
Filomat 28:9 (2014), 1849–1853
DOI 10.2298/FIL1409849L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The variation of Randić index R′(G) of a graph G is defined by R′(G) =
∑
uv

1
max{du, dv}

, where

du is the degree of a vertex u in G and the summation extends over all edges uv of G. In this work, we
characterize the extremal trees achieving the minimum value of R′ for trees with given number of vertices
and leaves. Furthermore, we characterize the extremal graphs achieving the minimum value of R′ for
connected graphs with given number of vertices and girth.

1. Introduction

The Randić index R = R(G) of a graph G is defined as follows:

R = R(G) =
∑

uv∈E(G)

(
du · dv

)− 1
2

where du denotes the degree of a vertex u and the summation runs over all edges uv of G. This topological
index was first proposed by Randić [14] in 1975. Originally this index was named branching index or
molecular connectivity index and it has been shown to be suitable for measuring the extent of branching of
the carbon-atom skeleton of saturated hydrocarbons. Nowadays this parameter is known as Randić index.
Later, in 1998 Bollobás and Erdös [3] generalized this index by replacing − 1

2 with any real number α to
obtain the general Randić index Rα. Thus,

Rα(G) =
∑

uv∈E(G)

(
du · dv

)α
.

Chemists have shown that there exists a correlation between the Randić index with several physico-
chemical properties of alkanes such as boiling points, chromatographic retention times, enthalpies of
formation, parameters in the Antoine equation for vapor pressure, Kovats constants, calculated surface
areas and others [10, 11, 14]. According to Caporossi and Hansen [5], Randić index together with its
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generalizations is certainly the molecular-graph-based structure-descriptor that found many applications
in organic chemistry, medicinal chemistry, and pharmacology, and therefore is an interesting topic in graph
theory. In fact, it is one of the most popular molecular descriptors to which three books [10–12] are devoted.

There are many open conjectures concerning the Randić index, see the survey of Li and Shi [13] for
examples, some of which had been proved only for some special cases, e.g., trees, unicyclic graphs and
bicyclic graphs etc. They do not seem to be easy to be resolved for general graphs [6]. Therefore, Dvořák
et al. [8] introduced a modification of this index, denoted by R′, in order to resolve some conjectures
concerning Randić index,

R′(G) =
∑

uv∈E(G)

1
max{du, dv}

.

It is easy to see that R(G) ≥ R′(G) for any graph G, and the equality holds if and only if every connected
component of G is regular and nontrivial.

Though no application of the index R′ in chemistry and pharmacology is known so far, still this index
turns out to be very useful, especially from mathematical point of view, as it is much easier to follow during
graph modifications than the Randić index. Using this index, Dvořák et al. [8] have shown that for any
connected graph G, R′(G) ≥ D(G)/2, where D(G) is the diameter of G. Thus, they have asymptotically
resolved the second claim of the conjecture of Aouchiche et al. [1]: for any connected graph on n ≥ 3

vertices, R(G) − D(G) ≥
√

2 −
n + 1

2
and

R(G)
D(G)

≥
n − 3 + 2

√
2

2n − 2
, with equalities if and only if G is a path.

Using again this index, Cygan et al. [7] have shown that for any connected graph G of maximum degree
four which is not a path with even number of vertices, R(G) ≥ r(G). As a consequence, they resolve the
conjecture R(G) ≥ r(G) − 1 given by Fajtlowicz [9] in 1988 for the case when G is a chemical graph. For
reasons mentioned above, it is meaningful to study the index R′. As a matter of fact, Andova et al. [2]
determined graphs with minimal and maximal values of R′, as well as graphs with minimal and maximal
values of R′ among the trees and unicyclic graphs.

In this work we present some basic properties of the index R′ with respect to edge deletions. We
characterize the extremal trees achieving the minimum value of R′ with given number of leaves for trees
of n vertices. Furthermore, we characterize the extremal graphs achieving the minimum value of R′ for
connected graphs with n vertices and girth 1.

All the graphs considered in this paper are simple undirected ones. For a graph G, a leaf is a vertex with
degree one in G. The girth of G is the minimum length of its cycles. If the graph does not contain any cycles
(i.e. it’s an acyclic graph), its girth is defined to be infinity. A graph is called cyclic if it is not acyclic. The
neighborhood of a vertex u is denoted by N(u). For undefined terminology and notations we refer the reader
to [4].

