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Abstract. In this paper, we introduce a pair of nondifferentiable higher-order symmetric dual models.
Weak, strong and converse duality theorems for this pair are established under the assumption of higher-
order invexity/generalized invexity. Self duality has been discussed assuming the function involved to be
skew-symmetric. Several known results are obtained as special cases.

1. Introduction

Duality in linear programming is symmetric, i.e, the dual of the dual is the primal problem. However,
the majority of dual formulations in nonlinear programming do not possess this property. Symmetric
dual programs have applications in the theory of games. Dorn [10] introduced the concept of symmetric
duality in quadratic programming. In nonlinear programming this concept was significantly developed by
Dantzig et al. [9]. Pardalos et al. [23] have discussed optimality conditions and duality for nondifferentiable
fractional programming with generalized convexity for multiobjective problems.

Chinchuluun and Pardalos [7] have surveyed of recent developments in multiobjective optimization, while
Pardalos et al. [22], and Zopounidis and Pardalos [27] have studied recent advances in multicriteria analysis
which includes multiobjective optimization.

Mangasarian [19] introduced the concept of second and higher-order duality for nonlinear programming
problems, which motivates several authors [1, 2, 11, 12, 15, 16, 25] in this field. The study of second and
higher-order duality is significant due to the computational advantage over the first-order duality as it
provides tighter bounds for the value of the objective function when approximations are used.

In the past, several generalization have been given for convexity. One of them is invex function, which was
introduced by Hanson [13] and Craven [8]. After this work, several authors [4, 16, 17] have also presented
extension of invexity and used them to derive duality results. Mond and Zhang [20] obtained duality
results for various higher-order dual problems under invexity assumptions. Chen [6] discussed duality
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theorems under higher-order generalized F−convexity for a pair of nondifferentiable programs. Yang et al.
[26] have discussed multiobjective higher-order symmetric duality under invexity assumptions. Ahmad et
al. [3] discussed higher-order duality in nondifferentiable multiobjective programming.

Recently, Ahmad [2] has unified higher-order duality in nondifferentiable multiobjective programming. In
this paper, we introduce a pair of nondifferentiable higher-order symmetric dual models. Weak, strong
and converse duality theorems for this pair are established under the assumption of higher-order invex-
ity/generalized invexity. Self duality has been discussed assuming the function involved to be skew-
symmetric. Several known results are obtained as special cases.

2. Preliminaries

Definition 2.1. The support function s(x|C) of C is defined by

s(x|C) = max{xT y : y ∈ C}.

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For any convex set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT(z − x) 5 0 for all z ∈ S}.

It is readily verified that for a compact convex set E, y is in NE(x) if and only if

s(y|E) = xT y.

Definition 2.2. A function φ : Rn
7→ R is said to be higher-order invex at u ∈ Rn with respect to η : Rn

× Rn
7→ Rn

and h : Rn
× Rn

7→ R, if for all (x, p) ∈ Rn
× Rn,

φ(x) − φ(u) − h(u, p) + pT
∇ph(u, p) = ηT(x,u){∇xφ(u) + ∇ph(u, p)}.

Definition 2.3. A function φ : Rn
7→ R is said to be higher-order pseudoinvex at u ∈ Rn with respect to

η : Rn
× Rn

7→ Rn and h : Rn
× Rn

7→ R, if for all (x, p) ∈ Rn
× Rn,

ηT(x,u)[∇xφ(u) + ∇ph(u, p)] = 0⇒ φ(x) − φ(u) − h(u, p) + pT
∇ph(u, p) = 0.

3. Wolfe Type Higher Order Symmetric Duality

We consider the following pair of Wolfe type higher order symmetric duals and establish weak, strong and
converse duality theorems.

Primal Problem (WHP):

Minimize
L(x, y, p) = f (x, y) + s(x|C) − yTz + h(x, y, p) − pT

∇ph(x, y, p) − yT[∇y f (x, y) + ∇ph(x, y, p)],
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subject to

∇y f (x, y) − z + ∇ph(x, y, p) 5 0, (3.1)

pT[∇y f (x, y) − z + ∇ph(x, y, p)] = 0, (3.2)

x, y = 0, z ∈ D, (3.3)

Dual Problem (WHD):

Maximize
M(u, v, r) = f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT

∇r1(u, v, r) − uT[∇u f (u, v) + ∇r1(u, v, r)],

subject to

∇u f (u, v) + w + ∇r1(u, v, r) = 0, (3.4)

rT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0, (3.5)

u, v = 0, w ∈ C, (3.6)

where
(i) f : Rn

×Rm
7→ R, 1 : Rn

×Rm
×Rn

7→ R and h : Rn
×Rm

×Rm
7→ R are twice differentiable functions, and

(ii) C ⊂ Rn and D ⊂ Rm are compact convex sets.

