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aIstanbul Medeniyet University, Department of Mathematics, Üsküdar-Istanbul, Turkey

Abstract. The goal of this paper is to define the spaces Vλ
σ0

(
p
)

and Vλ
σ

(
p
)

by using de la Vallée Poussin and
invariant mean. Furthermore, we characterize certain matrices in Vλ

σ which will up a gap in the existing
literature.

1. Introduction and Background

Let w denote the set of all real and complex sequences x = (xk). By l∞ and c, we denote the Banach spaces
of bounded and convergent sequences x = (xk) normed by ||x|| = supk |xk|, respectively. A linear functional
L on l∞ is said to be a Banach limit [1] if it has the following properties:

1. L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),
2. L(e) = 1 where e = (1, 1, . . .),
3. L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+1}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ `∞ is said to be almost convergent if all Banach
limits of x coincide. Let ĉ denote the space of almost convergent sequences. Lorentz [3] has shown that

ĉ =
{
x ∈ l∞ : lim

m
dm,n(x) exists uniformly in n

}
,

where

dm,n(x) =
xn + xn+1 + xn+2 + · · · + xn+m

m + 1
.

If pk is real and pk > 0, we define (see, Maddox [4])

c0
(
p
)

=
{
x : lim

k→∞
|xk|

pk = 0
}

and

c
(
p
)

=
{
x : lim

k→∞
|xk − l|pk = 0, for some l

}
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If pm is real such that pm > 0 and sup pm < ∞, we define ( see, Nanda [16] )

ĉ0
(
p
)

=
{
x : lim

m→∞

∣∣∣dm,n(x)
∣∣∣pm

= 0, uniformly in n
}

and

ĉ
(
p
)

=
{
x : lim

m→∞

∣∣∣dm,n(x − l)
∣∣∣pm

= 0, for some l, uniformly in n
}
.

Shaefer [26] defined the σ-convergence as follows: Let σ be a one-to-one mapping from the set of natural
numbers into itself. A continuous linear functional φ on l∞ is said to be an invariant mean or a σ-mean
provided that

(i) φ(x) ≥ 0 when the sequence x = (xk) is such that xk ≥ 0 for all k,

(ii) φ(e) = 1, where e = (1, 1, 1, . . .), and

(iii) φ(x) = φ(xσ(k)) for all x ∈ l∞.

We denote by Vσ the space of σ-convergent sequences. It is known that x ∈ Vσ if and only if

1
m

m∑
k=1

xσk(n) → a limit

as m→∞, uniformly in n. Here σk(n) denotes the k-th iterate of the mapping σ at n.
A σ-mean extends the limit functional on c in the sense that φ(x) = lim x for all x ∈ c if and only if σ has

no finite orbits, that is to say, if and only if , for all n > 0, k ≥ 1 σk(n) , n.
In case σ is the translation mapping n → n + 1, a σ-mean reduces to the unique Banach limit and Vσ

reduces to ĉ.

2. (σ, λ)-Convergence

We define the following:
Let λ = (λm) be a non-decreasing sequence of positive numbers tending to∞ such that

λm+1 ≤ λm + 1, λ1 = 1.

A sequence x = (xk) of real numbers is said to be (σ, λ)- convergent to a number L if and only if x ∈ Vλ
σ ,

where

Vλ
σ = {x ∈ l∞ : lim

m→∞
tmn(x) = L uniformly in n; L = (σ, λ) − lim x},

tmn(x) =
1
λm

∑
i∈Im

xσi(n),

and Im = [m− λm + 1,m] (see, [24]). Note that c ⊂ Vλ
σ ⊂ l∞. For σ(n) = n + 1,Vλ

σ is reduced to the space V̂λ of
almost λ-convergent sequences and if we take σ(n) = n + 1 and λ = n, Vλ

σ reduce to ĉ(see, [16]) .
It is quite natural to expect that the sequence Vλ

σ and Vλ
σ0

can be extended to Vλ
σ (p) and Vλ

σ0

(
p
)

just as ĉ
and ĉ0 were extended to ĉ(p) and ĉ0(p) respectively.

The main object of this paper is to study Vλ
σ (p) and Vλ

σ0
(p) (the definitions are given below) and charac-

terize certain matrices in Vλ
σ (p).