2. Basic Properties of R′

In this section, we present some basic properties of the index R′ with respect to edge deletions. For an
edge uv of a graph G, we denote by `u

uv the number of vertices in N(u)\{v}with degree less than du.
We say u is a strictly local maximum vertex (local maximum vertex) if du > dw (du ≥ dw) for any w ∈ N(u).

Similarly, we say v is a local minimum vertex if dv ≤ dw for any w ∈ N(v). Note that for a local minimum
vertex v, we have `v

vw = 0 for every vertex w ∈ N(v).

Lemma 2.1. Let uv be an edge of a graph G such that v is a local minimum vertex. Then

R′(G) − R′(G − uv) =
du − `u

uv − 1
du(du − 1)

≥ 0,

where the equality holds if and only if `u
uv = du − 1.
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Proof. Since v is a local minimum vertex, we have `v
uv = 0. By definition, we have

R′(G) − R′(G − uv) =
1
du

+
`u

uv

du
−

`u
uv

du − 1
=

du − `u
uv − 1

du(du − 1)
.

Since du ≥ `u
uv + 1, the result follows immediately.

From Lemma 2.1, we can see that deleting edges incident to a local minimum vertex might not increase
the value of R′. The latter fact was observed by Dvořák et al. in [8].

3. Trees with a Given Number of Leaves

In this section, we characterize trees achieving the minimum value of R′ with n vertices and ` leaves.
First, we define a class of trees, namely T `

n , which is the class of extremal trees of our problem.
Definition. For n ≥ 3, define T 2

n = {Pn},T n−1
n = {Sn}. Then T `

n can be defined inductively as follows: a tree
of T `

n can be formed either by adding a new vertex with an edge connecting to a leaf of a tree in T `
n−1 or by

adding a new vertex with an edge connecting to a local maximum vertex of a tree in T `−1
n−1 .

For example, an n−vertex comet formed by connecting ` − 1 isolated vertices to the same leaf of path
Pn+1−`, is a tree in T `

n .

Theorem 3.1. For a tree T of n (n ≥ 3) vertices and ` leaves,

R′(T) ≥
n − ` + 1

2
,

with equality if and only if T ∈ T `
n .

Proof. We apply the induction on n. For n ≤ 4, it is easy to verify that the result is true. Thus, we assume
n ≥ 5 and the result is true for smaller n in the following.

Let v be a leaf of T and uv ∈ E(T). Note that a leaf is always a local minimum vertex. We divide the
proof into two cases: i.e., Case 1. du = 2; Case 2. du ≥ 3.
Case 1. du = 2.
Let T′ = T − v, then T′ is a tree of n − 1 vertices and ` leaves. By induction,

R′(T) = R′(T′) +
1
2
≥

(n − 1) − ` + 1
2

+
1
2

=
n − ` + 1

2
,

where the equality holds if and only if R′(T′) = n−`
2 , i.e., T′ ∈ T `

n−1, which means that T ∈ T `
n .

Case 2. du ≥ 3.
Let T′ = T − v, then T′ is a tree of n − 1 vertices and ` − 1 leaves. By induction and Lemma 2.1, we have

R′(T) = R′(T′) +
du − `u

uv − 1
du(du − 1)

≥
(n − 1) − (` − 1) + 1

2
+

du − `u
uv − 1

du(du − 1)

≥
n − ` + 1

2
,

where the equality holds if and only if R′(T′) = n−`+1
2 and `u

uv = du − 1, that is, R′(T′) = n−`+1
2 and u is a local

maximum vertex in T′. By induction, T′ ∈ T `−1
n−1 and u is a local maximum vertex in T′, that is, T ∈ T `

n .
From the theorem we can infer that the smaller the value of ` is, the larger the minimum value of R′

becomes. Since 2 ≤ ` ≤ n − 1 and T 2
n = {Pn} and T n−1

n = {Sn}, we have:

Corollary 3.2. For a tree T of n (n ≥ 3) vertices,

n − 1
2
≥ R′(T) ≥ 1,

where the upper bound holds if and only if T � Pn and the lower bound holds if and only if T � Sn.

Note that Corollary 3.2 have been proved by Andova et al.[2] by a different approach.



J. Liu / Filomat 28:9 (2014), 1849–1853 1852

4. Graphs with a Given Girth

Recall that the girth of a graph is the length of a shortest cycle contained in the graph. If the graph is
acyclic, its girth is defined to be infinity. In this section, we deal with the minimum value of R′ for connected
cyclic graphs with girth at least 1. We define a class of graphs as follows.
Definition. If 1 , 4. Take a cycle C1 on 1 vertices, and let X be any maximum independent set in C1.
Introduce n − 1 independent vertices to the graph, and for each of them connect it to an arbitrarily chosen
vertex of X. If 1 = 4. Take a cycle C4 on 4 vertices, and let X be any maximum independent set in C4.
Introduce n − 4 independent vertices to the graph, and for each of them connect it to an arbitrarily chosen
vertex of X or to both two vertices of X. The class G1n comprises all the graphs that can be constructed in
this manner.