Theorem 3.1. (Weak Duality). Let (x, y, z, p) and (u, v,w, r) be feasible solutions for primal and dual problem,
respectively. Suppose that

(i) f (., v) + (.)Tw is higher-order invex at u with respect to η1 and 1(u, v, r),
(ii) −[ f (x, .) − (.)Tz] is higher-order invex at y with respect to η2 and −h(x, y, p),
(iii) η1(x,u) + u + r = 0,
(iv) η2(v, y) + y + p = 0.

Then

L(x, y, z, p) =M(u, v,w, r). (3.7)

Proof. From the hypothesis (iii) and the dual constraints (3.4), we get

(η1(x,u)T + u + r)[∇x f (u, v) + w + ∇r1(u, v, r)] = 0,

or

(η1(x,u)T + u)[∇x f (u, v) + w + ∇r1(u, v, r)] = −rT[∇x f (u, v) + w + ∇r1(u, v, r)],

which on using the dual constraint (3.5) implies that

(η1(x,u) + u)T[∇x f (u, v) + w + ∇r1(u, v, r)] = 0. (3.8)

Now by the higher order invexity of f (., v) + (.)Tw at v with respect to η1 and 1(u, v, r), we get

f (x, v) + xTw − f (u, v) − uTw − 1(u, v, r) + rT
∇r1(u, v, r) + uT[∇x f (u, v) + w + ∇r1(u, v, r)] = 0. (3.9)

Similarly, hypothesis (iv) along with the primal constraints (3.1) and (3.2), yields

(η2(v, y) + y)T[∇y f (x, y) − z + ∇ph(x, y, p)] 5 0. (3.10)
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Therefore, by higher-order invexity of −[ f (x, .) − (.)Tz] at y with respect to η2 and −h(x, y, p), we obtain

f (x, y) − yTz − f (x, v) + vTz + h(x, y, p) − pT
∇ph(x, y, p) − yT[∇y f (x, y) − z + ∇ph(x, y, p)] = 0. (3.11)

Adding inequalities (3.9) and (3.11), we get

f (x, y) + xTw − yTz + h(x, y, p) − pT
∇ph(x, y, p) − yT[∇y f (x, y) − z + ∇ph(x, y, p)]

= f (u, v) − vTz + uTw + 1(u, v, r) − rT
∇r1(u, v, r) − uT[∇x f (u, v) + w + ∇r1(u, v, r)].

Since xTw 5 s(x|C) and vTz 5 s(v|D), the above inequality implies

f (x, y) + s(x|C) − yTz + h(x, y, p) − pT
∇ph(x, y, p) − yT[∇y f (x, y) − z + ∇ph(x, y, p)]

= f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT
∇r1(u, v, r) − uT[∇x f (u, v) + w + ∇r1(u, v, r)],

or

L(x, y, z, p) =M(u, v,w, r).

Thus the result holds. �

Theorem 3.2. (Strong Duality). Let (x̄, ȳ, z̄, p̄) be a local optimal solution of (WHP). Assume that

(i) ∇pph(x̄, ȳ, p̄) is negative definite,
(ii)∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄) , 0,
(iii) ȳT[∇yh(x̄, ȳ, p̄) − ∇ph(x̄, ȳ, p̄) + ∇yy f (x̄, ȳ)p̄] = 0⇒ p̄ = 0,
(iv) h(x̄, ȳ, 0) = 1(x̄, ȳ, 0), ∇xh(x̄, ȳ, 0) = ∇r1(x̄, ȳ, 0), ∇yh(x̄, ȳ, 0) = ∇ph(x̄, ȳ, 0).

Then

(I) (x̄, ȳ, z̄, r̄ = 0) is feasible for (WHD) and
(II) L(x̄, ȳ, z̄, p̄) = M(x̄, ȳ, w̄, r̄).

Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WHP) and (WHD), then (x̄, ȳ, z̄, p̄ = 0)
and (x̄, ȳ, w̄, r̄ = 0) are global optimal solutions of (WHP) and (WHD), respectively.

Proof. Since (x̄, ȳ, p̄) is a local optimal solution of (WHP), there exist α, δ ∈ R, β ∈ Rm and µ, ξ ∈ Rn such
that the following Fritz-John conditions [18, 24] are satisfied at (x̄, ȳ, z̄, p̄):

α[∇x f (x̄, ȳ) + ξ + ∇xh(x̄, ȳ, p̄) − ∇pxh(x̄, ȳ, p̄)p̄] + [∇yx f (x̄, ȳ) + ∇pxh(x̄, ȳ, p̄)](β − αȳ − δp̄) − µ = 0, (3.12)

α[∇yh(x̄, ȳ, p̄) − ∇pyh(x̄, ȳ, p̄)p̄ − ∇ph(x̄, ȳ, p̄)] + [∇yy f (x̄, ȳ) + ∇pyh(x̄, ȳ, p̄)](β − αȳ − δp̄) = 0, (3.13)

∇pph(x̄, ȳ, p̄)(β − αp̄ − αȳ − δp̄) − δ[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (3.14)

βT[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (3.15)
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δp̄T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (3.16)

−β + µp̄ ∈ ND(z̄), (3.17)

ξTx̄ = s(x̄|C), ξ ∈ C, (3.18)

x̄Tµ = 0, (3.19)

(α, β, γ, δ, µ) , 0, (3.20)

(α, β, γ, δ, µ) = 0. (3.21)

Premultiplying (β − αp̄ − αȳ − δp̄) in equation (3.14), we get

(β − αp̄ − αȳ − δp̄)T
∇pph(x̄, ȳ, p̄)(β − αp̄ − αȳ − δp̄)

−δ(β − αp̄ − αȳ − δp̄)T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0,

which along with equations (3.15), (3.16) yields

(β − αp̄ − αȳ − δp̄)T
∇pph(x̄, ȳ, p̄)(β − αp̄ − αȳ − δp̄)

+αδȳT[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0,

Now from equations (3.1), (3.3) and (3.21), we obtain

(β − αp̄ − αȳ − δp̄)T
∇pph(x̄, ȳ, p̄)(β − αp̄ − αȳ − δp̄) = 0.

Using hypothesis (i), we have

β = αp̄ + αȳ + δp̄. (3.22)

This together with hypothesis (ii) and equation (3.14), yields

δ = 0. (3.23)

Now, we claim that α , 0. Indeed if α = 0, then equation (3.22) and (3.23), gives

β = 0.

Which together with equations (3.12) and (3.23), yields µ = 0, a contradiction to equation (3.21). Hence

α > 0. (3.24)

Using equations (3.13) and (3.22), we have

α[∇yh(x̄, ȳ, p̄) − ∇ph(x̄, ȳ, p̄) + ∇yy f (x̄, ȳ)p̄] = 0, (3.25)

which by hypothesis (iii) and equation (3.24), yields

p̄ = 0. (3.26)

Moreover, equation (3.12) along with (3.22), (3.26) and hypothesis (iv) yields

α[∇x f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄)] = µ,
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as α > 0,

∇x f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄) =
µ

α
= 0, (3.27)

Using equation (3.24)

x̄T[∇x f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄)] =
x̄Tµ

α
= 0. (3.28)

Now taking ξ = w̄ ∈ C, we find (x̄, ȳ, w̄, r̄ = 0) satisfies the constraints (3.4)-(3.6), that is, it is a feasible
solution for the dual problem (WHD).

Also, since β = γȳ and α > 0, equation (3.17) gives ȳ ∈ ND(z̄) and therefore

ȳT z̄ = s(ȳ|D). (3.29)

Hence using equations (3.18), (3.26), (3.29) and hypothesis (iv), we get

f (x̄, ȳ) + s(x̄|C) + h(x̄, ȳ, p̄) − p̄T
∇ph(x̄, ȳ, p̄) − ȳT[∇y f (x̄, ȳ) + ∇ph(x̄, ȳ, p̄)

= f (x̄, ȳ) − s(ȳ|D) + 1(x̄, ȳ, p̄) − r̄T
∇r1(x̄, ȳ, p̄) − x̄T[∇y f (x̄, ȳ) + ∇r1(x̄, ȳ, p̄)],

i.e.,

L(x̄, ȳ, z̄, p̄) = M(x̄, ȳ, w̄, r̄).

