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How Effects Efficiency on the Word Problem for Monoids?
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Abstract. In this paper, we partially find an answer to the question: Is there a relationship between the
algebraic properties efficiency (or inefficiency) and solvability of the word problem?. In fact, by considering
the semi-direct product on special monoids, we show that efficiency and inefficiency are not completely
independent properties to prove the solvability of the word problem over monoids.

1. Introduction and Preliminaries

In combinatorial group theory, the fundamental decision problems are introduced by Max Dehn in
1911 (see [7]), and so many studies published on them since then (for example, one may see the papers
[2, 10, 12, 13] and the citations in them). One of these decision problems is the word problem which is about
the existence of an algorithm to decide whether or not any two words on generators of monoids (or groups)
represent the same element in these monoids (or groups). That is, if there exists such an algorithm, the
word problem is solvable, if otherwise it is not. In fact deciding which monoids (or groups) have solvable
problem is quite important specially in computational algebra and so some engineering sciences. In here,
we will use the complete rewriting system (cf. [3]) on presentations as a method to find an answer for the
word problem of some monoids. It is well known that this method provides us to find normal forms of
elements which implies the solvability of word problem. Let us recall this method as in the following two
paragraphs:

Let A be a finite alphabet and suppose that A∗ consists of all words obtained by the elements of A. A
(string) rewriting system on A∗ is a subset R ⊆ A∗ × A∗. Each element (u, v) of R, also written as u → v, is
called a (rewrite) rule of R. The idea for a rewriting system is an algorithm for substituting the right-hand
side of a rule whenever the left-hand side appears in a word. In general, for a given rewriting system
R, we write x → y for x, y ∈ A∗ if x = uv1w, y = uv2w and (v1, v2) ∈ R. Also we write x →∗ y if x = y
or x → x1 → x2 → · · · → y for some finite chain of reductions. Furthermore an element x ∈ A∗ is called
irreducible with respect to R if there no possible rewriting x → y ; otherwise x is called reducible. The
rewriting system R is called:
• Noetherian if there is no infinite chain of rewriting x→ x1 → x2 → · · · for any words x ∈ A∗.
• Confluent if whenever x→∗ y1 and x→∗ y2, there is a z ∈ A∗ such that y1 →

∗ z and y2 →
∗ z.

• Complete if R is both noetherian and confluent.
Additionally, when R is a (string) rewriting system on A∗, the reduction relation→ is noetherian if and

only if there exists an admissible well-founded partial ordering > on A∗ (see [3]) such that u > v holds for
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each rule (u, v) ∈ R. Therefore, to construct a complete rewriting system, we must use an admissible well-
founded partial ordering. To explain well founded partial ordering, there are some information needed. Let
> be a binary relation on A∗. Firstly, if it is irreflexive, antisymmetric and transitive, then this relation > is
called strict partial ordering. Secondly, for all u, v, x, y ∈ A∗ if u > v implies xuy > xvy, then it is admissible.
Besides them, a strict partial ordering > on A∗ is called well founded if there is no infinite chain of the form
x0 > x1 > x2 > · · · . Now let us remind some special orderings.
• The length ordering x > y on A∗: if |x| >

∣∣∣y∣∣∣, then x > y.
• The lexicographical ordering x >lex y on A∗: if there is a non-empty string z such that x = yz, or x = uaiv

and y = ua jz for some u, v, z ∈ A∗, ai, a j ∈ A and i, j ∈ {1, · · · ,n} satisfying i > j, then x >lex y.
• The length-lexicographical ordering x >ll y on A∗: it is a combination of the length ordering and the

lexicographical ordering, that is, if |x| >
∣∣∣y∣∣∣ or |x| =

∣∣∣y∣∣∣ and x >lex y, then x >ll y.
With respect to the above information, the length ordering is an admissible well founded (strict) partial

ordering. But the lexicographical ordering is not well founded when |A| > 1 since we have the infinite
descending chain a2 >lex a1a2 >lex a1a1a2 >lex · · · >lex ai

