Banach algebras. More results on (generalized, pseudo) Drazin
inverse can be found in [1, 5,7, 9, 15, 18].

The motivation for this paper is the paper of Cvetkovi¢-Ili¢ et al. [6] and the paper of Castro-Gonzalez
and Koliha [2]. In both of these papers the conditions were considered such that the generalized Drazin
inverse (a + b)? could be expressed in terms of g, a? b, b7 .

In this paper we investigate the representation for p-Drazin inverse of the sum of two elements in a
Banach algebra under various conditions. In particular, necessary and sufficient conditions for the existence
as well as the expression for the p-Drazin inverse of the sum a + b are obtained under certain conditions. In
addition, we generalized Theorem 5.4 in [17].

Let ¢? = e € o/ be an idempotent. Then we can represent element a € </ as

_ ain  an
a= ’
ayn  ax |,
where a1 = eae, a;p =ea(l —e), ax = (1 —e)ae, axn = (1 —-e)a(l —e).

2. Preliminary Results

To prove the main results, we need some lemmas.
Lemma 2.1. [13, Exercise 1.6] Leta,b € 7. If1+ab € &/}, then 1+ ba € o/ and (1+ba)™! =1 -b(1 +ab) la.
Lemma 2.2. [16, Theorem 1(1)] Let ¢* = e € o7 and leta € e/e. Thena € (e</e)~' ifand only ifeae +1—e € /7L
Lemma 2.3. [13, Corollary 4.2] Let a,b € <. Then

() Ifae]J()orbe J(), thenab,ba € |(<).
(i) Ifae J(/)and b € [(f), thena + b € J().

Lemma 2.4. Leta,b e +/J(«/) withab=0orab =ba. Thena b € \/J().
Proof. Let ky, k; be positive integers such that a" € J(«7) and b* € J(o7). Take k = max{ky, k). By Lemma 2.3
(i), we obtain a* € J(«7),bF € (7). If ab = 0, we have (a + b)* = a®* + ba® ' + .- + bFak + PH1a1 o 4 b2 =
(@ +ba" + -+ DF)ak + DR (ba" T + 22 + -+ BF) € J(7). Tfab = ba, then (a + b)* = 2 + ()b + - +
CHAVF + (Z)a 1 + -+ b =ak @k + ()a* o+ -+ COPF) + ((FDA b + - + B € J(«7). Replacing b
by —b, we can obtaina —b € /J(«/). O

By M, (/) we denote the set of all 2 X 2 matrices over ./ which is a complex Banach algebra.
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Lemma 2.5. (i) [13, page 57 Example (7)] [(M(%7)) = Ma(J(«7)).

(ii) [13, Theorem 21.10] Let ® = e € o7. Then J(</) (\esle = J(esfe).

Let My(<Z,e) = [ (15‘;{;6 (1%‘;;(;21‘” ) 9 ], where e € & is an idempotent. Then M,(<,e) is a Banach algebra
with unity I = [ 6.2, ] (see[2]).

Now, we establish a crucial auxiliary result.

Lemma 2.6. Let e? = e € o7. Then [(My(</)) (N Ma(<Z,e) = J(Ma(<7, €)).

Proof. According to Lemma 2.5 (i), we have J(My(&)) (\Ma(eZ,e) = My(J(27)) N Ma(<7,€). Let G =
My(J(7)) N\ Ma(s7,e)and H = | | Jidilesre - TEArea0oo ] We will show that G = H. Lets = [ & 3% ] € G,
thensyy, 512,521, 522 € J(7), also, 511 € eale, 515 € e/ (1—e), 521 € (1—e)/eand sy, € (1-e).e/(1—¢), whichimply
sy € (&) edle, s12 € J(F) (el (1—e),801 € () ((1—e)Zeand sy, € [() [ (1—e)?(1—e). Hences € H.
Conversely, letr =[ /I 2 | € H,we getry € J() (ede, 112 € J() e/ (1—e), 1 € () (1 —e)/e and
2 € J(«) (1 — e)o/ (1 — e), which yield r € My(J(«)) and r € My(<7,e), i.e. r € Ma(J(7)) (\Ma(<7,e) = G.

