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Weighted Boundedness for Toeplitz Type Operators Associated to
Singular Integral Operator with Non-Smooth Kernel

Lanzhe Liu?

?College of Mathematics, Hunan University, Changsha 410082, P. R. of China

Abstract. In this paper, the weighted boundedness of the Toeplitz type operator associated to some
singular integral operator with non-smooth kernel on Lebesgue spaces are obtained. To do this, some
weighted sharp maximal function inequalities for the operator are proved.

1. Introduction

As the development of singular integral operators(see [8][19]), their commutators have been well stud-
ied. In [3][18], the authors prove that the commutators generated by the singular integral operators and
BMO functions are bounded on L(R") for 1 < p < co. Chanillo (see [2]) proves a similar result when
singular integral operators are replaced by the fractional integral operators(also see [11][17]). In [1][12], the
boundedness for the commutators generated by the singular integral operators and the weighted BMO and
Lipschitz functions on LP(R")(1 < p < o0) spaces are obtained (also see [9]). In [12][13][15], some Toeplitz
type operators related to the singular integral operators and strongly singular integral operators are intro-
duced, and the boundedness for the operators generated by BMO and Lipschitz functions are obtained. In
[5][16], some singular integral operators with non-smooth kernel are introduced, and the boundedness for
the operators and their commutators are obtained (see [4][6][14][20]). Motivated by these, in this paper, we
will study the Toeplitz type operator related to some singular integral operator with non-smooth kernel
and the weighted Lipschitz and BMO functions.

2. Preliminaries and Notations

In this paper, we will study some singular integral operator as following (see [5][16]).
Definition 1. A family of operators Dy, t > 0 is said to be an “approximation to the identity” if, for every
t > 0, D; can be represented by a kernel a;(x, i) in the following sense:

DN = [ wtr sty
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for every f € LP(R") with p > 1, and a(x, y) satisfies:

la: (6, Y1 < e(x, y) = CE"Pp(lx — yP /1),
where p is a positive, bounded and decreasing function satisfying

lim #"*¢p(1%) = 0
r—00
for some € > 0.
Definition 2. A linear operator T is called a singular integral operator with non-smooth kernel if T is
bounded on L2(R") and associated with a kernel K(x, ) such that

T = [ Koy

for every continuous function f with compact support, and for almost all x not in the support of f.
(1) There exists an "approximation to the identity” {B;,t > 0} such that TB; has the associated kernel
ki(x, y) and there exist ¢y, c; > 0 so that

f " IK(x, y) — ke(x, y)ldx < c; forall y € R™.
[x=yl>cit

(2) There exists an “approximation to the identity” {A;,t > 0} such that A;T has the associated kernel
Ki(x, y) which satisfies
Ke(x, )l < cat ™2 if |x =yl < c3t'/?,

and
IK(x, y) = Ki(x, )| < cat™lx — yI ™0 if |x — y| > c3t'7?,

for some 6 > 0,c3,c4 > 0.
Let b be a locally integrable function on R” and T be the singular integral operator with non-smooth
kernel. The Toeplitz type operator associated to T is defined by

m
Ty =) TVM,T,
k=1

where T*! are the singular integral operator T with non-smooth kernel or +I(the identity operator), T2 are
the bounded linear operators on [/(R", ) for 1 < p < co and w € A,(1 < k < m), and M,(f) = bf.

Note that the commutator [b, T](f) = bT(f) — T(bf) is a particular operator of the Toeplitz type operator
Tp. The Toeplitz type operator T}, is the non-trivial generalizations of the commutator. It is well known that
commutators are of great interest in harmonic analysis and have been widely studied by many authors (see
[18]). In [5][16], the boundedness of the singular integral operator with non-smooth kernel are obtained.
In [4][6][14][20], the boundedness of the commutator associated to the singular integral operator with non-
smooth kernel are obtained. The main purpose of this paper is to prove the sharp maximal inequalities for
the Toeplitz type operator T;. As the application, we obtain the weighted LP-norm inequality of the Toeplitz
type operator T}.

