Filomat 30:4 (2016), 1053-1060
DOI 10.2298/FIL1604053K

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Third and Higher Order Convolution Identities for Cauchy Numbers

Takao Komatsu?, Yilmaz Simsek?

“School of Mathematics and Statistics, Wuhan University, Wihan, 430072, China
YDepartment of Mathematics, Faculty of Science University of Akdeniz TR-07058 Antalya, Turkey

Abstract. The n-th Cauchy number ¢, (1 > 0) are defined by the generating function x/In(1 + x) =
Yoneo Cox™/nl. In this paper, we deal with formulae of the type

!
u:
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eyt
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I el 20

where the g; are suitable rational numbers, the ¢; are Cauchy numbers and
" n!

(e +-+a,) = E —kl' Tk 1 Chey+ly * Chiotly -

! !

ky+tkm=n
kp ki =0

In particular, we give explicit formulae for m = 3 and m = 4.

1. Introduction

The Cauchy numbers ¢, (n > 0) are defined by

1
cn:L x(x—=1)...(x —n+ 1)dx

and the (exponential) generating function of ¢, is given by

(o8]

X x"
In(l+x) ;CE (W <1)

(M4, B]. b, = c,/n! are sometimes called the Bernoulli numbers of the second kind. The first few initial

values are
1 1 19 9 863 1375
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In [7], an explicit expression of (c; + ¢;,)" for [, m, n > 0 was determined, where with the classical umbral
calculus notation (see, e.g., [10]), (c; + ¢,)" is defined by

n
n
(c1+cm)" = Z (].)Cl+ij+n—j.

j=0
As some special cases, we gave explicit formulae:
" 1 1

(co+c1)" = __(n +1)(n =1y - Encnﬂ , 1)

n! )" *k -1 1 1
(o +c2)' = Z EVED% Laan + s - gneuea, @

1) k(k - 1)c 1
@ +a) = Z U 2+ 8)ews — 501+ 3 ®

Some similar expressions were obtained for Cauchy numbers of the second kind ([8]).
The analogous concept for the Bernoulli numbers B,,, defined by the generating function

=Y BRI (W<2m,
n=0 n

has been extensively studied by many authors, including Agoh and Dilcher ([1} 2, 5] and references there).
Define

n

(Bi +By)" == Z (?)Bl+ij+Vl_j :

j=0

Then Euler’s famous formula can be written as
(Bo +Bg)" = -nB,-1 —(n—-1)B, (nx>1). 4)

The corresponding formula for the Cauchy numbers c, was written as

(co+co)' =-n(n—2)cp-1 —(m—1)cy (n20) ()
(see [12]).
In [2] the higher order recurrences for Bernoulli numbers,
B -+ B; ) ——B --B ,
(B, + L) kﬁ;m - k  Biirty Byl
kq eeskm 20

were discussed. However, explicit formulae for the third and the fourth order are not obtained, but some
special cases can be derived. For example,

n—-1)mn-2) 3n(n —2)

(Bo+Bo+B0)n= 5 Bn+ 5 Bn—l +Tl(ﬂ—1)Bn_2,
nn-1 n—-1n+1 nn+1
(BO+B0+B1)n: ( 6 )Bn+1+( )2( )Bn+ (3 )Bn—1/
nn+3 n(n—8 n2—-191 -6 nn—2
(B0+B1+B1)n: (24 )Bn+2+ (12 )Bn+1_ 24 Bn_ (12 )Bn—lr
-1 -1 5n—-2)(n-1 -2
(Bo+Bo+Byy =" Dp 1=l Oy nle=2)p

12 3 12 6 "
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In this paper, we consider formulae of the type

[

! .
m(ch +oot )" = a0ty o F A1 Cbpem

Iy +tlm=p
11 el >0

where the g; are suitable rational numbers, the c; are Cauchy numbers and

n!
n._
(C[l R +c1m) = Z —k T x TChytly " Choytly - (6)
ky+tkm=n 1: m:
Kp ki 20

In particular, we deal with the cases for m = 3 and m = 4. For example, we have

(co +co + co)"
_(=D=2)  nr-2)@n=5  nn=1)(n-3

> n > n-1 5 Cn-2,
(co +co +c1)"
_n(n- 1)C . (n+1)(n-1)Q2n-3) . nn+1)(n - 2)2c

6 n+1 6 Cn 6 n—-1
and

(C() + Co + Co + Co)n
_ (=-1)m-2)(n-3)  nmn-2)n- 3)2C

= Cy n—1
6 2
n(n —1)(n — 3)(3n* — 21n + 37) nn—1)(n —2)(n — 4)>
— 6 Cp—2 — 6 Cn-3,
(Co +Co+Co + Cl)n
_ nn—-1)(n-2) (n+1)(n = 1)(n - 2)>?
ST g omT 8 Cn
(n + Dn(n - 2)(3n? — 151 + 19) (n+Dnn-1)n-3)3
- 24 -1 24 2