Thus, we obtain G = H. By Lemma 2.5 (ii), it follows that H = [ I %{%‘gfl) e ]I((‘Z)_g;‘zé(:)‘;) ] Therefore, we

can get J(M(/)) 1 Ma(7,€) = | 1)1 0ure i1-orso, |

First, we prove J(Ma(<7, €)) C J(Ma(27)) (| Ma(<, €).

Let x = [ 3} 32 ] € J(Ma(«7, ¢)), then for any y = [ 7 ] € My(<7,e), we have I + xy € [Ma(,e)]".
Thus,

(a) For any a € ecZe, let y; = [ a9 ] Since I + xy; € [Ma(<7,e)]™!, we can obtain e + x11a € (e</e)™!, which
implies x17 € J(e/e).

(b) For any b € &7, let y, = [ (1_06)b88 ] From I + xy, € [Ma(<, e)]™!, we can conclude e + x15(1 — e)be €
(e/e)~!. By Lemma 2.2, 1+x12be = e[e+x12(1—e)bele+1—e € &7 ~!. Using Lemma 2.1, 1+x12b = 1+exppb € o7
which implies x15 € J(«7). Hence, x15 € J(7) (N e/ (1 — o).

It is analogous to prove xz1 € J(«7) ((1 —e)<Ze, x22 € J((1 — )/ (1 —e)).

Next, we prove J(My(7)) (N Ma(<7,€) C J(Ma(<7, €)).

Letu=[ yl 2 ] € J(Ma() N\ Ma(,€),a = [ gl a2 ] € My(«,e). In order to prove u € [(My(, e)), we

Uzl U az1 A
need to prove

e+ Uidn + Uipdn Ui1a1p + U12a22

€ [Ma(7,e)] .
Up1a11 + Unaz (1 —e) + unan + uxpaxn [Ma(7, €)]

I+ua=
Denote bi1 = e + upian + uiodo1, bip = i + uina, bar = unian + updsi, by = (1 —e) + uxnan + uxnax.
Since u11,u12 € J(«7), by Lemma 2.3 and Lemma 2.5 (ii) we have uj1a11 + ui2a1 € J(7) (es/e = J(e/e).
Thus by € (6,5276)_1. Similarly, by € (1 -e)Fd(1 - 6))_1. Note that by; = upay + upasn € J(«), then
by b1_11b12 € ](JZ{) m(l —6)&%(1 —6) = ]((1 —E)JZ{(l —E)). Thus we get by —bzlbhlblz = bzz((l —6) —b;zl (b21b1_11b12)) €
(1 -e)Z(1-¢))7". So,

by b |_| bu O e by b -1
[ by by ]‘[ by 1-e H 0 by —babylby | € MO

This completes the proof. [J

Lemma 2.7. Let ¢® = ¢ € o and let a € e/e. Then a € </*" if and only if a € (e</e)’P. Moreover,a*, =a’ .

Proof. We assume thata € /PP and let ai{ = x. Next, we prove aei e = X Indeed, x = ax3a € esfe. Since

ai{ = x, there exists k > 1 such that a¥(e —ax) = ak(1 —ax) € J(«7) (" e</e. By Lemma 2.5 (ii), (e —ax) € J(e</e).

Also ax = xa, xax = x. Thus a € (e<Ze)’P and azf e =X
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Conversely, suppose a € (e«Ze)’P and let af e = Y- Weneed to prove that a; = y. The condition uf e =Y
ensures that (a) yay = y, (b) ya = ay, (c) a*(e —ay) € J(e</e) for some k > 1. Applying Lemma 2.5(ii), we have
a(1 - ay) = d¥(e — ay) € ](«7). Hence a € &/"P and afz{ =y. O

The next result is well-known for the Drazin inverse and the generalized Drazin inverse [14], and it is
equally true for the p-Drazin inverse.

Lemma 2.8. Let a € o/. Then the following conditions are equivalent:
(i) a € o/PP;
(ii) a" € /PP for any integer n > 1;
(iii) a" € /PP for some integer n > 1.

Proof. (i) = (ii) [18, Theorem 2.3(1)].

(ii) = (iii) It is obvious.