Also, by Theorem 3.1, (x̄, ȳ, w̄, p̄ = 0) and (x̄, ȳ, w̄, r̄ = 0) are global optimal solutions of the respective
problems.

Theorem 3.3. (Converse Duality). Let (ū, v̄, w̄, r̄) be a local optimal solution of (WHP). Assume that

(i) ∇rr1(ū, v̄, r̄) is positive definite,
(ii)∇u f (ū, v̄) − w̄ + ∇r1(ū, v̄, r̄) , 0,
(iii)ȳT[∇uh(ū, v̄, r̄) − ∇rh(ū, v̄, r̄) + ∇uu f (ū, v̄)r̄] = 0⇒ r̄ = 0,
(iv) 1(ū, v̄, 0) = 1(ū, v̄, 0), ∇u1(ū, v̄, 0) = ∇r1(ū, v̄, 0), ∇v1(ū, v̄, 0) = ∇ph(ū, v̄, 0).

Then
(I) (ū, v̄, z̄, p̄ = 0) is feasible for (WHP) and
(II) L(ū, v̄, z̄, p̄) = M(ū, v̄, w̄, r̄).

Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WHP) and (WHD), then (ū, v̄, w̄, r̄ = 0)
and (ū, v̄, z̄, p̄ = 0) are global optimal solutions of (WHD) and (WHP), respectively.

Proof. Follows on the line of Theorem 3.2.

3.1. Self Duality

A mathematical programming problem is said to be self-dual if primal problem having equivalent dual
formulation, that is, if the dual can be rewritten as in the form of the primal. In general, (WHP) and (WHD)
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are not self-duals without some added restrictions on f , 1 and h.

(i) If we assume f : Rn
× Rm

→ R and 1 : Rn
× Rm

× Rn
→ R to be skew symmetric, i.e.,

f (u, v) = − f (v,u), 1(u, v, r) = −1(v,u, r)

(ii) C = D

then we shall show that (WHP) and (WHD) are self-duals. By recasting the dual problem (WHD) as a
minimization problem, we have

Minimize

M(u, v, r) = −{ f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT
∇r1(u, v, r) − uT[∇u f (u, v) + w + ∇r1(u, v, r)]

subject to

∇u f (u, v) + w + ∇r1(u, v, r) = 0,
rT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0,
u, v = 0, w ∈ C.

Now as f and 1 are skew symmetric, i.e.,

∇u f (u, v) = −∇u f (v,u)

∇r1(u, v, r) = −∇r1(v,u, r),

the above problem recasting as :

Minimize
M(u, v, r) = f (v,u) + s(v|C) − uTw + 1(v,u, r) − rT

∇r1(v,u, r) − uT[∇u f (v,u) + w + ∇r1(v,u, r)]

subject to

∇u f (v,u) + w + ∇r1(v,u, r) 5 0,
rT[∇u f (v,u) + w + ∇r1(v,u, r)] = 0,

u, v = 0, w ∈ D,

Which shows that it is identical to (WHP), i.e., the objective and the constraint functions are identical. Thus,
the problem (WHP) is self-dual.

It is obvious that (x, y,w, p) is feasible for (WHP), then (y, x,w, p) is feasible for (WHD) and vice versa.

4. Mond-Weir type Higher Order Symmetric Duality

We consider the following pair of higher order symmetric duals and establish weak, strong and converse
duality theorems.
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Primal Problem (MHP):

Minimize L(x, y, p) = f (x, y) + s(x|C) − yTz + h(x, y, p) − pT
∇ph(x, y, p)

subject to

∇y f (x, y) − z + ∇ph(x, y, p) 5 0, (4.1)

yT[∇y f (x, y) − z + ∇ph(x, y, p)] = 0, (4.2)

pT[∇y f (x, y) − z + ∇ph(x, y, p)] = 0, (4.3)

x = 0, z ∈ D, (4.4)

Dual Problem (MHD):

Maximize M(u, v, r) = f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT
∇r1(u, v, r)

subject to

∇u f (u, v) + w + ∇r1(u, v, r) = 0, (4.5)

uT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0, (4.6)

rT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0, (4.7)

v = 0, w ∈ C, (4.8)

where
(i) f : Rn

× Rm
7→ R, 1 : Rn

× Rm
× Rn

7→ R and h : Rn
× Rm

× Rm
7→ R are twice differentiable functions, and

(ii) C ⊂ Rn and D ⊂ Rm are compact convex sets.

