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On the Pseudo Drazin Inverse of the Sum
of Two Elements in a Banach Algebra

Honglin Zoua, Jianlong Chena

aDepartment of Mathematics, Southeast University, Nanjing, 210096, China

Abstract. In this paper, some additive properties of the pseudo Drazin inverse are obtained in a Banach
algebra. In addition, we find some new conditions under which the pseudo Drazin inverse of the sum a + b
can be explicitly expressed in terms of a, a‡, b, b‡. In particular, necessary and sufficient conditions for the
existence as well as the expression for the pseudo Drazin inverse of the sum a +b are obtained under certain
conditions. Also, a result of Wang and Chen [Pseudo Drazin inverses in associative rings and Banach
algebras, LAA 437(2012) 1332-1345] is extended.

1. Introduction

Throughout this paper, A denotes a complex Banach algebra with unity 1. For a ∈ A , we use σ(a) to
denote the spectrum of a. A −1, A nil, A qnil stand for the sets of all invertible, nilpotent and quasi-nilpotent
elements (σ(a) ={0}) in A , respectively. The Jacobson radical of A is defined by

J(A ) = {a ∈ A |1 + ax ∈ A −1 for any x ∈ A }.

Let
√

J(A ) = {a ∈ A |an
∈ J(A ) for some n ≥ 1}.

Let us recall that the Drazin inverse [10] of a ∈ A is the element x ∈ A which satisfies

xax = x, ax = xa, a − a2x ∈ A nil. (1)

The element x above is unique if it exists and is denoted by aD. The set of all Drazin invertible elements of
A will be denoted by A D.

The generalized Drazin inverse [12] of a ∈ A (or Koliha-Drazin inverse of a) is the element x ∈ A which
satisfies

xax = x, ax = xa, a − a2x ∈ A qnil. (2)
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Such x, if it exists, is unique and will be denoted by ad. Let A d denote the set of all generalized Drazin
invertible elements of A .

In 2012, Wang and Chen [17] introduced the notion of the pseudo Drazin inverse (or p-Drazin inverse
for short) in associative rings and Banach algebras. An element a ∈ A is called p-Drazin invertible if there
exists x ∈ A such that

xax = x, ax = xa, ak
− ak+1x ∈ J(A ) (3)

for some integer k ≥ 1. Any element x ∈ A satisfying (3) is called a p-Drazin inverse of a, such element
is unique if it exists, and will be denoted by a‡. The set of all p-Drazin invertible elements of A will be
denoted by A pD. In [17], Wang and Chen proved that A D $ A pD $ A d.

In 1958, Drazin [10] gave the representation of (a + b)D under the condition ab = ba = 0 in a ring. In 2001,
for P,Q ∈ Cn×n, Hartwig, Wang and Wei [11] gave a formula for (P + Q)D under the condition PQ = 0. Later,
Djordjević and Wei [9] generalized the result of [11] to bounded linear operators on an arbitrary complex
Banach space. In [4], the expression for (a + b)D was given under the assumption ab = 0 in the context
of the additive category. In 2004, Castro-González and Koliha [2] gave a formula for (a + b)d under the
conditions aπb = b, abπ = a, bπabaπ = 0 which are weaker than ab = 0 in Banach algebras. In 2010, Deng
and Wei [8] derived a result under the condition PQ = QP, where P,Q are bounded linear operators. In
2011, Cvetković-Ilić, Liu and Wei [7] extended the result of [8] to Banach algebras. In 2014, Zhu, Chen
and Patrı́cio [19] obtained a result about the p-Drazin inverse of a + b under the conditions a2b = aba and
b2a = bab which are weaker than ab = ba in Banach algebras. More results on (generalized, pseudo) Drazin
inverse can be found in [1, 5, 7, 9, 15, 18].

The motivation for this paper is the paper of Cvetković-Ilić et al. [6] and the paper of Castro-González
and Koliha [2]. In both of these papers the conditions were considered such that the generalized Drazin
inverse (a + b)d could be expressed in terms of a, ad, b, bd .

In this paper we investigate the representation for p-Drazin inverse of the sum of two elements in a
Banach algebra under various conditions. In particular, necessary and sufficient conditions for the existence
as well as the expression for the p-Drazin inverse of the sum a + b are obtained under certain conditions. In
addition, we generalized Theorem 5.4 in [17].

Let e2 = e ∈ A be an idempotent. Then we can represent element a ∈ A as

a =

[
a11 a12
a21 a22

]
e
,

where a11 = eae, a12 = ea(1 − e), a21 = (1 − e)ae, a22 = (1 − e)a(1 − e).

2. Preliminary Results

To prove the main results, we need some lemmas.

Lemma 2.1. [13, Exercise 1.6] Let a, b ∈ A . If 1 + ab ∈ A −1, then 1 + ba ∈ A −1 and (1 + ba)−1 = 1− b(1 + ab)−1a.

Lemma 2.2. [16, Theorem 1(1)] Let e2 = e ∈ A and let a ∈ eA e. Then a ∈ (eA e)−1 if and only if eae+1− e ∈ A −1.