(iii) = (i) First, we prove a"! € &P, and ("))t = (@")ta = a(@")}. Let y = (a")*a = a(@")}. A direct
calculation shows that ya"~'y = y, ya = ay. Since a" € /PP, there exists k > 0 such that (a")[1 — a"(a")}] €
J(Z). Take m = |%] + 1, where | % | denote the integer part of 2. Therefore, by Lemma 2.3, we get
(@ 1y — (@Y™ ly=at-Dm[1 — g"(a")}] € J(«/). Thusa" € /P = a" ' € /P = 4" 2 € /P = ... > a €
PP O

Lemma 2.9. (i) [17, Theorem 5.3] If a, b € 7 are p-Drazin invertible, then M = [ g Z ] is p-Drazin invertible
ai Z1

ian(ﬂi)andMiz[ N

], where z; = Y o(@h)2db"b™ + Y. o a™a"d(bY)"? — atdbt.

(ii) If a,b € o are p-Drazin invertible, then M = [ 4 2 ] is p-Drazin invertible in My(<7) and M* =

¥
| z l?i ], where zy = Y oo o(bY)Y*2ca"a™ + Y o b™b"c(at)*? — bteat.
2

Lemma 2.10. [17, Theorem 5.4] If a,b € o/ are p-Drazin invertible and ab = 0, then a + b is p-Drazin invertible
and (a + byt = [L2,(bY)*alla™ + b™ Y2, b (at) 1.

Lemma 2.11. (i) [17, Theorem 3.6] Let a,b € <. If ab is p-Drazin invertible, then so is ba and (ba)t = b((ab)*)?a.
(ii) [17, Proposition 3.7] Let A € My, (/) and B € My (7). If AB has a p-Drazin inverse in M,,(<7), then
so does BA in M, (<7) and (BA)* = B((AB)})?A.
3. Main Results
In what follows, by <7, @% we denote the algebra e<7¢, (1 — ¢)</(1 — e), where 2=ccg, respectively.
If a € o/PP, we use a™ to denote 1 — aa*. We start with a theorem which gives a matrix representation of a

p-Drazin invertible element in a Banach algebra.

Theorem 3.1. a € </ is p-Drazin invertible if and only if there exists an idempotent e € o7 such that

a :[ " 2 ] | whereay € 71, ay € (). )
In which case,

-1
aiz[ 4 8 ] and e = aat. (5)
e
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Proof. We suppose that a € «/*P, then let e = aa*. Obviously, ea(1 — e) = aata(l — aa*) = 0,(1 — e)ae =
(1 — aa*)aaat = 0. Since a (eate) = ¢, (eate)a; = e, so a; € 7.
We know that af = [(1 — aat)a(1 — aa)]¥ = a*(1 — aa¥) € J(«/) ) @ for some k > 1. By Lemma 2.5(ii), we

can obtain af € (%), that is a; € /](a%).
al 0
| %
e OREE

Conversely, let
A direct calculation shows that xax = x,ax = xa. Since a, € /]J(2%), there exists k > 1 such that a’é € J(4).
Relative to the idempotent e,

0 0
k(1 — o) =
a“(1 ax)_[ 0 a’é ]e.
Thus a*(1 — ax) = a} € J(#%). Using Lemma 2.5(ii), a*(1 — ax) € J(4) C J(</). This provesa € &/*P. [

The following result will be very useful in proving our main results.

Theorem 3.2. Let e®> = e, x,y € o/ and let x and y have the representation

a c b 0
Lo e 0] 0
e 1-e
() Ifae o/ and b e 7°, then x,y € /"° and
1 bt oo
i _ a u T
S N P R ®
where
u= Z(ai)””cb"b” + Z a"a"c(bF)"™? — aicht, (8)
n=0 n=0

(ii) If x € o/PP [resp. y € </PPland a € <", then b € <°, and x* [resp. y*] is given by (7) and (8).

Proof. (i) Applying Lemma 2.9 and Lemma 2.7, we can get
t 1

a c pD a c | at u
where u = Y7 (at)"*2ch"b™ + Yo"y a"a"c(bt)"*? — atcbt. Then there exists k > 1 such that

a ¢ | a ¢ [ at w

[ 0 b }_[ 0 b ] [ 0 bt ]G](Mz(%))

Lemma 2.6 ensures that

a ¢ | a ¢ ' at u

Thus, we have that [ §j ] € [Ma(<7, €)]PP, which implies x € @/#P.
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Next, we consider the p-Drazin inverse of y. Since

| b O | a ¢
y_cal_e_Obe’

from the first part of (i), we obtain y € «/PP and

g_| @t uw | | B0
V=1 o N TR N
The proof of (i) is completed.

