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Abstract. A new iterative method is presented for numerical solution of nonlinear evolutionary problems.
The convergence properties of the proposed method are analysed in abstract framework by using the
concepts of consistency, stability and order. Both the @-functions and semigroup properties are used to
overcome the presence of unboundedness of the operator. In order to confirm the theoretical results, the
method is applied to three benchmark problems from the literature. The numerical results are compared
with traditional splitting methods and confirm that the proposed method is more accurate as well as more
efficient than the traditional splitting methods.

1. Introduction

Several phenomena in engineering and science exhibit substantially nonlinear behaviour. These phe-
nomena are often modelled with the help of nonlinear differential equations. Due to non-availability of
analytic solution for these nonlinear differential equations, researchers have developed several numerical
methods to find approximate solutions of such equations. Operator splitting is one of the widely used
technique in the literature. The basic idea of the operator splitting procedures is that instead of the sum, the
operators are considered separately. This divides the original problem into sub-problems and the numerical
solution of the original problem is obtained from numerical solutions of these sub-problems. The operator
splitting techniques have been applied by many researchers to solve various types of differential equa-
tions numerically, see [1, 3, 5, 11, 15] for linear non-autonomous case and [13, 16] for nonlinear differential
equation.

There are certain disadvantages of the traditional splitting procedures and due to this reason a new type
of operating splitting method called iterative splitting method was developed by Faragé and Geiser [7].
Further applications of this method can be seen in [8, 9]. The iterative splitting method was also applied in
combination with Newton’s method to nonlinear differential equations in [10].

We proposed a new iterative splitting method and analysed its convergence properties for solving linear
time-dependent differential equations in [18]. The present work is an extension of our earlier work [18] to
nonlinear problems. In the present study, the essential tools in the construction of this new scheme include
the iterative splitting process and the Magnus expansion.
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In this work, we will develop as well as analyse a new splitting method for nonlinear evaluation equation
of the following form:

d

= Albwu(D), 0<E< by, )
subject to the initial condition

u(0) =ug € X, (2)

on some Banach space X, where A(t, u) is an unbounded nonlinear operator. Here, the structure of the
operator A(t, u) suggests a decomposition into two parts in the following form:

A(t, u(®)u(t) = Tu(t) + V(Eu@)u(), u@): D(T)NDV) - X, 3)
with the unbounded operator T : ID(T) ¢ X — X and bounded operator V (¢, u) : D(V) € [0, tpna] X X — X.
Thus, we have

w(t) = Tw(t)+ V(t,v)o(t) 4)

(A)(O) = Uy,
and

ot) = Tw(t)+ V(t,0v)v(t)

v(0) = uy, )
where u(t) = v(t). Eq. (5) represents a homogeneous equation, however, due to the time-dependence and
nonlinearity, we can not use the exponential function as a fundamental solution of this equation. We use

Magnus expansion instead and with the help of the nonlinear Magnus expansion the fundamental solution
of Eq. (5) can be expressed as

u(t) = exp(Qy(t, uo))uo (6)
where
Q= o,
¢
ol = fV(s,uo)ds,
0
m—ZB t
Qi = k—f f ad’E)[m_”V(s,tem*l]uo)ds, m>2, 7)
= < Jo

=
(=}

and we assume the approximation Q(t) ~ QI"1(t). The first order Magnus operator is obtained using Euler’s
formula and is given as follows:

t
ol = fo V(s, up)ds = hV(0, ug) + O(H?). 8)

The second order Magnus operator is obtained with the help of trapezoidal rule, and is given below:

h
QP = f V(s, e u)ds
0

g(V(O, uo) + V(h, e ug)) + O(1). )

Detailed discussions about the nonlinear Magnus expansion can be found in the reference [4].