Lemma 2.3. [13, Corollary 4.2] Let a, b ∈ A . Then
(i) If a ∈ J(A ) or b ∈ J(A ), then ab, ba ∈ J(A ).
(ii) If a ∈ J(A ) and b ∈ J(A ), then a + b ∈ J(A ).

Lemma 2.4. Let a, b ∈
√

J(A ) with ab = 0 or ab = ba. Then a ± b ∈
√

J(A ).

Proof. Let k1, k2 be positive integers such that ak1 ∈ J(A ) and bk2 ∈ J(A ). Take k = max{k1, k2}. By Lemma 2.3
(i), we obtain ak

∈ J(A ), bk
∈ J(A ). If ab = 0, we have (a + b)2k = a2k + ba2k−1 + · · ·+ bkak + bk+1ak−1 + · · ·+ b2k =

(ak + bak−1 + · · · + bk)ak + bk(bak−1 + b2ak−2 + · · · + bk) ∈ J(A ). If ab = ba, then (a + b)2k = a2k +
(2k

1
)
a2k−1b + · · · +(2k

k
)
akbk +

( 2k
k+1

)
ak−1bk+1 + · · · + b2k =ak(ak +

(2k
1
)
ak−1b + · · · +

(2k
k
)
bk) + (

( 2k
k+1

)
ak−1b + · · · + bk)bk

∈ J(A ). Replacing b
by −b, we can obtain a − b ∈

√
J(A ).

By M2(A ) we denote the set of all 2 × 2 matrices over A which is a complex Banach algebra.
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Lemma 2.5. (i) [13, page 57 Example (7)] J(M2(A )) = M2(J(A )).
(ii) [13, Theorem 21.10] Let e2 = e ∈ A . Then J(A )

⋂
eA e = J(eA e).

Let M2(A , e) =
[

eA e eA (1−e)
(1−e)A e (1−e)A (1−e)

]
, where e ∈ A is an idempotent. Then M2(A , e) is a Banach algebra

with unity I =
[

e 0
0 1−e

]
(see[2]).

Now, we establish a crucial auxiliary result.

Lemma 2.6. Let e2 = e ∈ A . Then J(M2(A ))
⋂

M2(A , e) = J(M2(A , e)).

Proof. According to Lemma 2.5 (i), we have J(M2(A ))
⋂

M2(A , e) = M2(J(A ))
⋂

M2(A , e). Let G =

M2(J(A ))
⋂

M2(A , e) and H =
[

J(A )
⋂

eA e J(A )
⋂

eA (1−e)
J(A )

⋂
(1−e)A e J(A )

⋂
(1−e)A (1−e)

]
. We will show that G = H. Let s =

[ s11 s12
s21 s22

]
∈ G,

then s11, s12, s21, s22 ∈ J(A ), also, s11 ∈ eA e, s12 ∈ eA (1−e), s21 ∈ (1−e)A e and s22 ∈ (1−e)A (1−e), which imply
s11 ∈ J(A )

⋂
eA e, s12 ∈ J(A )

⋂
eA (1− e), s21 ∈ J(A )

⋂
(1− e)A e and s22 ∈ J(A )

⋂
(1− e)A (1− e). Hence s ∈ H.

Conversely, let r =
[ r11 r12

r21 r22

]
∈ H, we get r11 ∈ J(A )

⋂
eA e, r12 ∈ J(A )

⋂
eA (1− e), r21 ∈ J(A )

⋂
(1− e)A e and

r22 ∈ J(A )
⋂

(1 − e)A (1 − e), which yield r ∈ M2(J(A )) and r ∈ M2(A , e), i.e. r ∈ M2(J(A ))
⋂

M2(A , e) = G.
Thus, we obtain G = H. By Lemma 2.5 (ii), it follows that H =

[
J(eA e) J(A )

⋂
eA (1−e)

J(A )
⋂

(1−e)A e J((1−e)A (1−e))

]
. Therefore, we

can get J(M2(A ))
⋂

M2(A , e) =
[

J(eA e) J(A )
⋂

eA (1−e)
J(A )

⋂
(1−e)A e J((1−e)A (1−e))

]
.

First, we prove J(M2(A , e)) ⊆ J(M2(A ))
⋂

M2(A , e).
Let x =

[ x11 x12
x21 x22

]
∈ J(M2(A , e)), then for any y =

[
y11 y12
y21 y22

]
∈ M2(A , e), we have I + xy ∈ [M2(A , e)]−1.

Thus,
(a) For any a ∈ eA e, let y1 =

[
a 0
0 0

]
. Since I + xy1 ∈ [M2(A , e)]−1, we can obtain e + x11a ∈ (eA e)−1, which

implies x11 ∈ J(eA e).
(b) For any b ∈ A , let y2 =

[
0 0

(1−e)be 0

]
. From I + xy2 ∈ [M2(A , e)]−1, we can conclude e + x12(1 − e)be ∈

(eA e)−1. By Lemma 2.2, 1+x12be = e[e+x12(1−e)be]e+1−e ∈ A −1.Using Lemma 2.1, 1+x12b = 1+ex12b ∈ A −1,
which implies x12 ∈ J(A ). Hence, x12 ∈ J(A )

⋂
eA (1 − e).