(ii) We prove bt = [(1 — e)x(1 — e)]* = (1 — e)x}(1 —e).
Since x € @/PP ,a € ,QflpD, thenx € #?,a € o/? and x? = ¥}, 4 = a¥. According to Theorem 2.3 (ii) of [2],

it follows that
al u d exte exi(1—e)
=X =
0 v | (1-exle (1-exi(l-e) |’

where u is defined as (8). Thus, (1 —e)x’e = 0, i.e. (1 —e)xte = 0, which implies that (1 —e)x*(1—e) = (1 —e)xt.
Noting that (1 —e)xe = 0, we can get (1 —e)x(1 —e) = (1 — e)x. Therefore, we only prove [(1 - e)x]t = (1 —e)xt.

Letv = (1 —e)xt.

(@) [(1=e)x]o = (1 —e)x(1 —e)xt = (1 —e)xxt = (1 — e)akx = [(1 — e)ad](1 — e)x = v[(1 — e)x].

(b) v[(1 —e)x]o = (1 —e)xF(1 — e)x(1 —e)xt = (1 —e)xF(1 —e)xxd = (1 —e)xduaxt = (1 —e)at = 0.

(c) First, we prove [(1 — e)(x — x2x})]" = (1 — e)(x — x?x¥)" for any 1 > 1 by induction.

It is obvious for n = 1.

Assume [(1 — e)(x — x2xH)]" = (1 = e)(x — x%xF)".

For the n + 1 case, we have

[(1 - e)(x — x2ah)]"*!

(1 = e)(x — x> [(1 = e)(x — x*xH)]"

[(1 = e)(x = x2H)(1 = e)](x — x°xH)"

[(1 =e)x(1 —e) — (1 —e)x®xF(1 — e)](x — x2x})"

[A =e)x — (1 —e)x(1 —e)x(1 —e)xt(1 —e)](x — x%xF)"
[(1 =e)x = (1 —e)x(1 — e)x(1 — e)axt](x — x2a})"

[(1 —e)x — (1 —e)x(1 — e)xxt](x — x2xF)"

[(Q =e)x — (1 — e)x2xF](x — x2xF)"

(1 —e)(x — x2xF)r+1,

Since there exists k > 0 such that (x — x2xh)k € J(«7),

{1 —e)x = [(1 - e)x]o}t

{(1=e)x = [(1 = e)x]*(1 - e)xH}*
[(1=e)x — (1 —e)xxt]

[(1 - e)(x — x?xh)]F

(1 —e)x - x*xh) € J(o) N o = | ().

Hence b¥ = (1 — e)x*. Using (i), we see x* is given by (7) and (8).
Following an analogous strategy as in the proof for y of (i), we have (ii) for y. O

Remark 3.3. Theorem 3.2 (i) is more general than Lemma 2.9. Indeed, lete = [ é 8 ], then[ a d ] =

0 b
| 18 l; ],whereAz[ g 8 ],Bz[ g 2 ],Dz[ 8 (E)l ] Since a € @/PP, b € @/PP, we have

A € [eMy()e]PP, B € [(1 — e)My(/)(1 — e)JP. Thus, using Theorem 3.2 (i), we get [ g Zl ] € [My(<7)JPP.
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Before proving our main result, we need to prove the following result.

Theorem 3.4. Leta € &/PP, b € /(). Ifaba = 0,ab*> =0, thena + b € /PP and

(a +b)* = (@t + bua)(1 + a%b), ©)
where u = Y o b*"(a + b)(at)>"+4.
Proof. Write X; = ’; L X, = [ 1 b ], thena+b = XoX;. Let M = X3 Xp = [ I; abb ], then

M = a*+ab  a*b ]:| ab ab ] [ a? 0

a+b ab+D? 0 ab a+b b
imply FG =0, F? = 0.

Since a € o/*P, then a* € /P and (a*)} = (at)®. According to the condition b € /J(7), then V¥ € J(<7),
for some k > 1, which implies b* = 0 by (3). Using Lemma 2.9(ii) , we can get G € [My(/)]PP and

H2 0 -
Gt = [ (au) ], where u = Y7 b**(a + b)(at)? 4.