2. Prelimilaries

Let by, b1, by, ... be any sequence of complex numbers with by # 0. Consider the polynomial sequence
bo(t), bi(t), ba(t), . . ., defined by

n

bu() =Y (’:)b,-t"-f = nl[x"]e" [Z b’li,) .
i=0 ’

i=0

We have deg b, (t) = n (because of by # 0) and b, = b,(0) for all n. Any polynomial 4(t) of degree n expands
in a unique way as
q(t) = aoby(t) + arby—1(t) + -+ - + anbo(t),

where g; is a suitable complex number. Now, choose

=Y ﬁ(bll(t)+---+blm(t))n,

Iy ++lm=p
1 om0
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and set t = 0 to obtain

!
W(bll +-t blm)n = aOb‘u+n + alby+n—1 +-F a‘LH—nbO .
: me

I+ +lm=p
14 dm 20

The umbral notation used here comes from heuristic techniques largely used at the end of the nineteenth
century within invariant theory (see for instance [6]). Many mathematicians have attempted to give rigorous
foundation to these techniques (see for instance [3]). Among them, in the 1970s, Gian-Carlo Rota and his
collaborators (see for instantce [11]) founded the modern umbral calculus by means of linear operators
acting on a ring of polynomials (that’s the umbral calculus of [10]). To be precise, following Roman’s
notation, in place of the symbolic representation of Cauchy numbers (written ¢” = ¢,) one defines a linear
functional C : Q[t] — Q satisfying

(C,t"y=¢c, foralln.

Now, we can linearly extend the domain of C from Q[t] to Q[ts, t5, ..., tm] by assuming

(G- ) = (C ) (C )
Finally, one obtains

n!
nl e n’n e n = — DRI
<C, SR e T R ) > = E Rl kgt T Gl -

ky++km=n
Ky ki =0

By using the compact notation introduced by Rota and Taylor ([? ]), we write p =~ g to mean (C, p) = g, and
obtain

n!
S LN € SRR S N I ceec ,
1 m ( 1 m) kl+kan kl' . km' k1+11 km+lnx
Ky ki 20
which is (6).
3. Basic results
c(x) = x/ In(1 + x) satisfies the identity
c(x)? = (1 + x)c(x) — (1 + x)xc’ (x). (7)
Since for i,v > 0 we have
i W) = ! x"
x'e(x) = Z mcnw—im ’ 8)
n=0
the identity (7) immediately leads to the formula
= (n
Y- (tJecoo = =ntr- 2611~ 1= 16, 020, ©

k=0

which is in fact identical with (5). Differentiating both sides of (7) and dividing them by 2, we obtain

c(x)c’(x) = —%x(x +1)c” (x) — %xc’(x) + %c(x). (10)
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Proposition 1.

c(x)® = %(x + 1)(x + 2)c(x) — %x(x + 1)(x + 2)c’(x) + %xz(x +1)%c”(x). (11)

Proof. By (7) and (10),
o)’ = (1+2)(( + x)c(x) — (1 + x)xc’ (v))

-1 +x)x (—%x(x +1)c” (x) — %xc’(x) + %c(x))

= %(x +1)(x + 2)c(x) — %x(x +1)(x + 2)c’(x) + %xz(x +1)%c” (x).
O
Theorem 1. For n > 2 we have

(n— 1)2(11 -2) - n(n — 2)2(2n -5) - n(n — 1)2(n -3)2

(co+co+co)' = Crp .

Remark. This result is analogous to

(n—l)(n—Z)B . 3n(n—2)B

(Bo + By + By)" = > " 7

n-1+ 1’1(1’1 - 1)Bn_2 ,

which was already mentioned above ([2, Corollary 3]).
Proof of Theorem [T} By using (8) for the identity in Proposition ]

%(x + 1)(x + 2)c(x) — %x(x +1)(x + 2)"(x) + %xz(x +1)%c” (x)

n

—i(c +§nc +1n(n—1)c )x_
- — n 2 n—1 2 n-2 !

=

- 3 1 x"
- Z (ncn + En(n —Dep1 + En(n -1)(n- 2)cn_2) pr

I}
o

n

n

(%n(n — D, +n(n—1)(n —2)c,-1 + %n(n -1)(n-2)n- 3)c,,_2) %

=
1l

+
ip-1e

_ i ((n “D(n-2)  am-2)@n-5 wcn_z) e

2 Cn 2 n-1 2 Pl
n=0

O

4. Fundamental results
By differentiating both sides of (7) u times with respect to x, we have

u
Z (i)c(")(x)c(“_")(x)

k=0
= —p(p = 2 V() - (@p = D+ (= D) (@) — x(x + e V(). (12)
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Therefore, for n, i > 0, we obtain
u

Z ([:)(CK + C,ka)n

x=0
= —(u( - 2) + Qu = D+ n(n = 1))enaymr — (= 1) + 1)
= —m(m = 2)cy1 — (m = ey, (13)

where m = n + u. Hence, if u = 0 in (13), then we have (5). If u = 1 in (I3), then we have
2co +c1)" = —(n+1)(n = D)y — nCnsa,
which matches . If p=2in , then we have
2(co +¢2)" +2(c1 + )" = —(n + 2ncp — (0 + 1)cnsz,

which is also obtained from (2) and (B). This idea can be extended to the higher-order convolution identities
for Cauchy numbers.