It is analogous to prove x21 ∈ J(A )
⋂

(1 − e)A e, x22 ∈ J((1 − e)A (1 − e)).
Next, we prove J(M2(A ))

⋂
M2(A , e) ⊆ J(M2(A , e)).

Let u =
[ u11 u12

u21 u22

]
∈ J(M2(A ))

⋂
M2(A , e), a =

[ a11 a12
a21 a22

]
∈ M2(A , e). In order to prove u ∈ J(M2(A , e)), we

need to prove

I + ua =

[
e + u11a11 + u12a21 u11a12 + u12a22

u21a11 + u22a21 (1 − e) + u21a12 + u22a22

]
∈ [M2(A , e)]−1.

Denote b11 = e + u11a11 + u12a21, b12 = u11a12 + u12a22, b21 = u21a11 + u22a21, b22 = (1 − e) + u21a12 + u22a22.
Since u11,u12 ∈ J(A ), by Lemma 2.3 and Lemma 2.5 (ii) we have u11a11 + u12a21 ∈ J(A )

⋂
eA e = J(eA e).

Thus b11 ∈ (eA e)−1. Similarly, b22 ∈ ((1 − e)A (1 − e))−1. Note that b21 = u21a11 + u22a21 ∈ J(A ), then
b21b−1

11 b12 ∈ J(A )
⋂

(1−e)A (1−e) = J((1−e)A (1−e)). Thus we get b22−b21b−1
11 b12 = b22((1−e)−b−1

22 (b21b−1
11 b12)) ∈

((1 − e)A (1 − e))−1. So,[
b11 b12
b21 b22

]
=

[
b11 0
b21 1 − e

] [
e b−1

11 b12

0 b22 − b21b−1
11 b12

]
∈ [M2(A , e)]−1.

This completes the proof.

Lemma 2.7. Let e2 = e ∈ A and let a ∈ eA e. Then a ∈ A pD if and only if a ∈ (eA e)pD. Moreover, a‡
A

= a‡eA e.

Proof. We assume that a ∈ A pD and let a‡
A

= x. Next, we prove a‡eA e = x. Indeed, x = ax3a ∈ eA e. Since
a‡
A

= x, there exists k ≥ 1 such that ak(e−ax) = ak(1−ax) ∈ J(A )
⋂

eA e. By Lemma 2.5 (ii), ak(e−ax) ∈ J(eA e).
Also ax = xa, xax = x. Thus a ∈ (eA e)pD and a‡eA e = x.
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Conversely, suppose a ∈ (eA e)pD and let a‡eA e = y. We need to prove that a‡
A

= y. The condition a‡eA e = y
ensures that (a) yay = y, (b) ya = ay, (c) ak(e− ay) ∈ J(eA e) for some k ≥ 1. Applying Lemma 2.5(ii), we have
ak(1 − ay) = ak(e − ay) ∈ J(A ). Hence a ∈ A pD and a‡

A
= y.

The next result is well-known for the Drazin inverse and the generalized Drazin inverse [14], and it is
equally true for the p-Drazin inverse.

Lemma 2.8. Let a ∈ A . Then the following conditions are equivalent:
(i) a ∈ A pD;
(ii) an

∈ A pD for any integer n ≥ 1;
(iii) an

∈ A pD for some integer n ≥ 1.

Proof. (i)⇒ (ii) [18, Theorem 2.3(1)].
(ii)⇒ (iii) It is obvious.
(iii) ⇒ (i) First, we prove an−1

∈ A pD, and (an−1)‡ = (an)‡a = a(an)‡. Let y = (an)‡a = a(an)‡. A direct
calculation shows that yan−1y = y, ya = ay. Since an

∈ A pD, there exists k ≥ 0 such that (an)k[1 − an(an)‡] ∈
J(A ). Take m = b nk

n−1 c + 1, where b nk
n−1 c denote the integer part of nk

n−1 . Therefore, by Lemma 2.3, we get
(an−1)m

− (an−1)m+1y=a(n−1)m[1 − an(an)‡] ∈ J(A ). Thus an
∈ A pD

⇒ an−1
∈ A pD

⇒ an−2
∈ A pD

⇒ · · · ⇒ a ∈
A pD.

Lemma 2.9. (i) [17, Theorem 5.3] If a, b ∈A are p-Drazin invertible, then M =

[
a d
0 b

]
is p-Drazin invertible

in M2(A ) and M‡ =

[
a‡ z1
0 b‡

]
, where z1 =

∑
∞

n=0(a‡)n+2dbnbπ +
∑
∞

n=0 aπand(b‡)n+2
− a‡db‡.

(ii) If a, b ∈ A are p-Drazin invertible, then M =

[
a 0
c b

]
is p-Drazin invertible in M2(A ) and M‡ =[

a‡ 0
z2 b‡

]
, where z2 =

∑
∞

n=0(b‡)n+2canaπ +
∑
∞

n=0 bπbnc(a‡)n+2
− b‡ca‡.