Theorem 4.1. (Weak Duality). Let (x, y, z, p) and (u, v,w, r) be feasible solutions for primal and dual problem,
respectively. Suppose that

(i) f (., v) + (.)Tw is higher-order pseudo-invex at u with respect to η1 and 1(u, v, r),
(ii) −[ f (x, .) − (.)Tz] is higher-order pseudo-invex at y with respect to η2 and −h(x, y, p),
(iii) η1(x,u) + u + r = 0,
(iv) η2(v, y) + y + p = 0.

Then

L(x, y, z, p) =M(u, v,w, r). (4.9)

Proof. From the hypothesis (iii) and dual constraints (4.5), we get

(η1(x,u)T + u + r)[∇x f (u, v) + w + ∇r1(u, v, r)] = 0,

or

η1(x,u)T[∇x f (u, v) + w + ∇r1(u, v, r)] = −(u + r)T[∇x f (u, v) + w + ∇r1(u, v, r)],

which on using dual constraints (4.6) and (4.7) implies that

η1(x,u)T[∇x f (u, v) + w + ∇r1(u, v, r)] = 0. (4.10)
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Now by the higher order pseudo-invexity of f (., v) + (.)Tw at v with respect to η1 and 1(u, v, r), we get

f (x, v) + xTw − f (u, v) − uTw − 1(u, v, r) + rT
∇r1(u, v, r) = 0. (4.11)

Similarly, hypothesis (iv) along with primal constraints (4.1)-(4.3), yields

η2(v, y)T[∇y f (x, y) − z + ∇ph(x, y, p)] 5 0. (4.12)

Therefore, by higher-order pseudo-invexity of−[ f (x, .)−(.)Tz] at y with respect to η2 and−h(x, y, p), we obtain

f (x, y) − yTz − f (x, v) + vTz + h(x, y, p) − pT
∇ph(x, y, p) = 0. (4.13)

Adding inequalities (4.11) and (4.13), we get

f (x, y) + xTw − yTz + h(x, y, p) − pT
∇ph(x, y, p)

= f (u, v) − vTz + uTw + 1(u, v, r) − rT
∇r1(u, v, r).

Since xTw 5 s(x|C) and vTz 5 s(v|D), the above inequality implies

f (x, y) + s(x|C) − yTz + h(x, y, p) − pT
∇ph(x, y, p)

= f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT
∇r1(u, v, r),

or

L(x, y, z, p) =M(u, v,w, r).

Thus the result holds. �

Theorem 4.2. (Strong Duality). Let (x̄, ȳ, z̄, p̄) be a local optimal solution of (MHP). Assume that

(i) ∇pph(x̄, ȳ, p̄) is positive or negative definite,
(ii)∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄) , 0,
(iii) p̄T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0⇒ p̄ = 0,
(iv) h(x̄, ȳ, 0) = 1(x̄, ȳ, 0), ∇xh(x̄, ȳ, 0) = ∇r1(x̄, ȳ, 0), ∇yh(x̄, ȳ, 0) = ∇ph(x̄, ȳ, 0).

Then

(I) (x̄, ȳ, z̄, r̄ = 0) is feasible for (MHD) and
(II) L(x̄, ȳ, z̄, p̄) = M(x̄, ȳ, w̄, r̄).

Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions of (MHP) and (MHD), then
(x̄, ȳ, z̄, p̄ = 0) and (x̄, ȳ, w̄, r̄ = 0) are global optimal solutions of (MHP) and (MHD), respectively.