Now, let us introduce some notations. Throughout this paper, Q will denote a cube of R” with sides
parallel to the axes. For a nonnegative integrable function w, let w(Q) = fQ w(x)dx and wq = |Q™ fQ w(x)dx.

For any locally integrable function f, let

1
M) = sup fQ Fw)ldy.

For 17 > 0, let M, (f)(x) = M(IfI")/(x).
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For 0 <1 <n,1 < p < oo and the non-negative weight function w, set

1 1/p
M’lrl!’,ru(f)(x)ZSQgE(WfQU((y)WW(V)dy) :

Given a double measure o(that is 0(Q) < Co(Q) for any cube Q), set

M) = sup f fldo(y).

The sharp maximal function Mx(f) associated with the “approximation to the identity” {A;,t > 0} is
defined by

1
# = —_ —_
M, (f)(x) = il:g 0] fQIf(y) A, (H(wldy,

where to = 1(Q)? and /(Q) denotes the side length of Q. For 1 > 0, let szn(f) = M4 (I fImYn.
The A, weight is defined by (see [8])

p—1
A, {0 <wel; (R"): sup(| o] f a)(x)dx)(| ] f w(x)—1/<r’-1>dx) < oo}, 1<p<oo,

Al={0<we Lp (R") : M(w)(x) < Cw(x), a.e.}.

Given a non-negative weight function w. For 1 < p < oo, the weighted Lebesgue space LF(R", w) is the

space of functions f such that
1/p
1Al = ( N f(x)l”w(x)dx) < oo,
Rn

Given the non-negative weight function w. The weighted BMO space BMO(w) is the space of functions
b such that

and

1
b w=su—fb — boldy < oo.
161lBAO(w) pr(Q) Ql(y) Qldy

For 0 < B < 1, the weighted Lipschitz space Lipg(w) is the space of functions b such that

b = ! 1 b bol? I=rgq h
IPllLipy () = SSPW mfg| (y) — bolPw(x) Pdy| < oco.

Remark.(1). It has been known that(see [7]), for b € Lipg(w), w € A; and x € Q,

lbg = baigl < CjllbllLip, )@ (x)w(@IQ)F/".

(2). Let b € Lipg(w) and w € A;. By [8], we know that spaces Lipg(w) coincide and the norms ||bl|Lip,(w) are
equivalent with respect to different values 1 < p < co.

3. Theorems and Lemmas

We shall prove the following theorems.

Theorem 1. Let T be the singular integral operator as Definition 2, 1 <p < o0, 0 <n <1, u,v € A,
w = (W HY and b € BMO(w). If T1(g) = 0 for any g € L*(R")(1 < u < o), then there exists a constant C > 0,
€>0,0<6<1,1<g<pandp’ <r<min(p’ +¢,p’(1+90)) such that, for any f € Cy’(R") and ¥ € R",

M (Ty(F)@ < Cllbllamory Y (M (@T2AI@T + M (T2,
k=1
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Theorem 2. Let T be the singular integral operator as Definition 2, 1 <s <0, 0<n<1,0<p <1,
w € Ay and b € Lipg(w). If T1(g) = 0 for any g € L*(R")(1 < u < o0), then there exists a constant C > 0 such
that, for any f € C7(R") and X € R",

M, (To(/)E) < Clbllzipy )@ () Z M o(T()(R).
k=1

Theorem 3. Let T be the singular integral operator as Definition 2, 1 < p < oo, u,v € Ay, w = (yv‘l)l/ b
and b € BMO(w). If T1(g) = 0 for any g € L*(R")(1 < u < o), then T? is bounded from LF(R", i) to LP(R",v).