Lemma 2.10. [17, Theorem 5.4] If a, b ∈ A are p-Drazin invertible and ab = 0, then a + b is p-Drazin invertible
and (a + b)‡ = [

∑
∞

i=0(b‡)i+1ai]aπ + bπ
∑
∞

i=0 bi(a‡)i+1.

Lemma 2.11. (i) [17, Theorem 3.6] Let a, b ∈ A . If ab is p-Drazin invertible, then so is ba and (ba)‡ = b((ab)‡)2a.
(ii) [17, Proposition 3.7] Let A ∈ Mm×n(A ) and B ∈ Mn×m(A ). If AB has a p-Drazin inverse in Mm(A ), then

so does BA in Mn(A ) and (BA)‡ = B((AB)‡)2A.

3. Main Results

In what follows, by A1, A2 we denote the algebra eA e, (1 − e)A (1 − e), where e2 = e ∈ A , respectively.
If a ∈ A pD, we use aπ to denote 1 − aa‡. We start with a theorem which gives a matrix representation of a
p-Drazin invertible element in a Banach algebra.

Theorem 3.1. a ∈ A is p-Drazin invertible if and only if there exists an idempotent e ∈ A such that

a =

[
a1 0
0 a2

]
e
, where a1 ∈ A −1

1 , a2 ∈
√

J(A2). (4)

In which case,

a‡ =

[
a−1

1 0
0 0

]
e

and e = aa‡. (5)
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Proof. We suppose that a ∈ A pD, then let e = aa‡. Obviously, ea(1 − e) = aa‡a(1 − aa‡) = 0, (1 − e)ae =
(1 − aa‡)aaa‡ = 0. Since a1(ea‡e) = e, (ea‡e)a1 = e, so a1 ∈ A −1

1 .
We know that ak

2 = [(1 − aa‡)a(1 − aa‡)]k = ak(1 − aa‡) ∈ J(A )
⋂

A2 for some k ≥ 1. By Lemma 2.5(ii), we
can obtain ak

2 ∈ J(A2), that is a2 ∈
√

J(A2).
Conversely, let

x =

[
a−1

1 0
0 0

]
e
.

A direct calculation shows that xax = x, ax = xa. Since a2 ∈
√

J(A2), there exists k ≥ 1 such that ak
2 ∈ J(A2).

Relative to the idempotent e,

ak(1 − ax) =

[
0 0
0 ak

2

]
e
.

Thus ak(1 − ax) = ak
2 ∈ J(A2). Using Lemma 2.5(ii), ak(1 − ax) ∈ J(A2) ⊆ J(A ). This proves a ∈ A pD.

The following result will be very useful in proving our main results.

Theorem 3.2. Let e2 = e, x, y ∈ A and let x and y have the representation

x =

[
a c
0 b

]
e
, y =

[
b 0
c a

]
1−e
. (6)

(i) If a ∈ A
pD

1 and b ∈ A
pD

2 , then x, y ∈ A pD and

x‡ =

[
a‡ u
0 b‡

]
e
, y‡ =

[
b‡ 0
u a‡

]
1−e
, (7)

where

u =

∞∑
n=0

(a‡)n+2cbnbπ +

∞∑
n=0

aπanc(b‡)n+2
− a‡cb‡. (8)

(ii) If x ∈ A pD [resp. y ∈ A pD] and a ∈ A
pD

1 , then b ∈ A
pD

2 , and x‡ [resp. y‡] is given by (7) and (8).

Proof. (i) Applying Lemma 2.9 and Lemma 2.7, we can get[
a c
0 b

]
∈ [M2(A )]pD,

[
a c
0 b

]‡
=

[
a‡ u
0 b‡

]
,

where u =
∑
∞

n=0(a‡)n+2cbnbπ +
∑
∞

n=0 aπanc(b‡)n+2
− a‡cb‡. Then there exists k ≥ 1 such that[

a c
0 b

]k

−

[
a c
0 b

]k+1 [
a‡ u
0 b‡

]
∈ J(M2(A )).

Lemma 2.6 ensures that [
a c
0 b

]k

−

[
a c
0 b

]k+1 [
a‡ u
0 b‡

]
∈ J(M2(A , e)).

Thus, we have that
[ a c

0 b
]
∈ [M2(A , e)]pD, which implies x ∈ A pD.
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Next, we consider the p-Drazin inverse of y. Since

y =

[
b 0
c a

]
1−e

=

[
a c
0 b

]
e
,

from the first part of (i), we obtain y ∈ A pD and

y‡ =

[
a‡ u
0 b‡

]
e

=

[
b‡ 0
u a‡

]
1−e
.