]::F + G. The conditions aba = 0 and ab? = 0

0
Because F?> = 0, then F¥ = 0. Using Lemma 2.10, we deduce that M? € [My(&)]PP, and (M?)F =
12 4 D% ()2
1 rep| (@) + (@) (a*)
G+ (GF [ u+uath  uatab
Finally, according to Lemma 2.11(ii), we have thata + b € /PP and (a + b)}=X,(M?)*X;. Observe that
a*ba = 0 and by a straightforward computation, we obtain (9). [

]. Applying Lemma 2.8, M € [My(«)]PP.

Next we present our main theorem, which is a generalization of [17, Theorem 5.4].
Theorem 3.5. Let a,b € o/PP be such that s = (1 — b™)a(1 — b™) € &/*P. If b™aba = 0, b™ab* = 0, then a + b € </PP
ifand only if t = (1 — b™)(a + b)(1 — b™) € &/*P. In which case,

@+b)t =+ (1 - Ha)x + Z(ti)"“abﬂ(a +b)"[1 - (a +b)x] + Z £ - b)ax™?, (10)
n=0 n=0

where x = Y beb" (@) 157(1 + atb).

n=0

Proof. According to Theorem 3.1, we consider the matrix representation of 7 and b relative to the idempotent

e = bb¥:
_ by 0 _ m1 a2
b_[ 0 b ]e' a—[ axn axn |’
where by € !, by € \[](4). The condition b™ab? = 0 expressed in matrix form yields
0 0 0 0
=b"ab? = [ ] .
[ 00 ]e azlbf ﬂsz% .
This gives ax; =0, azzbi = 0. Denote a1 = a1, 4> = ax, az = aip. Thus,
_ a das ih= t as
a= 0 a . s B 0 a+ bz . ’
Sincea; =s € &/PP, by Lemma 2.7, we have a; € szlpD. Also,a € o/PP. Using Theorem 3.2 (ii), we deduce

that a, Eszfzp P and
t
aiz[ % M% ]
0 a .
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From the condition b™aba = 0, we can get that
00| _,-, | 0 0
|: 0 0 ]e = braba = [ 0 azbzaz ]e,

Hence, applying Theorem 3.4 to a,, b,, we conclude that a, + b, € szzp P and

which implies axbpa; = 0.

(a2 + by)t = [a} + Z B2 @y + Do) (@) 1(1 — e + alby).

n=0

In order to give the expression of (a2 + by)* in terms of a, at, b, b, we calculate b™at, b™b**1(a + b) (a*)***3, b™atb
separately in matrix form as follows:

o

0 0 0
ot .t —
o N P A

0 0
T2n+1 1\2n+3 _
b (a + b)(at) [ 0 Bi(a; + by ]

N+

a

Thus, b™at = ai, b b (a + b)(a*)?" 3 = b3 (ap + bz)(zzg)z’“r3 and b™atb = aibz. Write x = (ay + by)¥. Note that
a(at)?+3 = (a¥)?"*2 for n > 0, then we have

x = bat+ Y 6P + bY@l + atb)
n=0

b"[a¢ + E b2n+1(a¢)2n+2 + OZO‘ b2n+2(a¢)2n+3]bn(1 +{1¢b)
n=0 n=0

b Y, b (at)™ b7 (1 + ath).
n=0
Now, by Theorem 3.2, we have thata + b € &/ D if and only if t € &/ PP Moreover,
# ou
t—
(ﬂ + b) - [ 0 x ] 7
e
where
U= Z(ti)"+2a3(a2 + by)'(ap + by)™ + Z " asx™? — thasx. (11)
n=0 n=0

Because b™ab* = 0, we have b™ab¥ = 0. Thus, a, + b, = b™(a+b)b™ = b™ab™ +b"b = b™a(1—bb}) +b™b = b™(a +b),
which ensures (a; + bp)" = b™(a + b)"b™ for any n > 1. Also, we can easily obtain that b™(a + b)"b™ = b™(a + b)"
for any n > 1 by induction. Note a3 = (1 — b™)ab™. Thus, (11) reduces to

U= Z(ti)“zab”(a +b)"[1 - (a +b)x] + Z (1 — bY)ax™? — ax. 12)

n=0 n=0

From (a + b)¥ = ## + u + x, we get that (10) holds. O
Next, we present one special case of the preceding theorem.