1a2 >lex ai+1
1 a2 >lex · · · for A = {a1, a2, · · · , an}. However

one can still use the length-lexicographical ordering. The fundamental reason is that since the length-
lexicographical ordering actually contains the properties of the length ordering, then it is admissible well
founded partial ordering. Besides we note that, in some cases, Gröbner (-Shirshov) bases can be used
instead of complete rewriting systems to prove the solvability of the word problem (cf. [2, 12, 13, 16]).
Up to now, we state (complete) rewriting system in general, but we should also note that in this method
there is an important application called Knuth Bendix algorithm (see [3, 8, 11, 19]) which is needed in some
of calculations for complete rewriting systems. This algorithm has developed an algorithm for creating a
complete rewriting system R′ which is equivalent to R, so that any word over A has an (unique) irreducible
form with respect to R′ and chosen ordering. By considering overlaps of left-hand sides of rules whose left-
hand side is greater than right-hand side with respect to chosen ordering, this algorithm basically proceeds
forming new rules when two reductions of an overlapping word result in two distinct reduced forms. If
all rules with new rules occured at the end of the this process are noetherian and confluent, then this new
rewriting system is complete. Since the property of having unique normal forms is guaranteed for any
system that is confluent and noetherian (cf. [3]), we can find a unique normal form for this new rewriting
system. As a result of this above material, the word problem is decidable for this new (finite reduction)
system with the property that every element has a unique normal form as long as there exist algorithm that
allow one to compute for a given element that unique normal form and allow one to compare two words
to determine whether they are identical. The following lemma plays an important role in the proofs of our
main results.

Lemma 1.1. ([3]) The method of complete rewriting system gives a new algorithm for obtaining normal forms of
elements of monoids (or groups). Therefore, there exists a new algorithm for solving the word problem in these monoids
(or groups), namely the word problem is solvable.

Since another tool of this paper is the semi-direct product of monoids, let us give it briefly: For given
monoids A and K with presentations PA = [X ; R] and PK = [Y ; S], respectively, the semi-direct product
Koθ A is defined with a presentationPKoθA = [X, Y ; R, S, T] (see [9]). In this presentation, T denotes the set
of relators of the form Tyx : yx = x(yθx), where x ∈ X and y ∈ Y. It is known that the semi-direct product on
algebraic structures defines an extension. There are published real good works in the literature since last
decades (see, for instance, [14, 20, 21]). Therefore, generally, extensions are worth to study some properties
on them.

On the other hand, the properties efficiency or inefficiency are important as the meaning of classification
on given monoids. There are some key studies on them. We may refer [4] and citations in it for the
definitions and fundamental properties of them. At this point, we should remark that these properties need
to be defined on the minimal number of generators to ensure a health classification. This will imply that no
one can find a suitable presentation for the related monoid having one of these properties. Let us remind
these algebraic properties. For a monoid presentation P, the efficiency is defined as in the following ([4]).
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Let M be a monoid with a presentation P = [Y,S] . Then the Euler characteristic (see, [4, 5]) of P
is defined by χ(P) = 1 − |Y| + |S| , where |.| denotes the minimal number of elements in the set. Also,
we have a bound-parameter other than Euler characteristic which is related to the efficiency, namely
homological bound δ(M). In fact, let δ(M) = 1 − rkZ(H1 (M)) + d(H2(M)), where rkZ(.) denotes the Z-
rank of the torsion-free part and d(.) means the minimal number of generators. Then we define χ(M) =
min{χ(P) : P is a finite presentation for M}. A presentation P0 for M is called minimal if χ(P0) ≤ χ(P), for
all presentations P of M. A finite presentation P is called efficient if χ(P) = δ(M). M is called efficient if
χ(M) = δ(M). In addition to all of them, to guarantee the minimal number of generators on presentations,
the geometric approximation, namely p-Cockcroft property ([5, 6]) was often chosen. The next lemma
expose the relationship between efficiency and p-Cockcroft property, and it is also so important for our
results.

Lemma 1.2. ([5, 17]) Let P be a presentation. Then P is efficient if and only if p-Cockcroft for some prime p.

In mathematics, to connect different type of algebraic properties on the same structure is important. In
fact, based on this approximation, so many problems stated in the literature (see [1, 15, 18]). For example
in [1], the authors exposed the relationship between the two different algebraic properties separability and
efficiency by considering standard wreath products. To do that they used a geometric technique, namely
Cayley graphs. Hence, in the light of this thought, in here, we investigate the word problem of special
monoids which has efficient (or inefficient) presentation on the minimal number of generators since not
all monoids are efficient with the minimal number of generators. To do that, we consider the semi-direct
product of special one relator monoids by infinite monogenic monoids.