The proof of (i) is completed.
(ii) We prove b‡ = [(1 − e)x(1 − e)]‡ = (1 − e)x‡(1 − e).
Since x ∈ A pD , a ∈ A

pD
1 , then x ∈ A d , a ∈ A d

1 and xd = x‡, ad = a‡. According to Theorem 2.3 (ii) of [2],
it follows that [

ad u
0 bd

]
e

= xd =

[
exde exd(1 − e)

(1 − e)xde (1 − e)xd(1 − e)

]
e
,

where u is defined as (8). Thus, (1− e)xde = 0, i.e. (1− e)x‡e = 0, which implies that (1− e)x‡(1− e) = (1− e)x‡.
Noting that (1− e)xe = 0, we can get (1− e)x(1− e) = (1− e)x. Therefore, we only prove [(1− e)x]‡ = (1− e)x‡.

Let v = (1 − e)x‡.
(a) [(1 − e)x]v = (1 − e)x(1 − e)x‡ = (1 − e)xx‡ = (1 − e)x‡x = [(1 − e)x‡](1 − e)x = v[(1 − e)x].
(b) v[(1 − e)x]v = (1 − e)x‡(1 − e)x(1 − e)x‡ = (1 − e)x‡(1 − e)xx‡ = (1 − e)x‡xx‡ = (1 − e)x‡ = v.
(c) First, we prove [(1 − e)(x − x2x‡)]n = (1 − e)(x − x2x‡)n for any n ≥ 1 by induction.
It is obvious for n = 1.
Assume [(1 − e)(x − x2x‡)]n = (1 − e)(x − x2x‡)n.
For the n + 1 case, we have

[(1 − e)(x − x2x‡)]n+1

= (1 − e)(x − x2x‡)[(1 − e)(x − x2x‡)]n

= [(1 − e)(x − x2x‡)(1 − e)](x − x2x‡)n

= [(1 − e)x(1 − e) − (1 − e)x2x‡(1 − e)](x − x2x‡)n

= [(1 − e)x − (1 − e)x(1 − e)x(1 − e)x‡(1 − e)](x − x2x‡)n

= [(1 − e)x − (1 − e)x(1 − e)x(1 − e)x‡](x − x2x‡)n

= [(1 − e)x − (1 − e)x(1 − e)xx‡](x − x2x‡)n

= [(1 − e)x − (1 − e)x2x‡](x − x2x‡)n

= (1 − e)(x − x2x‡)n+1.

Since there exists k ≥ 0 such that (x − x2x‡)k
∈ J(A ),

{(1 − e)x − [(1 − e)x]2v}k

= {(1 − e)x − [(1 − e)x]2(1 − e)x‡}k

= [(1 − e)x − (1 − e)x2x‡]k

= [(1 − e)(x − x2x‡)]k

= (1 − e)(x − x2x‡)k
∈ J(A )

⋂
A2 = J(A2).

Hence b‡ = (1 − e)x‡. Using (i), we see x‡ is given by (7) and (8).
Following an analogous strategy as in the proof for y of (i), we have (ii) for y.

Remark 3.3. Theorem 3.2 (i) is more general than Lemma 2.9. Indeed, let e =

[
1 0
0 0

]
, then

[
a d
0 b

]
=[

A D
0 B

]
e
, where A =

[
a 0
0 0

]
, B =

[
0 0
0 b

]
, D =

[
0 d
0 0

]
. Since a ∈ A pD, b ∈ A pD, we have

A ∈ [eM2(A )e]pD, B ∈ [(1 − e)M2(A )(1 − e)]pD. Thus, using Theorem 3.2 (i), we get
[

a d
0 b

]
∈ [M2(A )]pD.
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Before proving our main result, we need to prove the following result.

Theorem 3.4. Let a ∈ A pD, b ∈
√

J(A ). If aba = 0, ab2 = 0, then a + b ∈ A pD and

(a + b)‡ = (a‡ + bua)(1 + a‡b), (9)

where u =
∑
∞

n=0 b2n(a + b)(a‡)2n+4.

Proof. Write X1 =

[
a
1

]
, X2 =

[
1 b

]
, then a + b = X2X1. Let M = X1X2 =

[
a ab
1 b

]
, then

M2 =

[
a2 + ab a2b
a + b ab + b2

]
=

[
ab a2b
0 ab

]
+

[
a2 0

a + b b2

]
:=F + G. The conditions aba = 0 and ab2 = 0

imply FG = 0, F2 = 0.
Since a ∈ A pD, then a2

∈ A pD and (a2)‡ = (a‡)2. According to the condition b ∈
√

J(A ), then bk
∈ J(A ),

for some k ≥ 1, which implies b‡ = 0 by (3). Using Lemma 2.9(ii) , we can get G ∈ [M2(A )]pD and

G‡ =

[
(a‡)2 0

u 0

]
, where u =

∑
∞

n=0 b2n(a + b)(a‡)2n+4.

Because F2 = 0, then F‡ = 0. Using Lemma 2.10, we deduce that M2
∈ [M2(A )]pD, and (M2)‡ =

G‡ + (G‡)2F=

[
(a‡)2 + (a‡)3b (a‡)2b

u + ua‡b ua‡ab

]
. Applying Lemma 2.8, M ∈ [M2(A )]pD.

Finally, according to Lemma 2.11(ii), we have that a + b ∈ A pD and (a + b)‡=X2(M2)‡X1. Observe that
a‡ba = 0 and by a straightforward computation, we obtain (9).