The structure of this paper is as follows: In Section 2, the algorithms of the new scheme are presented.
In Section 3, convergence properties of the constructed scheme are studied in an abstract framework and
in order to accomplish this, we use both the exponential integrator and the semigroup approaches for our
analysis. In Section 4, several numerical examples are illustrated to confirm our theoretical results and
efficiency of the given scheme. Finally, some conclusions are drawn in Section 5.
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2. Proposed Iterative Splitting Method

In this section, we will first give a general idea of splitting methods with a brief discussion of some of the
well-known splitting methods. Then, we will derive an algorithm for the new iterative splitting scheme.

The general idea of splitting methods is introduced by considering the initial value problem given in
Eq. (1) with the initial condition given in Eq. (2) on the time interval [0, t,,4] where t,,; € R*. As mentioned
before in the introduction section, we suppose for A(t, ) a two-term splitting of the form T(u) + V/(t, u).

Let us divide the integration interval [0, f,,4] in # equal parts by the points ty, ti, ..., t,, where the length
of each subinterval is h = tj;1 —t; = t,a/n,j = 0,1...n. In the sequel, we give the formulas of splitting
methods with the help of Magnus operator which was introduced earlier. For simplicity of the expression,
we give the numerical solutions on [0, h].

2.1. Strang splitting

We first deal with the well known splitting method, Strang splitting, and the solution is given as follows:
s I
Uy = oI eg(V(O,uO)W(h,eTz ))eT% o, (10)

2.2. Symmetrically weighted splitting
Besides Strang splitting, there is another well-known second order splitting method in literature that is
called symmetrically weighted splitting. The solution in this case is given below.

Uy(h) = % (eTh A VOV u() 4 5 (VOu)+V(hu(h)) eTh) o (11)

Repeat this procedure, by taking 1o = U(h) where U denotes the numerical solution, until desired time is
achieved.

2.3. Derivation of the Algorithm for New Iterative Splitting Scheme

In this section, we extend the scheme in [18] to nonlinear case. For this purpose, we apply the second
order iterative process on each subinterval [t}, ;1] and is described below.
The sub-equations obtained from the original equations are given by

1 Tup + V(t, Ut)U(E)  ui(t)) = U(E)), (12)

1 Tuy + V(E, up(tp)ua(ty)  uz(ty) = U(E)), (13)

where u(tj) = U(t;) denotes the numerical approximation to the exact solution u(t;) at the time ¢ = t; and
U(tg) = ug. The formal solution of the sub-equations given in Eq. (12) and Eq. (13) on the time interval
[¢,t + K] can be written as

t+h
uit+h) = Ot+ht)UE) + f @; (t +h,s)Fi(s)ds, i=1,2,
t

where F; = V(t, U(t))U(t), F» = Tu;(t) and

D1 (t+ I, t) T
Oyt +h,t) = o3 IVEUO)+V (t+hun ()]

Here @, is obtained by means of nonlinear Magnus operator. Next we use the trapezoidal rule to approxi-
mate the integral:

t+h
f ®;Fids = g[P,-(t +h) + Dyt + h, HFi()] + O(H°). (14)
t
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Note that ;(t + h, t + h) = [ where [ is the identity operator. After combining approximation given in Eq.

(14) with the iterative schemes given in Egs. (12)-(13) and rearranging expressions, we obtain the first order
approximation

h h
u?” = et [u’f + EV(t,,,uo(tn))ug] + Ev(t” +h, ug“) ug“, (15)

and the second order approximation

ultl = e[Vl Vit ] [U(tn)+gTu'f]+§Tu'fH, (16)

where U(t, + k) = uy(t, +h) and uy = u;(t,). Repeat this procedure by taking u(t,) = ux(t, + h) for next
interval until the desired time ¢,,; is reached.

3. Convergence Analysis

The main idea of this section is to analyze the convergence behavior of the method given in the previous
section. For the convergence, we will investigate consistency and stability issues. We assume that T is an
unbounded operator whereas V(t, 1) is a bounded operator. In our analysis, we define an operator norm
as ||.|lx on (X, ||.llx). To simplify the notations, we will write ||.|| instead of ||.||x. Throughout this section u(h)
and U(h) represent exact and numerical solutions, respectively.