Theorem 4. Let T be the singular integral operator as Definition 2, v € A1, 0 < < 1, b € Lipg(w),
1<p<mn/Band 1/q = 1/p—B/n. If T1(g) = 0 for any g € L*(R")(1 < u < ), then T’ is bounded from
LP(R", w) to L(R", w'™).

Corollary 1. Let [b, T1(f) = bT(f) — T(bf) be the commutator generated by the singular integral operator
T as Definition 23 and b. Then Theorems 1-4 hold for [b, TT.

To prove the theorems, we need the following lemmas.

Lemma 1.(see [8, p.485]) Let 0 < p < g < oo and for any function f > 0. We define that, for 1/r = 1/p—-1/g

Il fllwes = S\u]g/\l{x €R": f(x) > MM, Npo(f) = sup fxelle /Nxellr,

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

lfllwes < Npy(f) < (q/(q —)"Pllfllwea.

Lemma 2.(see [5][16]) Let T be the singular integral operator as Definition 2. Then T is bounded on
L/(R", w) for w € A, with 1 < p < 00, and weak (L', L) bounded.

Lemma 3.([5][16]) Let {A;,t > 0} be an "approximation to the identity”. For any y > 0, there exists a
constant C > 0 independent of y such that

lix € R": M(A)() > DA, M4 (f)(x) < yA}l < Cylix € R* : M(A)®) > A

for A > 0, where D is a fixed constant which only depends on n. Thus, for f € [’(R"),1 <p < 00,0 <1 < 00
and w € Ay,

(1M (@) < C”Mi,q(f)”LP(w)-
Lemma 4.(see [1]) Let b € BMO(w). Then

|bQ - b2jQ| < C]Hb“BMO(a))CUQ]/

where wg, = maxi<ic; [2QI™! [, o @()dx.

Lemma 5.(see [1]) Let w € A,, 1 < p < 0. Then there exists ¢ > 0 such that 0™/7 € A, for any
prr<p +e

Lemma 6.(see [1]) Let b € BMO(w), @ = (uv)?, u,v € A, and p > 1. Then there exists ¢ > 0 such that
forp’ <r<p +e¢,

flb(x)—bglru(x)"/”dxsCllbllgMO(w)fv(x)—’/de.
Q Q

Lemma 7.(see [1]) Let 1, v € Ay, @ = (uv™)7, 1 < p < oo. Then there exists 1 < g < p such that

g
wo(vo) (i f w(x)-ﬂ’v(x)-ﬂ’/qu) <C.
1Ql Jo
Lemma 8.(see [1]) Let w € Ap/, 1 < p < o0. Then there exists 0 < § < 1 such that w!"/? € Apr(du) for any
p’ <r<p'(l+90), wheredy = " /Pdx.
Lemma 9.(see [2][8]) Let0 <n<n,1<s<p<n/n,1/g=1/p—n/nand w € A;. Then

(1My,s.0 (llaw) < Cllflly @)-
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4. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for f € C’(R"), the following inequality holds:

<

1/n
(|Q|f [To(H@) AfQ<Tb<f>)(x>;”dx)

Clibllsmo) Y, (M (@T(HIN)@I + My (0 T(FI)@)]),

k=1

2493

where tg = (I(Q))? and /(Q) denotes the side length of Q. Without loss of generality, we may assume T¢! are

T(k =

and

1,...,m). Fix a cube Q = Q(xp,d) and ¥ € Q. Let ¥ € Q. We write
Tp()%) = Tombo () = To-bagao (N)X) + To-brg)rane (H)(x) = Un(x) + Ua(x)

1/n
(IQI f ITo(A@) ~ A (To (M@ dx)

1/n
(@leh(x)ﬂdx) +(|Q|f|AtQ(U1 (x)I”dx) +(|Q|f|u2 (%) — Ao (Up)(x)["dx

L+ + 5.