Next we present our main theorem, which is a generalization of [17, Theorem 5.4].

Theorem 3.5. Let a, b ∈ A pD be such that s = (1 − bπ)a(1 − bπ) ∈ A pD. If bπaba = 0, bπab2 = 0, then a + b ∈ A pD

if and only if t = (1 − bπ)(a + b)(1 − bπ) ∈ A pD. In which case,

(a + b)‡ = t‡ + (1 − t‡a)x +

∞∑
n=0

(t‡)n+2abπ(a + b)n[1 − (a + b)x] +

∞∑
n=0

tπtn(1 − bπ)axn+2, (10)

where x =
∞∑

n=0
bπbn(a‡)n+1bπ(1 + a‡b).

Proof. According to Theorem 3.1, we consider the matrix representation of a and b relative to the idempotent
e = bb‡:

b =

[
b1 0
0 b2

]
e
, a =

[
a11 a12
a21 a22

]
e
,

where b1 ∈ A −1
1 , b2 ∈

√
J(A2). The condition bπab2 = 0 expressed in matrix form yields[

0 0
0 0

]
e

= bπab2 =

[
0 0

a21b2
1 a22b2

2

]
e
.

This gives a21 = 0, a22b2
2 = 0. Denote a1 = a11, a2 = a22, a3 = a12. Thus,

a =

[
a1 a3
0 a2

]
e
, a + b =

[
t a3
0 a2 + b2

]
e
.

Since a1 = s ∈ A pD, by Lemma 2.7, we have a1 ∈ A
pD

1 . Also, a ∈ A pD. Using Theorem 3.2 (ii), we deduce
that a2 ∈ A

pD
2 and

a‡ =

[
a‡1 u1

0 a‡2

]
e

.
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From the condition bπaba = 0, we can get that[
0 0
0 0

]
e

= bπaba =

[
0 0
0 a2b2a2

]
e
,

which implies a2b2a2 = 0.
Hence, applying Theorem 3.4 to a2, b2, we conclude that a2 + b2 ∈ A

pD
2 and

(a2 + b2)‡ = [a‡2 +

∞∑
n=0

b2n+1
2 (a2 + b2)(a‡2)2n+3](1 − e + a‡2b2).

In order to give the expression of (a2 +b2)‡ in terms of a, a‡, b, b‡, we calculate bπa‡, bπb2n+1(a+b)(a‡)2n+3, bπa‡b
separately in matrix form as follows:

bπa‡ =

[
0 0
0 a‡2

]
e
, bπa‡b =

[
0 0
0 a‡2b2

]
e
,

bπb2n+1(a + b)(a‡)2n+3 =

[
0 0
0 b2n+1

2 (a2 + b2)(a‡2)2n+3

]
e
.

Thus, bπa‡ = a‡2, bπb2n+1(a + b)(a‡)2n+3 = b2n+1
2 (a2 + b2)(a‡2)2n+3 and bπa‡b = a‡2b2. Write x = (a2 + b2)‡. Note that

a(a‡)2n+3 = (a‡)2n+2 for n ≥ 0, then we have

x = bπ[a‡ +
∞∑

n=0
b2n+1(a + b)(a‡)2n+3]bπ(1 + a‡b)

= bπ[a‡ +
∞∑

n=0
b2n+1(a‡)2n+2 +

∞∑
n=0

b2n+2(a‡)2n+3]bπ(1 + a‡b)

= bπ
∞∑

n=0
bn(a‡)n+1bπ(1 + a‡b).

Now, by Theorem 3.2, we have that a + b ∈ A pD if and only if t ∈ A pD. Moreover,

(a + b)‡ =

[
t‡ u
0 x

]
e
,

where

u =

∞∑
n=0

(t‡)n+2a3(a2 + b2)n(a2 + b2)π +

∞∑
n=0

tπtna3xn+2
− t‡a3x. (11)

Because bπab2 = 0, we have bπab‡ = 0. Thus, a2 +b2 = bπ(a+b)bπ = bπabπ+bπb = bπa(1−bb‡)+bπb = bπ(a+b),
which ensures (a2 + b2)n = bπ(a + b)nbπ for any n ≥ 1. Also, we can easily obtain that bπ(a + b)nbπ = bπ(a + b)n

for any n ≥ 1 by induction. Note a3 = (1 − bπ)abπ. Thus, (11) reduces to

u =

∞∑
n=0

(t‡)n+2abπ(a + b)n[1 − (a + b)x] +

∞∑
n=0

tπtn(1 − bπ)axn+2
− t‡ax. (12)

From (a + b)‡ = t‡ + u + x, we get that (10) holds.
Next, we present one special case of the preceding theorem.