Proof. Since (x̄, ȳ, p̄) is a local optimal solution of (MHP), there exist α, γ, δ ∈ R, β ∈ Rm and µ, ξ ∈ Rn such
that the following Fritz-John conditions [18, 24] are satisfied at (x̄, ȳ, z̄, p̄):

α[∇x f (x̄, ȳ) + ξ + ∇xh(x̄, ȳ, p̄) − ∇pxh(x̄, ȳ, p̄)p̄] + [∇yx f (x̄, ȳ) + ∇pxh(x̄, ȳ, p̄)](β − γȳ − δp̄) − µ = 0, (4.14)
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α[∇y f (x̄, ȳ)−z̄+∇yh(x̄, ȳ, p̄)−∇pyh(x̄, ȳ, p̄)p̄]+[∇yy f (x̄, ȳ)+∇pyh(x̄, ȳ, p̄)](β−γȳ−δp̄)−γ[∇y f (x̄, ȳ)−z̄+∇ph(x̄, ȳ, p̄)] = 0,
(4.15)

∇pph(x̄, ȳ, p̄)(β − αp̄ − γȳ − δp̄) − δ[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (4.16)

βT[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (4.17)

γȳT[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (4.18)

δp̄T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (4.19)

αȳ − β + γȳ + µp̄ ∈ ND(z̄), (4.20)

ξTx̄ = s(x̄|C), ξ ∈ C, (4.21)

x̄Tµ = 0, (4.22)

(α, β, γ, δ, µ) , 0, (α, β, γ, δ, µ) = 0. (4.23)

Premultiplying equation (4.16) by (β − αp̄ − γȳ − δp̄) and then using equations (4.17)-(4.19), we get

(β − αp̄ − γȳ − δp̄)T
∇pph(x̄, ȳ, p̄)(β − αp̄ − γȳ − δp̄) = 0,

which along with hypothesis (i) yields

β = αp̄ + γȳ + δp̄. (4.24)

This together with hypothesis (ii) and equation (4.16), yields

δ = 0. (4.25)

Now, we claim that α , 0. Indeed if α = 0, then equation (4.24) and (4.25), gives

β = γȳ.

Which together with equations (4.14) and (4.15), yields

µ = 0,

and

γ[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄) = 0, respectively.

Now by/using hypothesis (ii), ∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄) , 0, implies γ = 0 and therefore β = 0, thus
(α, β, γ, δ, µ) = 0, a contradiction to equation (4.23). Hence

α > 0. (4.26)

Using equations (4.17)-(4.19), we have

(β − γȳ − δp̄)T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0.

This with equation (4.24) gives

αp̄T[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0, (4.27)
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which by hypothesis (iii) and equation (4.26), yields

p̄ = 0. (4.28)

Therefore equation (4.24) reduces to

β = γȳ. (4.29)

Also, it follows from equations (4.15), (4.24), (4.28) and hypothesis (iv) that

(α − γ)[∇y f (x̄, ȳ) − z̄ + ∇ph(x̄, ȳ, p̄)] = 0,

which together with/along with hypothesis (iii) gives

γ = α > 0. (4.30)

So equation (4.29) implies

ȳ =
β

γ
= 0. (4.31)

Moreover, equation (4.14) along with (4.24), (4.28) and hypothesis (iv) yields

α[∇y f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄)] = µ,

as α > 0,

∇y f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄) =
µ

α
= 0, (4.32)

Using equation (4.26)

x̄T[∇y f (x̄, ȳ) − ξ + ∇r1(x̄, ȳ, p̄)] =
x̄Tµ

α
= 0. (4.33)

Now taking ξ = w̄ ∈ C, we find (x̄, ȳ, w̄, r̄ = 0) satisfies the constraints (4.5)-(4.8), that is, it is a feasible
solution for the dual problem (MHD).

Also, since β = γȳ and α > 0, equation (4.20) gives ȳ ∈ ND(z̄) and therefore

ȳT z̄ = s(ȳ|D). (4.34)

Hence using equations (4.21), (4.28), (4.34) and hypothesis (iv), we get

f (x̄, ȳ) + s(x̄|C) − ȳT z̄ + h(x̄, ȳ, p̄) − p̄T
∇p̄h(x̄, ȳ, p̄)

= f (x̄, ȳ) + s(ȳ|D) − x̄Tw̄ + 1(x̄, ȳ, 0) − r̄T
∇r̄1(x̄, ȳ, 0),

i.e.,

L(x̄, ȳ, z̄, p̄) = M(x̄, ȳ, w̄, r̄).

Also, by Theorem 4.1, (x̄, ȳ, w̄, p̄ = 0) and (x̄, ȳ, w̄, r̄ = 0) are global optimal solutions of the respective
problems.