In our proofs, we will use the following auxiliary assumptions:

Assumption 3.1. Let X be the Banach space with the norm ||.|. We assume T is a linear operator on X
and that T is the infinitesimal generates Cy semigroup ¢/ on X. Particularly, this assumption implies that
there exist constants C and w such that

7| < cet <1, t>o0. (17)

Assumption 3.2. In order to simplify the calculations, we denote V(t, u(.))u(.) as g(u(.)) throughout this

section. Then, there exists a constant o, k=0,1,2,... such that
lsPw®)| < a, k=01,2,... (18)
Assumption 3.3. Let V(t,u) € D(T) N H'. Then, there exists a constant Sx, k=0,1,2,...such that
ITa®@®)|| < Suo, k=0,1,2,.... (19)

Assumption 3.4. Let X be a Banach space with norm ||.||. Then, there exists a constant M, k = 0,1,2,...

such that
[Tu®|| < Miuo, k=0,1,2,.... (20)
Proposition 3.1. [T, (sT)] =0, k =1,2,3,... where [T,eT] = 0.

Proof. This proof follows the line of induction. Suppose k = 1. By using the definition of the ¢ — function
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and the identity [T, "] = 0, we obtain

[T, 1(sT)] = Tpa(sT) = p1(sT)T
eT—1 T
=T -
sT sT
o TeT-T STT-T
B sT sT
TesT — &TT
- sT
[7.¢7]
B sT
_— 1)

Next assume that [T, @,(sT)] = 0. In order to show that [T, p41] = 0, we note that the recurrence relation

@r(sT) — @x(0)

P (sT) = — Po(sT) =" (22)
holds. This relation leads to
[T, pa(sT)] = T@rea(sT) — Qe (ST)T
_ T(pk(sT) —¢x(0)  @i(sT) - (Pk(O)T
sT sT
_ Tor(sT) = To(0) — i(sT)T — 1 (0)T
B sT sT
_ TolsT) = Tor(0) — (kT — ¢(0)T)
sT
_ Tou(sT) = (ST — (Ter(0) — (0)T)
sT
[T (s = [T, i (0)]
= T . (23)
Due to the assumption [T, px(sT)] = 0 and the definition of ¢4(0), we have
T, ] - I[T, (0
O U Rl U2)
= 0 (24)

Our general reference on the exponential integrator is the survey of Hochbruck and Ostermann [12]. Moreover,
we refer to [6] for the exponential integrators in a framework of semigroup. O

3.1. Consistency Analysis

Proposition 3.2. The proposed iterative splitting is first order if we consider (12) with the error bound
lu(h) = Ul < pH*. (25)
Here B depends only on a.

Proof. We define the local error by e; = U(t;) — u(t;), j = 0,1,2,...,n. For simplicity we consider the time
interval [0,h] only. The exact solution of Eq. (1) can be written as

h
uth) = e™Muy+ f eT(h_s)g(u(s))ds. (26)
0
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In order to establish the local error, the primary tool is to employ the variation-of-constant formula. Thus,
the first order numerical solution of Eq. (1) is given by

h
um = eMug+ f "9 g(u)ds. (27)
0

By subtracting Eq. (27) from Eq. (26) we obtain

I
() = U]l = fﬁWWMm—wwm
0
1 s
< f elh=s) ( f 8g(u(p))dp) ds|| . (28)
0 0
Applying Assumption 3.1 and Assumption 3.2, we get
llu(h) = UB)II < H*B.
0

Proposition 3.3. Let Assumption 3.1 and Assumption 3.3 be fulfilled. Then, the proposed method has second order
approximation if we consider (16) with the error bound

lu(h) — U(h)l| < Gh (29)
Here G depends on E;, R, and S; where E; is the bound for ||Dy(h, s)|| and Ry is the bound for oo (hT).