Corollary 3.6. Let a, b ∈ A pD. If aba = 0, ab2 = 0, then a + b ∈ A pD and

(a+b)‡ = b‡aπ+ (b‡)2aaπ+

∞∑
n=1

(b‡)n+2(an+1aπ−an+1a‡b+anb)+

∞∑
n=0

bπbn(a‡)n+1(1+a‡b)−b‡a‡b− (b‡)2aa‡b. (13)
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Proof. From ab2 = 0, it follows that ab‡ = 0. Thus, we can have that s = (1 − bπ)a(1 − bπ) = 0 ∈ A pD,
t = (1 − bπ)(a + b)(1 − bπ) = b(bb‡). Since (bb‡)‡ = bb‡, using Proposition 5.2 of [17], we deduce that t ∈ A pD

and t‡ = b‡. Thus, Theorem 3.5 is applicable.

Furthermore, note that a‡b‡ = 0, aba‡ = 0. Let x =
∞∑

n=0
bπbn(a‡)n+1bπ(1 + a‡b). We have

ax = a
∞∑

n=0
bπbn(a‡)n+1bπ(1 + a‡b)

= a(1 − bb‡)a‡bπ(1 + a‡b) + a(1 − bb‡)b(a‡)2bπ(1 + a‡b)
= aa‡bπ(1 + a‡b) + ab(a‡)2bπ(1 + a‡b)
= aa‡(1 − bb‡)(1 + a‡b)
= aa‡ + a‡b.

abx = ab[
∞∑

n=0
bπbn(a‡)n+1bπ(1 + a‡b)]

= ab(1 − bb‡)a‡bπ(1 + a‡b)
= 0.

Therefore, a[1 − (a + b)x] = a − a2x − abx = aaπ − aa‡b.
On the other hand, a(a + b)n = an(a + b) for n ≥ 1. So, we deduce that

abπ(a + b)n[1 − (a + b)x]
= a(1 − bb‡)(a + b)n[1 − (a + b)x]
= a(a + b)n[1 − (a + b)x]
= an(a + b)[1 − (a + b)x]
= ana[1 − (a + b)x] + anb[1 − (a + b)x]
= an+1aπ − an+1a‡b + anb.

Observe that tπtn(1 − bπ)axn+2 = bπ(b2b‡)n(1 − bπ)axn+2 = 0 for n ≥ 0.
Finally, by using these relations and (10), we get (13).

Now, we give an example to show that the conditions of Theorem 3.5 are weaker than Corollary 3.6.

Example 3.7. Let A be the algebra of all complex 2× 2 matrices, and let a =

[
1 1
0 0

]
and b =

[
1 0
0 0

]
.

Then, we can check that a, b satisfy bπaba = 0, bπab2 = 0, but aba , 0, ab2 , 0.

With Corollary 3.6, we recover the case ab = 0 studied in [17].
In the following results, we give expressions for (a + b)‡ under certain conditions which do not use

b ∈ A pD.

Theorem 3.8. Let a, b, e ∈ A be such that a ∈ A pD, e2 = e, ea = ae, be = b [resp. eb = b]. If r = (a + b)e ∈ A pD,
then a + b ∈ A pD and

(a+b)‡ =

∞∑
n=0

(1−e)aπanb(r‡)n+3(a+b)−a‡(1−e)b(r‡)2(a+b)+a‡(1−e)+
∞∑

n=0

(a‡)n+2(1−e)b(a+b)n[1−r‡(a+b)]+e(r‡)2(a+b)

(14)

[resp. (a + b)‡ = r‡ +

∞∑
n=0

(r‡)n+2b(1 − e)anaπ + (1 − r‡b)(1 − e)a‡ + rπ
∞∑

n=0

rnb(1 − e)(a‡)n+2]. (15)

Proof. We consider the matrix representation of e, a, b relative to e. We have

e =

[
e 0
0 0

]
e
, a =

[
a11 a12
a21 a22

]
e
, b =

[
b11 b12
b21 b22

]
e
.
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The condition ea = ae implies a12 = 0, a21 = 0. We denote a1 = a11, a2 = a22. Thus

a =

[
a1 0
0 a2

]
e
.

Observe that (1 − e)a = a(1 − e) and (1 − e)‡ = 1 − e, using Proposition 5.2 of [17], we can conclude that
a2 = (1 − e)a ∈ A

pD
2 and a‡2 = (1 − e)a‡ = a‡(1 − e).

From be = b, it follows that b12 = 0, b22 = 0. Denote b1 = b11, b3 = b21. Hence ,

a + b =

[
a1 0
0 a2

]
e
+

[
b1 0
b3 0

]
e

=

[
a1 + b1 0

b3 a2

]
e
.

Since be = b, then a1 + b1 = e(a + b)e = e(a + b) which implies e(a + b)ne = e(a + b)n, [e(a + b)]n = e(a + b)n

for any n ≥ 1 by induction. From the condition r = (a + b)e ∈ A pD and Lemma 2.11(i), we deduce that
a1 + b1 ∈ A

pD
1 and (a1 + b1)‡ = e(r‡)2(a + b). According to Theorem 3.2 (i), we obtain that a + b ∈ A pD and

(a + b)‡ =

[
(a1 + b1)‡ 0

u a‡2

]
e
,

where

u =

∞∑
n=0

(a‡2)n+2b3(a1 + b1)n(a1 + b1)π +

∞∑
n=0

aπ2 an
2b3[(a1 + b1)‡]n+2

− a‡2b3(a1 + b1)‡. (16)