For example, the graph C1n formed by attaching each n − 1 isolated vertices with an edge to a unique
vertex of C1 belongs to G1n. Note that only two kinds of graphs in G1n are 2-edge connected, i.e., cycles and
complete bipartite graph K2,n−2 for n ≥ 5.

Theorem 4.1. For an n−vertex connected cyclic graph G with girth at least 1 (1 ≥ 3), we have

R′(G) ≥
1

2
,

where the equality holds if and only if G ∈ G1n.

Proof. We will prove this result using induction on n + m, where m is the number of edges of G.
It is easy to verify that the result is true for n + m ≤ 6. Thus, we assume n + m ≥ 7 and the result is true

for smaller n + m in the following.
We divide the proof into two cases according to the minimum degree δ(G) of G, i.e., Case 1. δ(G) = 1;

Case 2. δ(G) ≥ 2.
Case 1. δ(G) = 1.

Let uv ∈ E(G) and dv = 1, then the girth of the graph G − v is at least 1. By Lemma 2.1 and induction we
have

R′(G) = R′(G − v) +
du − `u

uv − 1
du(du − 1)

≥
1

2
+

du − `u
uv − 1

du(du − 1)

≥
1

2
,

where the equality holds if and only if G − v ∈ G1n−1 and `u
uv = du − 1, that is, G ∈ G1n.

Case 2. δ(G) ≥ 2.
Subcase 2.1. If G is 2-edge connected.
If G � Cn, we have R′(G) = n

2 =
1

2 and the result follows. If G , Cn, then G contains some cycle even after
removing any of its edges. Let uv be an edge incident with a local minimum vertex v of G. Then by Lemma
2.1 and by induction we have, R′(G) ≥ R′(G − uv) ≥ 12 . The two equalities hold if and only if G − uv ∈ G1n
and du > dw for every w ∈ N(u)\{v}. If δ(G − uv) = 1. Denote by V1 the vertex set of leaves in G − uv. We
can see that v ∈ V1. If |V1| ≥ 3, then δ(G) = 1, which contradicts the assumption that G is 2−edge connected.
If |V1| = 2, then u ∈ V1 and du = dv = 2 in G. We have dw ≥ 2 in G for the vertex w ∈ N(u)\{v}. Thus,
`u

uv = 0 , du−1. Therefore, R′(G) > 1

2 . If |V1| = 1 and G−uv ∈ G1n. If 1 , 4, then G−uv arises from connecting
an isolated vertex v to a vertex of C1. And G arises from connecting an isolated vertex v to two vertices of
C1. Therefore, we have du = 3 and `u

uv = 1 < du − 1 in G if 1 = 3. Thus R′(G) > 1

2 . And 1(G) < 1(G − uv) = 1
if 1 ≥ 5, which contradicts our assumption. If 1 = 4, then G− uv arises from connecting an isolated vertex v
to a vertex in partite set of two vertices in K2,n−3 (n ≥ 5). Then G � K2,n−2 ∈ G

1

n is the only graph meets the
two equalities’ conditions.
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Subcase 2.2. If G is not 2-edge connected.
Let uv be an edge-cut of G and du ≥ dv. Let G′ = G− uv + uu′ + vv′, where u′ and v′ are new added vertices.
Let G1 be a component of G′ containing u and G2 the other component. If G1 or G2 was a tree, then G would
need to contain a vertex of degree one, which contradicts the assumption that δ(G) ≥ 2. Hence both girths
of G1 and G2 are at least 1.

Thus, by induction we have

R′(G) = R′(G′) −
1
dv

≥ R′(G1) + R′(G2) −
1
dv

≥ 1 −
1
dv

>
1

2
.
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61–75.

[3] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[5] G. Caporossi, P. Hansen, Variable neighbourhood search for extremal graphs 6, Analyzing Bounds for the Connectivity Index, J.

Chem. Inf. Comput. Sci. 43 (2003) 1–14.
[6] G. Caporossi, P. Hansen, Variable neighbourhood search for extremal graphs 1, The AutographiX system, Discrete Math. 212

(2000) 29–44.
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