If pm is real such that pm > 0 and sup pm < ∞, we define

Vλ
σ0

(p) =
{
x : lim

m→∞

∣∣∣tm,n(x)
∣∣∣pm

= 0, uniformly in n
}
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and

Vλ
σ

(
p
)

=
{
x : lim

m→∞

∣∣∣tm,n(x − le)
∣∣∣pm

= 0, for some l , uniformly in n
}
.

In particular, if pm = p > 0 for all m, we have Vλ
σ0

(p) = Vλ
σ0

and Vλ
σ (p) = Vλ

σ . In Theorem 4, we prove
that Vλ

σ0
(p) and Vλ

σ (p) are complete linear topological spaces. Theorem 7 characterizes the matrices in the
class (c0(p),Vσ0 (p)). In Theorem 8 we determine the matrix in the class (c(p),Vλ

σ ). Matrix transformations
between sequence spaces have also been discussed by Savas and Mursaleen ([23]), Mursaleen ([7–15]),
Savas ([17–22, 25]) and many others.

A linear topological space X is called paranormed space if there exists a subadditive function 1 : X→ R+

such that 1(0) = 0, 1(x) = 1(−x) and the multiplication is continuous, that is, λn → λ and 1(xn−x)→ 0 imply
that 1(λnxn − λx)→ 0 for λ′s ∈ C and x ∈ X.

Suppose that M = max(1, sup pm = H). Since pm/M ≤ 1, we have for all m and n

|tmn(x + y)|pm/M ≤ |tmn(x)|pm/M + |tmn(y)|pm/M (1)

and for all λ ∈ C

|λ|pm/M ≤ max(1, |λ|). (2)

By using (1) and (2) we can see thatVλ
σ0

(
p
)

and Vλ
σ (p) are linear spaces.

3. Main Results

We first establish a number of lemmas about Vλ
σ0

(p) and Vλ
σ

(
p
)
.

Lemma 3.1. Vλ
σ0

(
p
)

is a linear topological space paranormed by 1 where

1(x) = sup
m,n

∣∣∣tm,n(x)
∣∣∣pm/M

.

Proof. One can easily see that 1(0) = 0 and 1(x) = 1(−x). The subadditivity of g follows from (1). It remains
to show that the scalar multiplication is continuous. It follows from (2) that for µ ∈ C and x ∈ Vλ

σ0

(
p
)

1(µx) ≤ max(1, µ)1(x).

Therefore µ→ 0, x→ 0⇒ µx→ 0 and if µ is fixed, x→ 0⇒ µx→ 0. If x ∈ Vθ
σ0

(p) is fixed, given ε > 0, there
exists m0 such that

sup
m>m0

∣∣∣µtm,n(x)
∣∣∣pm/M

< ε/2, (3)

for all n and we can choose δ > 0 such that for
∣∣∣µ∣∣∣ < δ, we have

sup
m≤m0

∣∣∣µtm,n(x)
∣∣∣pm/M

< ε/2, (4)

for all n. Thus from (3) and (4) we get∣∣∣µ∣∣∣ < δ⇒ 1 (µx
)
≤ ε.

This completes the proof.

Lemma 3.2. Vλ
σ (p) is a linear topological space paranormed by 1, if inf pm > 0.
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Proof. It is enough to show that for fixed x ∈ Vλ
σ (p), µ→ 0⇒ µx→ 0. Let inf pm = p′ > 0, then we have

1(µx) ≤ max(
∣∣∣µ∣∣∣ , ∣∣∣µ∣∣∣p′ )1(x).

The result follows from the above inequality.

Lemma 3.3. Vλ
σ0

(
p
)

and Vθ
σ (p)(inf pm > 0) are complete with respect to their paranorm topologies.

Proof. Let
{
xi
}

be Cauchy sequence in Vλ
σ0

(
p
)
. Then

{
xi

k

}
for each k, is Cauchy in C and hence xi

k → x0
k for

each k. Put x0 =
{
x0

k

}
. Given ε > 0, there exists N0 such that for i, j > N0,∣∣∣tm,n(xi

− x j)
∣∣∣pm/M

< ε/5 (5)

for all m and n. Taking limit as j→∞we get∣∣∣tm,n(xi
− x0)

∣∣∣pm/M
< ε/5, (6)

for all m and n. Therefore (xi
− x0) and by linearity x0

∈ Vλ
σ0

(
p
)
. If

{
xi
}

be Cauchy sequence in Vλ
σ (p) then

there exists x0 such that x j
→ x0 . We now show that x0

∈ Vλ
σ . Since xi

∈ Vλ
σ (p) there exists li ∈ C such that∣∣∣tm,n(xi

− lie)
∣∣∣pm/M

< ε/5, (7)

for all m and n. From that (5), (7) and (1) it follows that∣∣∣tm,n(lie − l je)
∣∣∣pm/M

< 3/5ε.