Note that
(a‡2)n+2b3(a1 + b1)n(a1 + b1)π

= [a‡(1 − e)]n+2(1 − e)be[e(a + b)]n[e − e(a + b)e(r‡)2(a + b)]
= (a‡)n+2(1 − e)be(a + b)ne[1 − (a + b)e(r‡)2(a + b)]
= (a‡)n+2(1 − e)b(a + b)n[1 − r‡(a + b)],

aπ2 an
2b3[(a1 + b1)‡]n+2

= [(1 − e) − (1 − e)aa‡(1 − e)][(1 − e)a]n(1 − e)be[e(r‡)2(a + b)]n+2

= (1 − e)(1 − aa‡)(1 − e)an(1 − e)be[e(r‡)n+3(a + b)]
= (1 − e)aπanb(r‡)n+3(a + b),

a‡2b3(a1 + b1)‡

= a‡(1 − e)(1 − e)bee(r‡)2(a + b)
= a‡(1 − e)b(r‡)2(a + b).

Therefore we have (14).
The proof for the case of eb = b is analogous.
In [4], expressions of the Drazin inverse of a + b in the additive category are given under the following

conditions:
(1) a is Drazin invertible, r = (a + b)aπ is Drazin invertible, aDb = 0;
(2) a is Drazin invertible, r = (a + b)aaD is Drazin invertible, aaDb = b. Here, we consider expressions of

(a + b)‡ under the similar conditions in a Banach algebra.

Corollary 3.9. Let a ∈ A pD, b ∈ A such that ba‡ = 0 [resp. a‡b = 0], r = (a + b)aπ ∈ A pD. Then a + b ∈ A pD and

(a + b)‡ =

∞∑
n=0

(a‡)n+2b(a + b)n[1 − r‡(a + b)] + a‡ + [1 − a‡(a + b)](r‡)2(a + b) (17)

[resp. (a + b)‡ = a‡ + r‡ + rπ
∞∑

n=0

rnb(a‡)n+2
− r‡ba‡]. (18)
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Proof. Let e = aπ in Theorem 3.8.

Corollary 3.10. Let a ∈ A pD, b ∈ A with baa‡ = b [resp. aa‡b = b], r = (a + b)aa‡ ∈ A pD. Then a + b ∈ A pD and

(a + b)‡ = (1 − aπ)(r‡)2(a + b) +

∞∑
n=0

aπanb(r‡)n+3(a + b) (19)

[resp. (a + b)‡ = r‡ +

∞∑
n=0

(r‡)n+2banaπ]. (20)

Proof. Let e = aa‡ in Theorem 3.8.
In [3], Castro-González, Koliha and Wei studied the necessary and sufficient conditions for (A + B)D =

(I + ADB)−1AD, where A, B are complex matrices and I + ADB is invertible. Here, we consider the necessary
and sufficient conditions for (a + b)‡ = (1 + a‡b)−1a‡ in a Banach algebra.

Theorem 3.11. Let a ∈ A pD, b ∈ A and let 1 + a‡b ∈ A −1, aπb = baπ, aaπb = baaπ. Then the following conditions
are equivalent:

(i) a + b ∈ A pD and (a + b)‡ = (1 + a‡b)−1a‡;
(ii) aπb ∈

√
J(A ).

Proof. We consider the matrix representation of a and b relative to e = aa‡:

a =

[
a1 0
0 a2

]
e
, b =

[
b11 b12
b21 b22

]
e
,

where a1 ∈ A −1
1 , a2 ∈

√
J(A2). From the matrix form of aπb = baπ, it follows that b12 = 0, b21 = 0. Denote

b1 = b11, b2 = b22. Thus,

a + b =

[
a1 + b1 0

0 a2 + b2

]
e
.

Since

1 + a‡b =

[
e + a−1

1 b1 0
0 1 − e

]
e
∈ A −1,

we have e + a−1
1 b1 ∈ A −1

1 . Thus, a1 + b1 ∈ A −1
1 and (a1 + b1)−1 = (e + a−1

1 b1)−1a−1
1 . Calculations show that

(e + a−1
1 b1)−1a−1

1 = (1 + a‡b)−1a‡. The condition aaπb = baaπ implies a2b2 = b2a2.

(ii) ⇒ (i) Since aπb = b2 ∈
√

J(A ), using Lemma 2.5 (ii) and Lemma 2.4, we obtain a2 + b2 ∈
√

J(A2),
which implies (a2 + b2)‡ = 0. Thus, (a + b) ∈ A pD and

(a + b)‡ =

[
(a1 + b1)−1 0

0 0

]
e
.

Hence (a + b)‡ = (1 + a‡b)−1a‡.
(i) ⇒ (ii) From (a + b)‡ = (a1 + b1)−1 + (a2 + b2)‡ and the condition (i), we obtain (a2 + b2)‡ = 0. Thus,

a2 + b2 ∈
√

J(A2). By Lemma 2.5 (ii) and Lemma 2.4 again, we have that aπb = b2 ∈
√

J(A ).
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