For I, we know v™"? € A, by Lemma 5, thus

1 '/ 1/r ( v )—1/7’
(IQIf v pdx) =¢ IQIf v )

1/n

then, by the weak (L!, L') boundedness of T (see Lemma 2) and Kolmogoro’s inequality (see Lemma 1), we
obtain, by Lemma 6,

IA

IA

IN

IA

IA

IA

IA

1/
(|Q|f|T M-bpna T*(f) x)|"dx)

IQIM/M LI T Mp-pg)a0 T ()l
IQll/’? lxollzva-n

”T M(b bag)Xx20 /Z(f)”WLl

|Q|
Ql fR IM(s-bagya T (F) ()l

é f Ib(x) — baol(0) ™ PIT2(F Wl (x)v(x) Pdx

1/
r r/p k,2 r r r'/p
(|Q| f Ib(x) — bagl (%) dx) (|Q| f IT2(F)(@)" w(x)" v(x) dx)

1/

1/r
CIIbIIBMO(w)(lz—ngQv(x)””dx) (IQI[ IT(f)(x) a)(x)lrv(x)r/pdx)

-1/
C”b”BMO(w)(IZL@ LQV(X)V//pdx) (IQIf T (@) @)" v(x) /”dx)

1/r
Clibllzmo) (W j;(g |Tk’2(f)(x)w(x)lr/v(x)"/pdx)

Clbllsmo) M, (0T (F)IM ) @)V,

1/
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1/n

(1 k1 "
C;(@ fQ T Mp-boyao T (/) )["dx

m
ClIbllmorw) Z[Mv//p(la)Tk'z(f)r’)(,z)]l/r’.
k=1

2494

For I, taking ¥ > r; > 1 and 7 > s > 1 such that 1/r; + 1/ri’ =land sty =7 . Now by the condition on h;,
and notice for x € Q, y € 2/*1Q\2/Q, then hy, (x, y) < Cté"/ 2p(22-1)), we obtain, similar to the proof of I,

IN

IN

IA

IA

IA

IN

X

1 k1 0 ; 1/n
1Ql fg At (T Mip-bagiag T () (2)dx

1 n 1/
C @L(ﬁn th(‘xly)lTkrlM(b—sz)XZQTk'z(f)(y)|dy) dx]

1 n 1/n
“lia fQ (fzg Pig(%, y)lTk'lM@—sz)mTk’z(f)(y)ldy) dx]

[ 1 N
“lia fQ( f(w o, wlT"‘M(b-bm)mT"'2<f><y)|dy) dx]

¢ fZQ o T Mot TN W)y

c Z té”/zp(zz(f—l)) ) ) |Tk’1M(b—b2Q)X2Q kaz(f)(]/)uy
j=1 2+1Q\2/Q

1/s
1
¢ (@ fR 1T Mp-baga0 T "'z(f)(y)lsdy)

o 1/s

, . 1

Y 2p( “>(|2,-+1Q| f |ka1M<b_b2Q>X2QT“(f)(y)l%iy)
=1 '

1 1/s
C (— f IM(p-br0)x20 T*(f )(y)lsdy)
QI Jge

- 1/s
in - 1 i
szzl 2] p(ZZ(] 1)) (|2]+1Q| .f];n |M(b_sz)XzQTk,2(f)(y)| dy)

C(if b(y) — b2 |SH(y)_S/p|Tk’2(f)(y)|sw(y)sV(y)s/pdy)l/s
1Ql Joo ©

C Y 2@ D) @HQ) " (1Q) ™
j=1

(if Ib( )_b |5 ( )—S/p|Tk,2(f)( )lsw( )51/( )S/pd )1/5
|Q| 20 y 2Q [J y y y y y
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1 1/sry 1 , , ,
C(@ f |b(y) _ b2Q|sh[u(y)—sr1/de) (I_QI f |Tk,2(f)(y)|sr1 a)(y)srl v(y)ﬁ s/pdy