Thus
{
li
}

is Cauchy in C and therefore there exists l ∈ C such that∣∣∣tm,n(lie − le)
∣∣∣pm/M

< 3/5ε. (8)

Now by (1), (6), (7) and (8) we get∣∣∣tm,n(x0
− le)

∣∣∣pm/M
< ε .

This completes the proof.

Combining the above lemmas we have

Theorem 3.4. Vθ
σ0

(
p
)

and Vθ
σ (p)(inf pm > 0) are complete linear topological spaces paranormed by 1 as defined in

Lemma 1.

In general 1 is not a norm. If pm = p for all m then clearly 1 is a norm.
The following proposition give inclusion relations among the spaces Vλ

σ0
(p) and Vλ

σ (p). These are routine
verifications and therefore we omit the proofs.

Proposition 3.5. If 0 < pm ≤ qm < ∞, then

(i) Vλ
σ0

(p) ⊂ Vλ
σ0

(q)

(ii) Vλ
σ (p) ⊂ Vλ

σ (q).
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For r > 0, a nonempty subset U of a linear space is said to be absolutely r-convex if x, y ∈ U and
|α|r +

∣∣∣µ∣∣∣r ≤ 1 together imply that αx + µy ∈ U. A linear topological space X is said to be r-convex (see
Maddox and Roles[5] ) if every neighbourhood of 0 ∈ X contains as absolutely r-convex neighbourhood of
0 ∈ X. We have:

Proposition 3.6. Vλ
σ0

(p) and Vλ
σ (p) are 1-convex.

Proof. If 0 < δ < 1, then

U =
{
x : 1(x) ≤ δ

}
is an absolutely 1-convex set, for let a, b ∈ U and |α| +

∣∣∣µ∣∣∣ ≤ 1, then

1(αa + µb) ≤
(
|α| +

∣∣∣µ∣∣∣)pm/M

δ ≤ δ.

This completes the proof.

Let X and Y be two nonempty subsets of the space w of complex sequences. Let A = (ank) , (n, k = 1, 2, ...)
be an infinite matrix of complex numbers. We write Ax = (An(x)) if An(x) =

∑
k ankxk converges for each n.(

Throughout
∑

k denotes summation over k from k = 1 to k = ∞). If x = (xk) ∈ X⇒ Ax = (An(x)) ∈ Y we say
that A defines a matrix transformation from X to Y and we denote it by A : X → Y. By (X,Y) we mean the
class of matrices A such that A : X→ Y.

We now characterize the matrices in the class
(
c0(p),Vλ

σ0
(p)

)
. We write

tm,n(Ax) =
∑

k

a (n, k,m) xk

where

a (n, k,m) =
1
λm

∑
i∈In

aσi(n),k.

Theorem 3.7. A ∈ (c0(p),Vλ
σ0

(p) if and only if

(i) there exists an integer B > 1 such that

Cn = sup
m

{∑
k |a(n, k,m)|B−1/pk

}pm
< ∞, (∀n)

(ii) lim
m→∞

|a(n, k,m)|pm = 0 uniformly in n.

Proof. Necessity. Suppose that A ∈
(
c0(p),Vλ

σ0
(p)

)
. Define ek = {δnk}n where δnk = 0 (n , k) ,= 1 (n = k) . Since

ek ∈ c0(p), (ii) must hold. Fix n ∈ Z+. Put fm,n(x) =
∣∣∣tm,n(Ax)

∣∣∣pm
. Now

{
fm,n

}
m is a sequence of continuous

linear functionals such that lim
m

fm,n(x) exists. Therefore by uniform boundedness principle for 0 < δ < 1,

there exists Sδ [0] ⊂ c0
(
p
)

and a constant K such that fm,n(x) ≤ K for each m and x ∈ Sδ [0] . Define for each r:

y(r)
k = (

δK/pk s1n(a(n, k,m), 0 ≤ k ≤ r;
0, r < k.

Now y(r)
k ∈ Sδ [0] and r∑
k=1

|a(n, k,m)|B−1/pk


pm

≤ K
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for each m and each m where B = δ−K. Therefore (i) holds and this proves this necessity.
Sufficiency. Suppose that the conditions (i) and (ii) hold and that x ∈ c0

(
p
)
.Fix n ∈ Z+. Given ε > 0,

there exists k0 such that for k and m both larger than k0,

B1/pk |xk| < (ε/Cn)1/pm .