Proof. A primary tool for the derivation of our local error representation is variation-of-constant formula.
The fundamental sets of solutions of Eqs. (12) and (13), respectively, are given as follows:

i
wh) = eMug+ f e" M=V (ug)uods, (30)
0

h
Mz(h) (I)z(l’l, O)up + f (D2(h, s)Tul(s)ds. (31)
0
Here, ©,(h,0) is the numerical flow of Eq. (13). Especially, we construct this flow by using Magnus
expansion due to the nonlinearity of the operator.
On the other hand, the exact solution can be written as in the following forms:

vl
u(h) = e™Mug + f e" "=V (u(s))u(s)ds, (32)
0
or
i
u(h) = O(h, O)up + f Dy (h, s)Tu(s)ds. (33)
0
Moreover,
h
h) = F(u(s))ds, 34
u(h) m+£ (u(s))ds (34)

where F(u(s)) = Tu(s) + V (s, u(s))u(s).
By substituting Eq. (31) into Eq. (33), we have

h h S
wp(h) = Dy(h, O)ug + f D, (h, s)Teugds + f ®z(h,s)T( f eT<S-P>V(u0)u0dp)ds. (35)
0 0 0
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As we mentioned before, set V (¢, u)u as g(u(t)). Then,

h Y] S
u(h) = Dok, O)ug + fo @y (h, s)Te™ugds + fo Cbz(h,s)T( fo eT(S_”)g(u(p))dp)ds. (36)

Since T is unbounded, to prove the consistency of the second order method, we restrict ourselves to the
@ — function representation. Then, Eq. (35) and Eq. (36) can be represented by using ¢ — function and we
have the following:

h h
u(h) = (Dz(h,O)uo+f (Dz(h,s)TeThuods+f Dy (h, s)Tp1(sT)sg(up)ds, (37)
0 0
whereas the exact one is
h 7 P
uth) = ®2(h,0)uo+f (Dz(h,s)TeThuods+f CI)Z(h,s)Ts[zgok(sT)sk‘lg(k‘l)(uo) ds
0 0 k=1
" Ty
+ f D, (h, 5) f 2 TgV(&)dEds. (38)
0 o (-1

For estimating the error bound, we subtract Eq. (37) from Eq. (38) and obtain

h p
u(h) — un(h) = fo (Dz(h,s)Ts(Z(pk(sT)sk_lg(k_l)(uo)]ds.
k=2

Here, the auxiliary proposition, that is, Proposition 3.1 is used. This yields

i P
u(h) — u(h) = fo ‘132(h,5)5[z <pk<sT>s"‘1Tg<’<‘1>(uo>]ds.
k=2

Thus,
h p L (1) h T (T _ é)p—l ®)
) — ()l = fo ch(h,s)(kZ:; PHT)S Ty (Mo)]ds v fo Do, 5) fo S o s,
Hence,
lu(h) — u (W)l < j;h ||CI)2(h,s)sz(pz(sT)Tg’(uo)llds+6§
h
< b fo Lllpa(sTITy (o) lds + O(). (39)

Here, by means of the boundedness of V(t, 1) operator, E; denotes the bound for ||@,(k, s)||. Moreover, the
remainder term 6’; is bounded by O(i*).
Using Assumption 3.1 and the following definition of ¢ operators

1 gk-1
@i(hT) = fo eh(l‘Q)deG, k=1,2,3,.... (40)
we can deduce that
1 k-1
ol < [ m’da
lpeh T < Ry, k=1,2,3,.... 41)
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Using Eq. (41) and Assumption 3.3, we obtain
lu(h) = oWl < KE1R>S1 + O(?). (42)

Here R; is the bound for ¢, (hT). It proves that the second order method is also consistent. []

3.2. Stability Analysis
Proposition 3.4. The new first order iterative splitting scheme is stable on [0, t.,q] with the bound
Il < Killuoll (43)

where the constant Ky depends on t,,q and a.