T. R. Gulati, Khushboo Verma / Filomat 28:8 (2014), 1661–1674 1672

Theorem 4.3. (Converse Duality). Let (ū, v̄, w̄, r̄) be a local optimal solution of (MHP). Assume that

(i) ∇rr1(ū, v̄, r̄) is positive or negative definite,
(ii)∇u f (ū, v̄) − w̄ + ∇r1(ū, v̄, r̄) , 0,
(iii) r̄T[∇u f (ū, v̄) − w̄ + ∇r1(ū, v̄, r̄)] = 0⇒ r̄ = 0,
(iv) 1(ū, v̄, 0) = 1(ū, v̄, 0), ∇u1(ū, v̄, 0) = ∇r1(ū, v̄, 0), ∇v1(x̄, ȳ, 0) = ∇ph(x̄, ȳ, 0).

Then

(I) (ū, v̄, z̄, p̄ = 0) is feasible for (MHP) and
(II) L(ū, v̄, z̄, p̄) = M(ū, v̄, w̄, r̄).

Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions of (MHP) and (MHD), then (ū, v̄, w̄, r̄ = 0)
and (ū, v̄, z̄, p̄ = 0) are global optimal solutions of (MHD) and (MHP), respectively.

Proof. Follows on the line of Theorem 4.2.

4.1. Self Duality

A mathematical programming problem is said to be self-dual if primal problem having equivalent dual
formulation, that is, if the dual can be recast in the form of the primal. In general, (WHP) and (WHD) are
not self-duals without some added restrictions on f , 1 and h.

(i) If we assume f : Rn
× Rm

→ R and 1 : Rn
× Rm

× Rn
→ R to be skew symmetric, i.e.,

f (u, v) = − f (v,u), 1(u, v, r) = −1(v,u, r)

(ii) C = D

then we shall show that (MHP) and (MHD) are self-duals. By recasting the dual problem (MHD) as a
minimization problem, we have

Minimize
M(u, v, r) = −[ f (u, v) − s(v|D) + uTw + 1(u, v, r) − rT

∇r1(u, v, r)]

subject to

∇u f (u, v) + w + ∇r1(u, v, r) = 0,
uT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0,
rT[∇u f (u, v) + w + ∇r1(u, v, r)] 5 0,
u, v = 0, w ∈ C.

Now as f and 1 are skew symmetric, i.e.,

∇u f (u, v) = −∇u f (v,u)
∇r1(u, v, r) = −∇r1(v,u, r),

therefore the above problem recasting as :
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Minimize
M(u, v, r) = f (v,u) + s(v|C) − uTw + 1(v,u, r) − rT

∇r1(v,u, r)

subject to

∇u f (u, v) + w + ∇r1(u, v, r) 5 0,
uT[∇u f (v,u) + w + ∇r1(v,u, r)] = 0
rT[∇u f (v,u) + w + ∇r1(v,u, r)] = 0,
u, v = 0, w ∈ D,

Which shows that it is identical to (MHP), i.e., the objective and the constraint functions are identical. Thus,
the problem (MHP) is self-dual.

It is obvious that (x, y,w, p) is feasible for (MHP), then (y, x,w, p) is feasible for (MHD) and vice versa.

5. Special Cases

(1) After removing inequalities (4.3), (4.7), (MHP) and (MHD) become the nondifferentiable programming
problems (SP) and (SD) considered by Chen [6]. Also if h(x, y, p) = (1/2)pT

∇yy f (x, y)p and 1(u, v, r) =
(1/2)rT

∇xx f (u, v)r, then (MHP) and (MHD) become the problems considered by Hou and Yang [14].

(2) If p = 0 and r = 0, then (MHP) and (MHD) become a pair of nondifferentiable symmetric dual programs
considered in Mond and Schechter [21]. In addition if the C and D are null matrices, then (MHP) and
(MHD) become a pair of single objective differentiable symmetric dual programs considered in [5] with the
omission of nonnegativity constraints from (MP) and (MD).

(3) We can also construct a pair of Wolfe and Mond-Weir type higher-order symmetric dual programs by
taking C = Ay : yTAy 5 1 and D = Bx : xTBx 5 1 in our models, where A and B are positive semidefinite
matrices. For C and D so defined, (xTAx)1/2 = S(x|C) and (yTBy)1/2 = S(y|D). Thus, duality results for such
a dual pair are obtained.
Also our model can be reduced to a number of other existing models in literature.
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