Corollary 3.6. Leta,b € </PP. Ifaba = 0,ab* =0, then a + b € /PP and

(a+b)f = bta™ + (bh)2aa™ + Z(b*)"”(amaﬂ — "t +a"b) + Z Vb (a1 (1 +atb) — bratb — (b4)2aath. (13)

n=1 n=0
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Proof. From ab? = 0, it follows that ab* = 0. Thus, we can have that s = (1 — b™)a(l1 — b™) = 0 € /P,
t=(1-b")(a+b)(1—-b") = b(bb}). Since (bb*)* = bb*, using Proposition 5.2 of [17], we deduce that t € &7PP
and ¥ = b*. Thus, Theorem 3.5 is applicable.

Furthermore, note that atbt = 0, abat = 0. Let x = Y, b™0"(a¥)"*1b™(1 + atb). We have
n=0

ax = aY b @yl + atb)
n=0
= a(l = bbH)atb™(1 + atb) + a(1 — bb})b(at)?b™ (1 + atb)
aatb™(1 + atb) + ab(at)*b™(1 + atb)
aat(1 — bbHY(1 + atb)
= aat +atb.
ab[ Y. b (aty (1 + atb)]
n=0
ab(1 — bbb (1 + atb)
0.

abx

Therefore, a[1 — (a + b)x] = a — a>x — abx = aa™ — aa'b.
On the other hand, a(a + b)" = a"(a + b) for n > 1. So, we deduce that

ab™(a + b)"[1 — (a + b)x]
= a(l-bbH)a+b)"[1- (a+Db)x]
a(a +b)"[1 — (a + b)x]
a"(a+ b)[1 - (a+ b)x]
a"a[l — (a + b)x] + a"b[1 — (a + b)x]
a™ g™ — g lgth + a"b.

Observe that t™t"*(1 — b™)ax"*? = b™(b*b¥)"(1 — b™)ax™*? = 0 for n > 0.
Finally, by using these relations and (10), we get (13). O

Now, we give an example to show that the conditions of Theorem 3.5 are weaker than Corollary 3.6.

Example 3.7. Let </ be the algebra of all complex 2 X 2 matrices, and leta = [ (1) (1) ] and b = [ (1) 8 }

Then, we can check that a, b satisfy b™aba = 0, b™ab* = 0, but aba # 0, ab® # 0.
With Corollary 3.6, we recover the case ab = 0 studied in [17].

In the following results, we give expressions for (1 + b)* under certain conditions which do not use
be .

Theorem 3.8. Let a,b,e € o7 be such that a € /PP, ¢*> = e, ea = ae, be = b [resp. eb = b]. If r = (a + b)e € /PP,
thena+b € o/*P and

(a+b) = Z(1—e)a”a”b(ri)”+3(a+b)—a¢(1—e)b(ri)z(a+b)+a¢(1—e)+Z(ai)”+2(1—e)b(a+b)”[1—ri(a+b)]+e(r¢)2(a+b)
n=0 n=0
(14)
[resp. (a+b)t =¥ + Z(ri)"”b(l —e)a"a™ + (1 — FAb)(1 — e)at + ™ Z 7b(1 - e)(at)"2]. (15)
n=0 n=0

Proof. We consider the matrix representation of e, a, b relative to e. We have

_ e 0 | e an | b b2
e—[ 00 L,a—[ Ay axn ]e’b_[ b1 by ]e'
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The condition ea = ae implies a1, = 0,421 = 0. We denote a1 = a11, a, = ax. Thus

[ o ]
a= .
0 an .
Observe that (1 — e)a = a(1 —e) and (1 — e)f = 1 — ¢, using Proposition 5.2 of [17], we can conclude that

m=(1—-eae ,QizpD and ag =1 -eat =at(1 —e).
From be = b, it follows that by, = 0, byy = 0. Denote b; = b1, b3 = by;. Hence,

_ a 0 bl 0 _ a; + b1 0
S KRR RN S
Since be = b, then a; + by = e(a + b)e = e(a + b) which implies e(a + b)"e = e(a + b)", [e(a + b)]" = e(a + b)"

for any n > 1 by induction. From the condition = (a + b)e € /P and Lemma 2.11(i), we deduce that
a +by e P and (a1 + b))t = e(r})?(a + b). According to Theorem 3.2 (i), we obtain thata + b € &/PP and

)t 0
(a+b)i:[ (a1+ 1) : ],
u a |,
where
u= Z(ﬂi)”+2b3(ﬂl +b1)" (a1 + by)" + Zaz asbs[(ar + b)) - aiba(ﬁl +by)t, (16)
Note that