Proof. To prove the stability of the new first order method, we employ the standard techniques. For this
purpose, we start with rewriting the formulation of the method as in the following form

ut=uem) = e™ug+ Gy, U =uy, (44)
where

]
G = f e"P=9V (s, uo)uods,
0

which is bounded by [|G1|| < haollugl|. Rearranging Eq. (44), we get

I = 1le™ul + Gl < lle™ulll + IGall,
1L < luoll + havlluoll = (1 + hao)lfuoll- (45)

Recursively we get the stability polynomial for iterative scheme at first order,
Il < (1 + hao)"lluoll < e'lfuol. (46)
Thus, the proof is concluded. O

Proposition 3.5. Similarly, the new second order iterative splitting scheme is stable if ||D(t, s)|| < 1 on [0, tpnq] with
the bound
IU"| < Kaug

where K, depends on Eq, tonq, R1, 8y and My. The constants Eq and Ry are the bounds for Dy (h, s) and @1, respectively.

Proof. The proof follows the line of previous one. In order to obtain the stability bound for the second order
method, Eq. (13) is rewritten as in the following form

I
Ut=uUwm) = o(t+hHu’ + f Dy (h, ) Tuads, (47)
0
where U° = u(0). Substituting 1 into Eq. (47) and using the linearity of T leads to

h h s
Ut =uUe) = (h,0)up +f @, (h, s)Te™ugds +f DO, (h, s)T(f eT(S_P)g(uo)dp) ds. (48)
0 0 0
Rearranging by means of the ¢—functions, we have
h h
Ut =uUw) = @y, 0)ug + f @, (h, s)Te ugds + f Dy (h, 3)Ts1(sT)g(uo)ds. (49)
0 0

After taking norm, Assumption 3.3 and boundedness of ®,(/, s) lead to

h 1
It < Equg + f E1Mouods + f E1s¢1(sT)|ITg(uo)lds.
0 0



S.0. Korkut Uysal, G. Tanoglu / Filomat 31:9 (2017), 2713-2726 2721

Using Assumption 3.2., we have

A

W2
||l/[||1 < E1u0 + hE1M0u0 + ?ElRl UO

IN

E; (1 +hM, + hz%) Uy,

where R; is the bound for ¢;(sT) as shown in Eq. (41). Recursively,
" < EfetUy,

where y depends on Ry and M. As a consequence, the second order scheme is stable if [|®,|| < 1. O

Proposition 3.6. The global error of the new iterative splitting at the second order is bounded by
") —u* Ml < 1k +O0)

Proof. We use the following insignificant modification of telescoping identity. We can show by induction
that the error after n > 0 steps is given by

n-1
wy - u'h) = Y UNUy - uults ), (50)
j=0

where Uj, denotes the proposed scheme. As we proved in Proposition 3.5, IIU]iII is bounded by Kj|[uo|| and
u(t,-1-j) is also bounded, say «, because of the well-posedness of the solution. This yields

n-1
() —u" (Wl < Z Kall(Uy, — un)xcuol|
=0
Using Proposition 3.3, one can obtain

1" (h) — u™ (W)

A
=
0
@)
'
a2
5

IA
=
S
<
=

(51)

Here |1 = t,4xKal|luol| where G is described in Proposition 3.3. 0O

4. Numerical Experiments

In order to show the efficiency of the proposed method we will consider a few test problems. These
include Duffing equation, Van-der Pol equation and Schrodinger equation.

1. Duffing Equation

Let us consider one dimensional unforced Duffing oscillator
q" +aq+ €q3 = 0, (52)

where the initial conditions are q(0) = 1 and 4’(0) = 0. Here a controls the size of the stiffness and ¢ controls
the amount of nonlinearity in the restoring force. The analytic solution is given in [2] as

1 1
qt) = cost+e §c053t—§cost—§tsint , €07, (53)

where o = 1.
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First of all, we transform Eq. (52) into a system where @ = 1 by redefining the variables as g(f) = g1(t)
and ¢(t) = g2(t), and u(t) = (q1(), g2(t))T. The resulting system can be expressed in matrix form as follows:

(%) = (2% o (%)
) (—01 é)(?,;)*(_fqg 8)(?1;) (54)

In order to compare the accuracy of different splitting methods given in Section 2, we solve Eq. (52) for
tod = 10 and & = 107* with different values of At.