We have, for C = max(1, 2H−1) the inequality (see Maddox 7, p. 346)∣∣∣tm,n(A(x))
∣∣∣pm
≤ C(S1 + S2),

where

S1 =

∣∣∣∣∣∣∣∑k≤k0

a(n, k,m)xk

∣∣∣∣∣∣∣
pm

and

S2 =

∣∣∣∣∣∣∣∑k>k0

a(n, k,m)xk

∣∣∣∣∣∣∣
pm

.

Since (ii) holds there exists m0 ∈ Z+ such that for m > m0, |a(n, k,m)| < ε1/pm . Therefore for such m,

S1 ≤

∑
k≤k0

|a(n, k,m)xk|


pm

< ε

∑
k≤k0

|xk|


pm

(9)

< εmax

1,
∑

k≤k0

|xk|


M .

Again for m > m0

S1/pm

2 ≤

∑
k>k0

|a(n, k,m)xk| < ε
1/pm ,

and consequently

S2 ≤ ε, (∀m > m0) . (10)

Hence the sufficiency follows from (9) and (10). This completes the proof.

We now have

Theorem 3.8. A ∈ (c(p),Vλ
σ ) if and only if

(i) there exists some integer B > 1 such that
Dn = sup

m

∑
k |a(n, k,m)|B−1/pk < ∞, (∀n);

(ii) there exists αk ∈ C such that lim
m→∞

a(n, k,m) = αk uniformly in n;

(iii) there exists α ∈ C such that lim
m→∞

∑
k a(n, k,m) = α uniformly in n.
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Proof. Necessity. Let A ∈ (c
(
p
)
,Vθ

σ ). Since ek and e are in c(p), (ii) and (iii) must hold. Fix n ∈ Z+. Put
σm,n(x) = tm,n(Ax). Since (c(p),Vθ

σ ) ⊂ (c0(p),Vθ
σ ), (σm,n)m is a sequence of continuous linear functionals on

c0(p), such that lim σm,n(x) exists uniformly in n. Therefore as in the necessity part of Theorem 7 the result
follows from uniform boundedness principle.

Sufficiency. Suppose that conditions (i)−(iii) hold and x ∈ c(p). Then there exists l such that |xk → l|pk → 0.
Hence given 0 < ε < 1,∃k0 : ∀k < k0

|xk → l|pk/M ≤
ε

B(2Dn + 1)
< 1

and therefore for k < k0

B1/pk |xk → l| < BM/pk |xk → l|
< (ε/2Dn + 1)M/pk < ε/2Dn + 1.

By (i) and (ii) we have∑
k

|a(n, k,m) − αk|B−1/pk < 2Dn.

Hence∑
k>k0

|(a(n, k,m) − αk) (xk − l)| < ε. (11)

Also,

lim
∑
k≤k0

|(a(n, k,m) − αk) (xk − l)| = 0, (12)

uniformly in n. Therefore by (11) and (12) we get

lim
∑

k

a(n, k,m)xk = lα +
∑

k

αk (xk − l) (13)

uniformly in n. This completes the proof.

Corollary 3.9. A ∈ (c0
(
p
)
,Vλ

σ ) if and only if conditions (i) and (ii) of Theorem 7 hold.

We write (c
(
p
)
,Vλ

σ ,P) to denote the subset of (c
(
p
)
,Vλ

σ ) such that Ax is (σ, λ)- convergent to the limit of
x in c(p). We now consider the class (c(p),Vλ

σ ,P).

Theorem 3.10. A ∈ (c(p),Vλ
σ ,P) if and only if (i) the condition of Theorem 8 holds; (ii) lim a(n, k,m) = 0 uniformly

in n; (iii)
∑

k a(n, k,m) = 1, uniformly in n.

Proof. Let A ∈ (c(p),Vλ
σ ,P). Then the conditions hold by Theorem 3. Let the conditions (i) − (iii) hold. Then

by Theorem 8 A ∈ (c(p),Vλ
σ ) and (13) reduces to

lim
∑

k

a(n, k,m)xk = l

uniformly in n. This proves the theorem.
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[18] E. Savaş, Matrix transformations and absolute almost convergence, Bull. Inst. Math. Acad. Sinica 15 (1987) 345–355.
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