1/srp
CY 29 1>>(|Q| f Ib(y) = bagl”™ () ““de)

j=1

f IT2(F))F @)™ vy d "
0l Y y Y Yy

L —sry/ Hen (i k,2 sr srlr/p )
C||b||BMO(w)(|2Q| szV(y) ”dy) 0l f2Q|T Ny v(y)y™ Pdy

(=] 1/sr1
. , 1 o
c) 21”“””p(zz“”>||b||BMo<m>(—| fv(y) “/de)
P Ql

1/sr1/

i k,2 srl/ srl//p )1/5”1
(IQI f2 W v iy

1/sr1’

—1/sr1 ) )
Clttnons g [ rran) (5 [ mnwar v vy

—1/sr1
C||b||BMo<a,>ZzJ“ Wp@ ) [ v i)

! 1/sr1
(|Q| f T2 W@ ()™ /de)

1/sr
C”bHBMO(m)( f |Tk2(f)(y)a)(y |571 V(y)SH /pdy)

vQ)" I

(j=1)(n+e) 2(j=1)\»—j(e+n/s)
2 p(220-y2
=1

Clbllamow) M, (0T (I ) @)V,

1/

CY (= | IT""Mppoy T*(F)(x)"dx
;‘(IQI fQ T My TR

Clibllsvo) Y IM (@ T2(AI @I
k=1

For I3, we get, for x € Q,

IN

IA

T Mip-boyr T () = Atg (T Mip-togy e T ()]

f(z@c 1b(y) = bagllK(x = ) = Ko (x = y)IT(H(w)idy

cy, f Qo boim2(Hidy

v
o1 J2d<ly-xl<2itd [y — xol"

1/571'

2495
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Y —dé k,2
< C). gy sz 1b(y) ~ ba QI T2y
]:

c 00 d(‘i b b Tk’z d
+ Z Wl i+ — 2Q| 2/+1Q| (f)(y)l y
j=1

= 1V +19.

For 1(31), by using the same argument as I;, we get

IA

oo 1/r
{1
v CZ 2701 — b(y) = by | u(y) " d
3 ' (|2]+1Q| 2MQI (y) = byimgl u(y) 1/)

1 k2 v WO v
><(|2].+1 3l g T PN @) ) ”dy)

(o] 1/?’
g 1
Cllbllzmoce Z 2—61( . v "/Vd)
BMO( )j:l 27101 g () Y

IA

1 1/r
k2 i '/
x(—|2j+1 5 fz o TN V) ”dy)

IA

(o] _1/,,/
; 1 ,
Clibllzmow 26]( ; v(y)'rd )
BMO( ); [2/+1Q 2410 ¥ Y

1 k2 % v/ v
x(l2j+1 5 o TP ) de)

1 1/r

CHb” . 2_6](—,1‘ |Tk'2 w |7’/V T’/Pd
BMO( >]Z; TG g T 1) Py

Clibllsymow) [Myr i (0T (I ) (@)Y

IA

IA

For Iéz), by Lemmas 4 and 7, we get

1

@
’ 121Q|

IA

C||b||BMO(w)ijQj2_5j f IT*(F)(y)ldy
j=l 2/+1Q

1
127410

IN

) ] 1/9
Clillsaiow Y, 12w, ( fz " Iw(y)Tk’z(f)(y)qu(y)dy)
j=1 j+1

1 o VT
, =7 y(1)"7/14
X(I2J+1QI fmw(y P )

ClIbllBmow) 2 127wy (i) (
=1

IA

1 f Tk,Z q d )Uq
V(2]’+1Q) 2110 |a)(y) (f)(y)| 1/(]/) y

1 e
[ -9 —q/9
§ (|2f+1Q| fzg oy )

2496
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IA

ClIbllaaso) [My (I T(F)17) (%)M Z j270

j=1

1/q
X(U2JQ(V2/Q) ( w(y)” qV(y) ‘”"dy)