In Table 1, the convergence orders are presented in the discrete Lo,-norm numerically. The obtained
results are in perfect agreement with theoretical results. From Table 1, we also conclude that the new sec-
ond order iterative splitting scheme is more accurate than not only Strang splitting but also symmetrically
weighted splitting.

Proposed Method Strang Marchuk Splitting Symmetrically Weighted Splitting
At Error Order Error Order Error Order
1/8  3.4097e-006 - 7.2936e-006 - 7.2704e-006 -
1/16  8.4748e-007 2.0336 3.6175e-006 1.0116 3.6150e-006 1.0080
1/32 2.08912e-007 2.0203 1.7779e-006 1.0248 1.7774e-006 1.0242

Table 1: Comparison of errors for several values of h on the interval [0, 10] with various methods where ¢ = 1074

2. Van-der Pol Equation

In the second test problem we consider the Van-der Pol equation which is one of the most potently
studied systems in nonlinear dynamics. In our study, the second order autonomous Van-der Pol equation
is discussed which is given as follows:

i+u@®-Di+x = 0, x(0)=2, %0)=0. (55)

The parameter u is a positive scalar denoting the nonlinearity and the strength of the damping. Considering
X1 =xpand X, = — y(x12 — 1)xp — x1. After splitting, we obtain

X 0 1 x 0 0 X
RN R [ T g (] o

In order to see the effects of nonlinearity of the equation, we consider u = 10. Since there is no exact solution
for Eq. (55), therefore, the numerical results obtained from the proposed method are compared with the
numerical results obtained using MATLAB routine ODE23. Fig. 1 shows that the proposed method is in a
perfect agreement with the numerical solution of ODE23.

Furthermore, the phase diagrams of the solution obtained from both the proposed method and ODE23
are shown in Fig. 2, which are also in perfect agreement with each other.

We note that ODE23 uses an implicit method, whereas the proposed method is explicit. In spite of the
fact that the new splitting method is explicit, it preserves the limit cycle of the given equation.

3. Schrodinger Equation

We consider the cubic nonlinear Schroédinger equation:
oy = Hi(x,t) (57)
i P + (G) + alyP)y (58)
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Proposed Method ODE23

10

-0.5 ‘ -0.5
-1 -1
-15 -15
-2 -2
20 30 40 50 6
time

10

0 10 0 0 10 20 30 40 50 60

time

(a) The Proposed Method. (b) ODE23s-code in MATLAB.

Figure 1: The numerical solutions obtained on t € [0, 60] where u = 10.

Proposed Method Limit Cycle of ODE23s

- -15 -10 -5 5 10 15 B -15 -10 -5 0 5 10 15

0
\dot{x}

(a) The Proposed Method. (b) ODE23s-code in MATLAB.

Figure 2: Trajectories of Equation (55) where u = 10 and ¢ € [0, 60].

where 1(x, t) denotes the probability amplitude for the particle to be found at position x at time t and 7 is
Planck constant. In order to transform the equation into system form, we make a change of variable i as
n+i& in Eq. (58). This yields

- 0 BA,” +(G(x) + alyP) [ 1 ]
" [ ¢ } ) [ 3%~ (G() + alyP?) 0 £ | (59)
Next, we split the system as T + V(x, ) where
[ o pa? ~ 0 (G@) + alyP)
T—[ _‘Baxz 0 ],V(xﬂ/’)—[ —(G(x)+a|1p|2 0 .