Throughout this paper the notation i ∩ j will denote the intersection of relations i and j as well as
Kl (1 ≤ l ≤ 2) and A will denote the one-relator and infinite monogenic (cyclic) monoids, respectively.
Additionally, the lexicographical ordering >lex is denoted by > and all used orderings are the length-
lexicographical ordering. We finally note that the setNwill be assumed as start with the natural number 1
in whole text.

2. The Word Problem for Kl oθ A

This section will be divided into two subsections to catch up our aim. Each of these subsections will be
about the semi-direct product Kl oθ A, where the monoid A has a presentation PA = [x ; ].

2.1. Case 1
Assume that the one relator monoid K1 is given by the presentationPK1 = [y1, y2 ; y2yk

1 = y1y2y1] (k ∈N),
and let ψx be the endomorphism defined by [y1]→ [yn

1] and [y2]→ [y2], where n ∈ N. So, by [5], we have
a presentation

PD = [y1, y2, x ; y2yk
1 = y1y2y1, xyn

1 = y1x, xy2 = y2x] (1)

for the monoid D = K1 oθ A.
By considering Lemma 1.2, in [5], Cevik proved that PD in (1) is efficient on the minimal number of

generators if and only if k ≡ 2 (mod p) and n ≡ 1 (mod p). However, the same author in different paper
([6]), exposed thatPD in (1) is minimal but inefficient if k , 2(2i−1

−1) and n = 2,where i ∈N. In our results,
we will consider the special case of PD in (1) by taking k = 1. Let us denote it by PD∗ .

Among generators of PD∗ , let us consider the ordering x > y1 > y2 as the lexicographical ordering and
use the length-lexicographical ordering. Therefore the first main result of this paper is the following:

Theorem 2.1. The monoid with a presentation PD∗ has a complete rewriting system with the rules

1) y1y2y1 = y2y1 , 2) xyn
1 = y1x ,

3) xy2 = y2x , 4) y1ya
2xby1 = ya

2xby1,

where n is a fixed positive integer, a ∈N, b ∈N ∪ {0}.
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Before giving the proof, we should note that although the rule 4) in Theorem 2.1 coincides with the rule
1) if we take a = 1 and b = 0, we prefer to use rule 1) separately since it is being in the presentation PD∗ by
its this form which was obtained from PD in (1).

Proof. Since we use the length-lexicographical ordering, that is an admissible well founded ordering, and
we have finite reduction steps for all overlapping words w as follows, the rewriting system for PD∗ is
noetherian. Now, let us show the confluent property. To do that we have the following overlapping words
and corresponding critical pairs (shortly cp), respectively.

1 ∩ 1 : w = y1y2y1y2y1, and the cp is (y2y1y2y1, y1y2
2y1) ,

1 ∩ 4 : w = y1y2y1ya
2xby1, and the cp is (y2y1ya

2xby1, y1ya+1
2 xby1) ,

2 ∩ 1 : w = xyn
1 y2y1, and the cp is (y1xy2y1, xyn−1

1 y2y1) ,
2 ∩ 4 : w = xyn

1 ya
2xby1, and the cp is (y1xya

2xby1, xyn−1
1 ya

2xby1) ,
4 ∩ 1 : w = y1ya

2xby1y2y1, and the cp is (ya
2xby1y2y1, y1ya

2xby2y1) ,
4 ∩ 2 : w = y1ya

2xbyn
1 , and the cp is (ya

2xbyn
1 , y1ya

2xb−1y1x) ,
4 ∩ 4 : w = y1ya1

2 xb1 y1ya2
2 xb2 y1, and the cp is (ya1

2 xb1 y1ya2
2 xb2 y1, y1ya1

2 xb1 ya2
2 xb2 y1).

In fact those critical pairs are resolved by reduction steps as in the following:

1 ∩ 1 : w = y1y2y1y2y1 →

{
y2y1y2y1 → y2

2y1
y1y2

2y1 → y2
2y1

,

1 ∩ 4 : w = y1y2y1ya
2xby1 →

{
y2y1ya

2xby1 → ya+1
2 xby1

y1ya+1
2 xby1 → ya+1

2 xby1
,

2 ∩ 1 : w = xyn
1 y2y1 →

{
y1xy2y1 → y1y2xy1 → y2xy1
xyn−1

1 y2y1 → xyn−2
1 y2y1 → xyn−3

1 y2y1 → · · · → xy1y2y1 → xy2y1 → y2xy1
,

2 ∩ 4 : w = xyn
1 ya

2xby1 →

{
y1xya

2xby1 → y1y2xya−1
2 xby1 → y1y2

2xya−2
2 xby1 → · · · → y1ya−1

2 xy2xby1

xyn−1
1 ya

2xby1 → xyn−2
1 ya

2xby1 → · · · → xy1ya
2xby1 → xya

2xby1

→ y1ya
2xb+1y1 → ya

2xb+1y1

→ y2xya−1
2 xby1 → y2

2xya−2
2 xby1 → · · · → ya−1

2 xy2xby1 → ya
2xb+1y1

,

4 ∩ 1 : w = y1ya
2xby1y2y1 →

{
ya

2xby1y2y1 → ya
2xby2y1 → ya

2xb−1y2xy1 → ya
2xb−2y2x2y1 →

y1ya
2xby2y1 → y1ya

2xb−1y2xy1 → y1ya
2xb−2y2x2y1 →

· · · → ya
2xy2xb−1y1 → ya+1

2 xby1

· · · → y1ya+1
2 xby1 → ya+1

2 xby1
,

4 ∩ 2 : w = y1ya
2xbyn

1 →

{
ya

2xbyn
1 → ya

2xb−1y1x
y1ya

2xb−1y1x→ ya
2xb−1y1x ,

and

4 ∩ 4 : w = y1ya1
2 xb1 y1ya2

2 xb2 y1 →

{
ya1

2 xb1 y1ya2
2 xb2 y1 → ya1

2 xb1 ya2
2 xb2 y1 → ya1+1

2 xb1 ya2−1
2 xb2 y1 → · · ·

y1ya1
2 xb1 ya2

2 xb2 y1 → y1ya1+1
2 xb1 ya2−1

2 xb2 y1 → · · · → y1ya1+a2−1
2 xb1 y2xb2 y1

→ ya1+a2−1
2 xb1 y2xb2 y1 → ya1+a2

2 xb1+b2 y1

→ y1ya1+a2
2 xb1+b2 y1 → ya1+a2

2 xb1+b2 y1
.

Since the rewriting system is noetherian and confluent, it is complete. Hence the result.

As a consequence of Theorem 2.1, we have the following result for normal forms of elements with
respect to the presentation PD∗ .

Corollary 2.2. Let N(w) be a normal form of words w ∈ PD∗ . Then

N(w) = yc
2xa1 yb1

1 xa2 yb2
1 xa3 · · · xam ybm

1 yd
2 ,

where ai, bi, c, d ∈N ∪ {0}, 0 ≤ bi < n, and 1 ≤ i ≤ m.
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Hence, by Corollary 2.2 and Lemma 1.1, we have the following:

Theorem 2.3. The word problem is solvable for the presentation PD∗ .

Corollary 2.4. Any monoid with a presentationPD∗ that is inefficient, as in (1) with k = 1, has solvable word problem
since it has minimal number of generators.

2.2. Case 2

In this section, we will follow similar process as in the previous section. Thus, let us consider the
one-relator monoid K2 with a presentation PK2 = [y1, y2 ; yk

1y2 = y2yk
1], and let ψx be the endomorphism

given by [y1]→ [yn
1] and [y2]→ [ym

2 ], where k, n, m ∈N. Hence, again by [5], we have a presentation

PE = [y1, y2, x ; yk
1y2 = y2yk

1, xyn
1 = y1x, xym

2 = y2x] (2)

for the monoid E = K2 oθ A. In [5], as an application of Lemma 1.2, it has been proved that PE in (2) is
efficient on the minimal number of generators if and only if mn ≡ 1 (mod p) by the author. Moreover, in
[6], it has been proved that PE is minimal (but inefficient) if (n,m) = (1, 2) or (n,m) = (2, 1). In our results,
as special cases, we will only consider the sub-cases k = n with a presentation

PE∗ = [y1, y2, x ; yk
1y2 = y2yk

1, xyk
1 = y1x, xym

2 = y2x] , (3)

and n = 1 with a presentation

PE∗∗ = [y1, y2, x ; yk
1y2 = y2yk

1, xy1 = y1x, xym
2 = y2x] . (4)

Similarly as in the previous case, let us consider the ordering x > y1 > y2 (length-lexicographical
ordering) among generators of the presentations given in (3) and (4). Thus the other main results of the
paper are stated and proved in Theorems 2.5 and 2.8 below.