@H™*2bs(a1 + br)"(a1 + b)"
= [a*(1 - o)]"?(1 - e)be[e(a + b)]"[e — e(a + b)e(rF)?(a + b)]
= (at)"*2(1 — e)be(a + b)"e[1 — (a + b)e(})*(a + b)]
= (aH)"?(1 - e)b(a + b)"[1 — t(a + b)),

ajaibs[(ay + by)¥"+
= [(1 —e) = (1 —e)aat(1 - ¢)][(1 - e)a]" (1 — e)be[e(r)*(a + b)]"*>
= (1-e)1—aah)(1 - e)a"(1 - e)be[e(r})"*3(a + b)]
= (1 —e)a™a"b(rt)"*3(a + b),

b3(611 + bl)i

= %(1 —e)(1 = e)bee(r¥)?(a + b)
= at(1 - e)b(r)*(a + b).

Therefore we have (14).

The proof for the case of eb = b is analogous. [

In [4], expressions of the Drazin inverse of a + b in the additive category are given under the following
conditions:

(1) a is Drazin invertible, 7 = (a + b)a™ is Drazin invertible, a®b = 0;

(2) a is Drazin invertible, r = (a + b)aa® is Drazin invertible, aa”b = b. Here, we consider expressions of
(a + b)* under the similar conditions in a Banach algebra.

Corollary 3.9. Leta € «/PP, b € o such that ba* = 0 [resp. a*tb = 0], r = (a + b)a™ € &/*P. Thena+b € o/PP and

(a+Db)t = Z(a*)”*zb(a +b)"[1 - rHa + b)] +at +[1 - at(a + b)]()*(a + b) (17)
n=0
[resp. (a + b} =a* +rH ++7 Z "b(a*)"*? — rrbat]. (18)

n=0
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Proof. Lete = a™ in Theorem 3.8. [

Corollary 3.10. Leta € /PP, b € o with baa* = b [resp. aa*b = b, r = (a + b)aat € &/PP. Thena + b € /PP and

(a+b)} =1 -a™)r)@+b) + Z a"a"b(r+)"(a + b) (19)
n=0
[resp. (a + b)} = 1+ + Z(ri)“zba”u”]. (20)
n=0

Proof. Lete = aa* in Theorem 3.8. [

In [3], Castro-Gonzdlez, Koliha and Wei studied the necessary and sufficient conditions for (A + B)P =
(I + APB)™L AP, where A, B are complex matrices and I + APB is invertible. Here, we consider the necessary
and sufficient conditions for (a + b)¥ = (1 + a*b)"'a* in a Banach algebra.

Theorem 3.11. Leta € o/*P,b € of and let 1 +a*b € o/, a™b = ba™, aa™b = baa™. Then the following conditions
are equivalent:
()a+be€ /PP and (a + b)t = (1 + atb)~'at;

(i) a™b € \[J(7).

Proof. We consider the matrix representation of 2 and b relative to e = aat:

| a0 _| bt b2
o I P R
where a; € ,52%1‘1, a; € +/J(%). From the matrix form of a™b = ba™, it follows that b1, = 0, bp; = 0. Denote
bl = b11, bz = bzz. Thus,
_ a + bl 0
atb= |: 0 ap + b2 ]

Since
e+a'by 0

1y —
1+ab—[ 0 1—e

] e,
we have e + a7'by € /7. Thus, a1 + by € ! and (a1 + b1)™" = (e + a;'by) 'a;'. Calculations show that
(e +a;'b1)a;t = (1 +a*b)~'a*. The condition aa™b = baa™ implies ayb; = byas.

(ii) = (i) Since a™b = b, € +/J(#/), using Lemma 2.5 (ii) and Lemma 2.4, we obtain a, + b, € /J(<%),
which implies (a; + bo)* = 0. Thus, (a + b) € &/PP and

(a+b)¢=[ b+ b 0 ]

Hence (a + b)t = (1 + atb)~'at.
(i) = (ii) From (a + b)} = (a; + b1)™! + (a2 + by)* and the condition (i), we obtain (a; + by)* = 0. Thus,
ay + by € /J(9%4). By Lemma 2.5 (ii) and Lemma 2.4 again, we have that a™b = b, € /J](&). O
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