Here, 92 denotes the spatial derivative and 0 denotes the zero matrix whose size equals to the size of d,”.
We use central difference to approximate the spatial derivative. Note that the matrices in Eq. (59) are
skew-symmetric and therefore, the eigenvalues are purely imaginary. This guarantees that the solutions
are bounded.

In this study, we consider i =1, = —%,a =30 and G(x) = ﬁ, that is,

. 1 1
0y = =20 Y+ (———— +30yP), (60)
1+sin“x

with the Dirichlet boundary conditions

1P(-’CL/t) = I1b(-xR/t) = 0 te[ortend]r (61)
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where the initial condition is taken as ¢o(x) = y exp(sin 2x). Physically, the probability of any particle in
Equation (60) is given by
XR
f [YlPdx < 1.

In order to see the validity of the solutions obtained from the proposed iterative splitting method, we need

1
XR
f [ol?dx = 1.

to set y as ool due to the following fact:

0
We solve Eq. (60) using the splitting process given in Eq. (59). The numerical solutions and the contour
plots are shown for the proposed iterative splitting and the Strang splitting methods in Figs. 3 and 4,
respectively.
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probability density of New iterative splitting

(a) Numerical Solution. (b) Contour Plot.

Figure 3: Probability density of the particle in Equation (60) for the proposed method.
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(a) Numerical Solution. (b) Contour Plot.

Figure 4: Probability density of the particle in Equation (60) for Strang splitting method.

In these figure, we have assumed that the system is defined in the interval x € [-20, 20], which is split into
N, =100 parts. We integrate the system using proposed iterative splitting method with the time-step size
At = 0.08 up to final time ¢ = 8. It can be observed that our method also preserves the probability density

of the particle in (60).
In order to check the conservation of the mass, we have for the initial condition as

20
f lpolPdx = 0.4000,

-20
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and at the end point, that is, for t = 8, we have

20 20
f [Wpml*dx = 0.3788, f [sml*dx = 0.3780,
-20 -20
for the numerical solutions of proposed iterative splitting method and Strang splitting denoted by PM and
SM, respectively. We observe that the difference between the initial mass and the final mass is negligible.
The CPU times for both the proposed method and Strang splitting method for different values of N;
and N, are presented in Table 2. From the table it is obvious that the proposed method is more efficient
than Strang splitting. Fig. 5 shows that the second order Runge-Kutta method of order 2 (RK2) does not

Nt N,y At Ax Proposed Method Strang Marchuk Splitting

100 100 0.08 04 5.2188 6.1094
200 100 0.04 04 9.4844 13.0625
160 200 0.06 0.2 49.5938 75.1875
200 200 0.04 0.2 56.7813 100.2969

Table 2: CPU times for different N; and N

preserve the probability density of the particle in Eq. (60) with t.,; = 5, whereas the proposed method does,
see Figure 3.

probability density of RK2

X -20 0o

Figure 5: The numerical solutions obtained from the RK2 method for t € [0, 5].

5. Conclusions and Discussions

A new iterative method is proposed and analyzed for solving nonlinear oscillation problems. For the
abstract analysis, Cy semigroup property and the exponential integrators are used. In the case of Duffing
equation, numerical results are confirmed with the theoretical results. Moreover, the proposed method has
higher order accuracy than the other traditional splitting methods. In the case of Van der Pol equation,
the proposed method is in perfect agreement with MATLAB routine ODE23. It is worth mentioning that
ODE23 uses an implicit method whereas the proposed is explicit which is a clear advantage of the proposed
method over ODE23. The proposed method also preserves the limit cycle of the Van der Pol equation. In
the case of cubic nonlinear Schrédinger equation the proposed method preserves the probability density of
the particle whereas the RK2 method does not. It is also shown that the proposed method is more efficient
than the Strang splitting method in the case of Schrédinger equation. Although the set of test problems
considered is a small sample of nonlinear oscillation equations, the method can be adapted in a simple way
to solve other such problems numerically.
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