27+1Q)

C||b||BMO(w)[Mv(|a)Tk’2(f)Iq)(J?)]1/q Z j270
=1

Clibllsmoe) My (0T (F)I17) ()],

IA

IA

Thus

I < |Q| QZIT Mos-toyo T @) = Arg (T Moty e T2 () ()l
k=1

IA

Cllllsow Y, (Myen (0T2(AP @I + [Mu(T2(AIE@]).
k=1

This completes the proof of Theorem 1.
Proof of Theorem 2. It suffices to prove for f € C’(R"), the following inequality holds:

1/

(IQI f T (D) ~ A @) dx) < Cllbli @@ Y My oo T2(H)(E),
k=1

where tg = (1(Q))? and /(Q) denotes the side length of Q. Without loss of generality, we may assume T¢! are
T(k=1,..,m). Fix a cube Q = Q(xo,d) and ¥ € Q. Similar to the proof of Theorem 1, we have

To(f)(X) = Th-bpo (F)(X) = To-bag)rao ()X + T(o-ba0)x00e (&) = Vi(x) + Va(x)

and

n n
(|Q|f T (@) ~ A (T )| dx)
1/1] 1/
< (@Ll%(ﬂl”dx) +(|Q|f|AtQ(V1)(x)|7dx) +(|Q|f|V2(x) A (V) (x)"dx
= L+I+1.

For I4, by Lemmas 2 and 1, we obtain

1/n
(lQl f |Tk M(b sz))\ngkz(f)(x Indx)

QI IT* Mppy)20 T** ()X QlI0
B |Q|1/'7 Ixollpa-m»

”T M(b bag)X20 /z(f)”WLl

QI
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C
o] fR Mty TN ()l
< £f Ib —-b | —1/slTk,2 | 1/sd
= 10l o (%) = baglw(x) (@) (x)*dx

C , , s 1/s
< |Q| (f |b(x) — b2Q|5 a)(x)l—S dx) (LQ |Tk’2(f)(x)|sa)(x)dx)

, 1 1/s

< @”b“Lipﬁ(w)a)(ZQ)l/s +ﬁ/nw(2Q)1/s—ﬁ/n (W fQ If(y)lsw(y)dy)
< C”bHLlp[;(a)) |;QQ|)Mﬁbw(Tk2(f))(x)
< CllbllLipy ) @ E®Mp s, (T (H))(F),

thus

1/n

m 1 )
L < C;‘(@ fQ T M-y T#2(F)(X) M

< Cllbllip@(®) Y Mps o T2()R).
k=1

A

For I5, noting that w € A;, w satisfies the reverse of Holder’s inequality:

1 1/po C
(|—Q|an)(x)/” dx) lQlfw(x)dx

for all cube Q and some 1 < py < oo (see [9]). Choose q > 1 such thatr = (pp —1)/g+1 < s and let p > 1 with
r/s+1/p +1/q = 1. By using the same argument as in the proof of I;, we obtain

1 k,1 2 ) 1/n
1Ql fg Ato (T Mip-bagirag T (F))(X)[dx

1 1/r
C (— f IM(p-br0)x20 T*(f )(y)l’dy)
QI Jge

+

S 1/r
in - 1 )
szzl 2] p(ZZ(] 1)) (|2]+1Q| .f];n |M(b_sz)XzQTk,2(f)(y)| dy)

IN

1/r
clQI ( f2 0 1b(y) = bagl' () "I (N @) P (yy Y de)

+

C Y 27"p@20-D)iHQ) ™"
j=1

X

1/r
(]Z‘Q 1b(y) — bZQ|rw(y)1/P—r|Tk,2(f)(y)|rw(y)r/sa)(y)r_r/s_l/pdy)
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IA