Theorem 2.5. The monoid with a presentation PE∗ as in (3) has a complete rewriting system with rules

1) yk
1y2 = y2yk

1 , 2) xyk
1 = y1x , 3) xym

2 = y2x ,
4) xye

2yk
1 = y1xye

2 , 5) y1ya
2yb

1x = ya
2yb+1

1 x ,

where k, m are fixed positive integers and a, b, e ∈N ∪ {0} (0 ≤ e < m) .

Proof. By the same reason as in the proof of Theorem 2.1, the rewriting system forPE∗ is noetherian. Further,
we must show that it satisfies the confluent property by take into account the following overlapping words
and corresponding critical pairs (again shortly as cp):

1 ∩ 5 : w = yk
1 ya

2yb
1x, and the cp is (y2yk

1ya−1
2 yb

1x, yk−1
1 ya

2yb+1
1 x) ,

2 ∩ 1 : w = xyk
1y2, and the cp is (y1xy2, xy2yk

1) ,
2 ∩ 5 : w = xyk

1ya
2yb

1x, and the cp is (y1xya
2yb

1x, xyk−1
1 ya

2yb+1
1 x) ,

4 ∩ 1 : w = xye
2yk

1y2, and the cp is (y1xye+1
2 , xye+1

2 yk
1) ,

4 ∩ 5 : w = xye
2yk

1ya
2yb

1x, and the cp is (y1xye+a
2 yb

1x, xye
2yk−1

1 ya
2yb+1

1 x) ,
5 ∩ 2 : w = y1ya

2yb
1xyk

1, and the cp is (ya
2yb+1

1 xyk
1, y1ya

2yb+1
1 x) ,

5 ∩ 3 : w = y1ya
2yb

1xym
2 , and the cp is (ya

2yb+1
1 xym

2 , y1ya
2yb

1y2x) ,
5 ∩ 4 : w = y1ya

2yb
1xye

2yk
1, and the cp is (ya

2yb+1
1 xye

2yk
1, y1ya

2yb+1
1 xye

2).

All critical pairs are resolved by reduction steps. We show them as follows:

1 ∩ 5 : w = yk
1 ya

2yb
1x→

{
y2yk

1ya−1
2 yb

1x→ y2
2yk

1ya−2
2 yb

1x→ · · · → ya−1
2 yk

1y2yb
1x→ ya

2yk+b
1 x

yk−1
1 ya

2yb+1
1 x→ yk−2

1 ya
2yb+2

1 x→ · · · → y1 ya
2yb+k−1

1 x→ ya
2yb+k

1 x ,
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2 ∩ 1 : w = xyk
1y2 →

{
y1xy2

xy2yk
1 → y1xy2

,

2∩ 5 : w = xyk
1ya

2yb
1x→

{
y1xya

2yb
1x

xyk−1
1 ya

2yb+1
1 x→ xyk−2

1 ya
2yb+2

1 x→ · · · → xy1ya
2yb+k−1

1 x→ xya
2yb+k

1 x→ y1xya
2yb

1x ,

4 ∩ 1 : w = xye
2yk

1y2 →

{
y1xye+1

2
xye+1

2 yk
1 → y1xye+1

2
,

4 ∩ 5 : w = xye
2yk

1ya
2yb

1x→
{

y1xye+a
2 yb

1x
xye

2yk−1
1 ya

2yb+1
1 x→ · · · → xye

2y1ya
2yb+k−1

1 x→ xye+a
2 yk+b

1 x→ y1xye+a
2 yb

1x ,

5 ∩ 2 : w = y1ya
2yb

1xyk
1 →

{
ya

2yb+1
1 xyk

1 → ya
2yb+2

1 x
y1ya

2yb+1
1 x→ ya

2yb+2
1 x ,

5 ∩ 3 : w = y1ya
2yb

1xym
2 →

{
ya

2yb+1
1 xym

2 → ya
2yb+1

1 y2x
y1ya

2yb
1y2x→ ya

2yb+1
1 y2x ,

and

5 ∩ 4 : w = y1ya
2yb

1xye
2yk

1 →

{
ya

2yb+1
1 xye

2yk
1 → ya

2yb+2
1 xye

2
y1ya

2yb+1
1 xye

2 → ya
2yb+2

1 xye
2
.

The rewriting system is noetherian and confluent, so it is complete. Hence the result.

By Theorem 2.5, we have the following result for normal forms of elements with respect to the presen-
tation PE∗ .