The fundamental result of this paper is given by the following.

Theorem 2. For y,n > 0, we have

u!

— (0 o+ o))"
K1!K2!K3! ! 2 3

K] +Kp K3 =4
K1,K0,k320

_ _ _ _ _ _ 13\
_ (m 1)2(m 2) - m(m 2;(2m 5)Cm—1 N m(m 1;(m 3) .

where m =n + .

Remark. If we put u = 0, we have the identity in Theorem If we put u = 1, we have

(CO +Co + C1)n
_ ”(”6— DI UL)IG —61)(2n =3, nn+ 1)6(n —2)? -

If we put u = 2, we have

(Co +co + Cz)n + Z(CO +c + Cl)n
n(n+1) n(n+2)2n —1) (n+1)(n+2)(n-1)»>
6 Cn+2 6 Cn+1 + 6 Cn -

If we put p = 3, we have

(co+co+c3)"+6(co+c1+c) +2(c1 +c1+c1)

2
_ (n+ 1)6(n +2) s+ (n+1)(n +63)(2n + 1)Cn+2 N n“(n + i)(n + 3)Cn+l ‘

The proof of Theorem is based upon a relation about the function c(x).
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Proposition 2. For p > 0, we have

B ) gy o) () o)
———— " ()" (x)c" (x)
ot -y Kl Kolics!
K1,K2,k320

%XZ(X + 1)26(’Ll+2)(x)
+ %x(x + 1)((4y -x+Qu- 2))C(u+1)(x)

+ %((6#2 -9u + 1)x% + 3(2#2 —4u+Dx+ (u—-1)(u- 2))6(“)(3()
+ %((%2 —15p + 13)x + 2u = 5)(u — 2))C(y—1)(x)

+ %y(y = 1)(u - 3% (x).

Proof. By differentiating both sides of u times with respect to x, we have the desired result. The left-hand
side is due to the General Leibniz’s rule. The right-hand side can be proved by induction. 0O

Proof of Theorem 2} By using (8) for the identity in Proposition 2} we have

%xz(x +1)2cW 2 (x)

(o)

n=0

Y (5700 = Do+ 1200 = D0 = D + ntn = 10 = 21 = ey 2) .

%x(x + 1)((4;1 -x+Qu- 2))c(“+1)(x)

= 6u 4pu-1 X
= § (H - 1)ncn+p + > n(n — 1)Cn+y—1 + > nmn—1)(n - 2)Cn+p—2
n=0

n

e
%((6”2 -9u+ 1)x? + 3(2M2 —dp+1)x+ (= 1) (- 2))C(“)(x)
. ((H -D(p-2)

3u? —4u +1)
£ 2 a ncn+y—1 +

=
(e}

6u>—9u+1 X"
B - 1>cn+y_z)

n’

NI=

((4p? = 150 + 13)x + 2u = 5)(p - 2))c“ ()

_ i (M(ZH -5 -2 | By — 150 +13)

A
. 2 Cn+u-1 > NCpyp-2 —n!
n=

and

! 2y < 3 EE DW=
S =1 =37 D) = ZO 2
Combining all the relations together, we obtain the desired result. [
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5. The fourth power
In a similar manner, we have the following for the fourth power.

Theorem 3. For u,n > 0, we have

|
Au" n
Kl!KZ!K3!K4!(CK1 tCi, + Gy + Cm)

K|+ +K3+R =4
K1,K0,K3,k420

(m—1)(m —2)(m - 3) m(m — 2)(m — 3)?
== 6 Cm — > Cm-1
m(m — 1)(m - 3)(3m> - 21m + 37) m(m —1)(m — 2)(m — 4)°
— 6 Cn—2 — 6 Cm-3,

where m =n + .
Remark. 1f we put y = 0 in Theorem B}, we have

(CO +co+co+ Co)n
(n—1)(n-2)(n-3) n(n —2)(n — 3)?
== 6 Cn — 2 Cn-1
n(n —1)(n — 3)(3n? — 21n + 37) n(n—1)(n - 2)(n —4)3
- Cp2 — Cn-3 -
6 6
If we put y = 1in Theorem 3} we have

(Co +Co+Co+ C1)n
_ nn=1)n- 2)c (D=1 -2y

- 24 +1 8 Cn

_ (n+Dn(n - 2)Bn* —15n + 19)0 _(n+Dnm =1)(n - 3)3C

24 n—1 24 n-2-
If we put p = 2 in Theorem 3} we have
(Co +Co+Co + Cz)n + 3(C0 +Cco+cC1+ Cl)n
_ (m+Dnn-1) (n+2)n(n—1)2
- 24 Cn+2 8 Cn+1
n+2)n+1)n-1)Gn> -9 +7) (n+2)(n+ Dnn —2)3
- 24 = 24 Cn-t-

Conjecture 1. (co +co + -+ + co)" or (vc)" v-th power sum may be computed by the same method.
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