1/pr
clor ( f o b(y) - szI’”w(y)l"”d}/)
2

1/s 1/qr
% (f ITk’Z(f)(y)Isa)(y)dy) (f a)(y)(r—r/s—l/ﬁ)‘idy)
20 2Q

00 1/157"
+ C 2 27" p(220- ) 271(Q)) ™" ( fz lb(y) — bzgwrw(y)l"”dy)
=1 Q

1/s 1/qr
X (sz ITk'z(f)(y)Isa)(y)dy) (jz‘Q w(y)(r—r/s—w)qdy)

< CIQlil/y||b||Lipﬂ(m)a)(Q)ﬁ/n+1/prw(Q)1/57ﬁ/nMﬁ,s,w(Tk,2 (f))(-f)

1/qr
X |Q|W(IQI f (y)”Ody)

+ €Y 2" @) @IUQ) ™ blLipy iy @( QP Q)M M o (TH())(®)

=1

1/qr
1/}’ 0
X 1Q ‘7(|Q| f w(y) dy)

< Cllblleipy (@I @(2Q) P (2Q)"* My (T (£))()

po/qr
1/gr
x 1Ql ‘7(|Q| f w(y)dy)

+ Clibllzip(w) Z 2" p2N)@UQ) ™ w(2Q) T w(2Q) My s (T*(f))(%)

=1

po/qr
x |Q|W(IQI f w(y)dy)

C”bHLlp;; " I;QQ|) Mﬁ sl Tk Z(f)) (%) Z 2(j=1)(n+e) (22(] 1))2 jle+n/r)

j=1

IN

IA

ClIBlILipy (@) @(@)Mp 5,0 (T*()) (),

thus

- 1 k,1 k,2 H
I < C; (|_Q| fRn |AtQ(T g M(b*sz)XZQT § (f))(x)wdx)

IA

Clbllip @ (®) Y Moo (T2(F)(E).
k=1

For I, notice w € A; C As, we get, for x € Q,

1T Mp-bo)x00r T2 (@) = At (T Mppyg)x0r T () )]

< j(;Q)E Ib(y) - szIIK(x — y) — KtQ(X _ y)”Tk,z(f)(y)ldy
- szza ly=ol<2 dﬁﬁlb(y) = baol T )My
j=1 jd<|y—xo|<2/*1
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s C Z (2]+;)n+5 LHQ 1b(y) = byiig + barag = baglew(y) ™ IT*(F)()lw(y) ' Fdy
- : ) 1/s 1/s
= Z (2]+1d v ( f2 " 1b(y) = byiigl @)~ dy) ( L HQIT"'z(f)(y)Isa)(y)dy)
e 1/ 1/s
+ ZW|b2/“Q b2Q|(f+1 w(y)_l/(s_l)dy) (LHQ|Tk’2(f)(]/)|sw(y)d3/)
b
<

C Z W||b||Li,,ﬁ<m>w<2f“Q)1/5’+ﬁ/”w<2f“Q)“S‘f‘/”Mﬁ,s,w(T“(f))(f)
j=1

0 dé . . . . s—B/n ~
+ C) gy M@ @@ QP @™ QM Mys,u(TH(F)(®)
j=1

|2f+1Q| ( 1 )1/5( e )(s—l)/s
— : dy| |(=—oe 1)
@M\ |21Q) 2/+1Qw(y) | g 27+1Qw(y) Y
w(z Q) —5j k, .
< CIIbIIL,p,;@)Z g 2 MpseT2(E)

+ Cllbllpyo Z 0(%)12 T Moo (T(£)) )
j=1

< ClbllLipg@) @®Mps,o (T ())(F),
thus
C
b= @ Z T M(b bo)xeor Tkz(f)(x) AtQ(Tk 1Mb ~bo) X(ZQ)CI“TkZ(f)) x)ldx
Q%=1
< Cllbllipy@(®) Y Mps o T2()).