Corollary 2.6. Let N(w) be a normal form of words w ∈ PE∗ . Then

N(w) = ya
2yb

1xc1 ya1
2 yb1

1 xc2 ya2
2 yb2

1 · · · y
aq

2 ybq

1 xcq ,

where a, b, ci ∈N ∪ {0}, 0 ≤ ai < m and 0 ≤ bi < k (1 ≤ i ≤ q).

Hence, by Corollary 2.6 and Lemma 1.1, we have

Theorem 2.7. The word problem for PE∗ given in (3) is solvable.

Finally let us consider the presentation PE∗∗ in (4). Then we obtain the following theorem.

Theorem 2.8. The monoid defined with a presentation PE∗∗ has a complete rewriting system with the rules

1) yk
1y2 = y2yk

1 , 2) xy1 = y1x ,
3) xym

2 = y2x , 4) xya
2yk

1 = yk
1xya

2
,

where k, m are fixed positive integers and 0 < a < m.

Proof. As in the previous similar theorems, it is clear that the rewriting system of PE∗∗ is noetherian. For the
confluent property, we have

2 ∩ 1 : w = xyk
1y2, and the cp is (yk

1xy2, xy2yk
1) ,

4 ∩ 1 : w = xya
2yk

1y2, and the cp is (yk
1xya+1

2 , xya+1
2 yk

1) .

As before, all these critical pairs are resolved by reduction steps.

2 ∩ 1 : w = xyk
1y2 →

{
y1xyk−1

1 y2 → y2
1xyk−2

1 y2 → · · · → yk
1xy2

xy2yk
1 → yk

1xy2
,

and

4 ∩ 1 : w = xya
2yk

1y2 →

{
yk

1xya+1
2

xya+1
2 yk

1 → yk
1xya+1

2
.

Hence the result.



E. Kangal / Filomat 30:3 (2016), 733–740 739

By Theorem 2.8, we have the following result for normal forms of elements with respect to the pre-
sentation PE∗∗ . In fact we did prefer to write these elements very clearly to make a better understand on
them.

Corollary 2.9. Let N(w) be a normal form of words w ∈ PE∗∗ . Suppose that

A1 = ya11
2 yb11

1 ya21
2 yb21

1 · · · y
aα1
2 ybα1

1 ,

where a11, a21, · · · , aα1, bα1 ∈N ∪ {0} and 0 ≤ b11, b21, · · · , b(α−1)1 < k ,

A2 = ya12
2 yb12

1 ya22
2 yb22

1 · · · y
aβ2

2 ybβ2

1 ,

where a22, a32, · · · , aβ2, bβ2 ∈N ∪ {0} and 0 ≤ b12, b22, · · · , b(β−1)2 < k; a12 < m ,

A3 = ya13
2 yb13

1 ya23
2 yb23

1 · · · y
aγ3

2 ybγ3

1 ,

where a23, a33, · · · , aγ3, bγ3 ∈N ∪ {0} and 0 ≤ b13, b23, · · · , b(γ−1)3 < k; a13 < m ,

...
...

Ar = ya1r
2 yb1r

1 ya2r
2 yb2r

1 · · · y
aδr
2 ybδr

1 ,

where a2r, a3r, · · · , aδr, bδr ∈N ∪ {0} and 0 ≤ b1r, b2r, · · · , b(δ−1)r < k; a1r < m .

Therefore

N(w) = A1xc1 A2xc2 A3 · · ·Arxcr ,

where ci ∈N ∪ {0} ; 1 ≤ i ≤ r; α, β, γ, ..., δ ∈N.

Therefore, by Corollary 2.9 and Lemma 1.1, the final result of this paper can be obtained as follows:

Theorem 2.10. The word problem for PE∗∗ given in (4) is solvable.

Corollary 2.11. The monoids with presentations as in (3) and (4) have always solvable word problem either they are
efficient or not since they have minimal number of generators.

A final note can be stated as follows for exposing the importance of our results:

Remark 2.12. The processes used in this paper did mainly show that the minimal number of generators
in given presentations play an important role to prove the solvability of the word problem. In other
words, since we did use the lexicographical ordering in solvability cases, these minimum numbers of
generators did play an important role to obtain complete rewriting systems. In fact to use minimal number
of generators, we considered the presentations as efficient or inefficient since the efficiency case implies
directly the minimal number of generators while for the inefficiency case we ensure that the presentation
must be defined by the minimal number of generators. As a result of both these cases, no one can find any
other presentation having less generators than those.
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