k=1

These complete the proof of Theorem 1.
Proof of Theorem 3. Notice v'/? € Ayy1_pj, C A, and v(x)dx € Ay (v(x)"/Pdx) by Lemma 8, thus, by
Theorem 1 and Lemma 3, we have

f Ty (f))Fv(x)dx < f IMy (To(f))x)Pr(x)dx < C f M3, (T (D)) Fr(x)dx
R R R

IN

C”bHBMO(w)Z]R‘ ([MV»-'/;’(IwTk,z(f)V/)(x)]p/r/+[MV(Ia)Ter(f)yl)(x)]V/q)v(x)dx
k=1 YR

IA

Clllasiow Y, | lotT(IPvio
k=1 VR

= ClIbllsmow y T2 () ()P pa(x)dx
BMO( );L

< C”bHBMO(m)f [f QI u(x)dx
Rn

This completes the proof.
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Proof of Theorem 4. Choose 1 < s < p in Theorem 2 and notice w!~7 € A, then we have, by Lemmas 3
and 9,

1T (s < IMp(To(fpagr-o) < C||M2,W(Tb(f))||wwlw)

ClIbllLipy(w) ||wMﬁ,s,m(Tk’2(f MlLa(wr-a)
5

<
k=1
m
= Cllblliyer Y Mol T2l
k=1
m
< Cllblluipyr Y M2l
k=1
<

ClIbILips @)l fllLr @)-

This completes the proof.

5. Applications

In this section we shall apply Theorems 1-4 of the paper to the holomorphic functional calculus of linear
elliptic operators. First, we review some definitions regarding the holomorphic functional calculus (see
[5][16]). Given 0 < 0 < 7. Define

So ={z € C:|arg(z) < 6) U{O}

and its interior by SJ. Set Sg = Sg \ {0}. A closed operator L on some Banach space E is said to be of type 0
if its spectrum o(L) C Sg and for every v € (6, rr], there exists a constant C, such that

il = L)~ < Cy, 1 ¢ So.

Forv € (0, ], let
Hoo(Sg) ={f: Sg — C: f isholomorphic and || f||~ < oo},

where ||f]l.~ = sup{|f(z)| : z € 52}. Set

0y 0y . |zI°
\I/(Sy) = {g € Hoo(SH) : ds > 0, dc > 0 such that |g(z)| < c1 " |z|25}'

If Lisof type O and g € Hm(Sg), we define g(L) € L(E) by

g(L) = —(2ri)! fr (1l — L) g,

where I is the contour {& = re*™® : r > 0} parameterized clockwise around Sg with 0 < ¢ < p. If, in addition,
L is one-one and has dense range, then, for f € HOO(SEL),

f(L) = [WL)] T (fR)(L),
where h(z) = z(1 + z)2. L is said to have a bounded holomorphic functional calculus on the sector S u if
llg(D)Il < Nllgll

for some N > 0 and for all g € H(S}).

Now, let L be a linear operator on L*(R") with 6 < 7/2 so that (—L) generates a holomorphic semigroup
ek, 0 <|arg(z)| < /2 — 6. Applying Theorem 6 of [16] and Theorems 1-4, we get
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Corollary 2. Assume the following conditions are satisfied:
(i) The holomorphic semigroup e~2L, 0 < |arg(z)| < 7/2 — O is represented by the kernels a.(x, y) which
satisfy, for all v > 0, an upper bound
la.(x, y)| < cvhy(x, y)

for x,y € R", and 0 < |arg(z)| < 7/2 — 6, where hy(x, y) = Ct"/?s(|x — y|*/t) and s is a positive, bounded and
decreasing function satisfying

lim r"*¢s(r%) = 0.

r—o0

(ii) The operator L has a bounded holomorphic functional calculus in L*(R"), that is, for all v > 0 and
g€ Hoo(Sg), the operator g(L) satisfies

@)z < evllglleellfllr2-
Let g(L); be the Toeplitz type operator associated to g(L). Then Theorems 1-4 hold for g(L),.
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