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Available at: http://www.pmf.ni.ac.rs/filomat

Application of the Bernstein Polynomials for Solving Volterra Integral
Equations with Convolution Kernels

Ahmet Altürka

aDepartment of Mathematics, Faculty of Science Amasya University TR-05000 Amasya, Turkey

Abstract. In this article, we consider the second-type linear Volterra integral equations whose kernels
based upon the difference of the arguments. The aim is to convert the integral equation to an algebraic
one. This is achieved by approximating functions appearing in the integral equation with the Bernstein
polynomials. Since the kernel is of convolution type, the integral is represented as a convolution product.
Taylor expansion of kernel along with the properties of convolution are used to represent the integral in
terms of the Bernstein polynomials so that a set of algebraic equations is obtained. This set of algebraic
equations is solved and approximate solution is obtained. We also provide a simple algorithm which
depends both on the degree of the Bernstein polynomials and that of monomials. Illustrative examples are
provided to show the validity and applicability of the method.

1. Introduction

Volterra integral equations of the second kind is written as

u(t) = f (t) + λ

∫ t

a
K(t, x)u(x) dx. (1)

In this equation non-homogenous term f (t), the kernel K(x, t), and a constant parameter λ are given and
the desired function is u(t). Since linear and nonlinear Volterra integral equations appear in many scientific
applications with a very wide range from physical sciences to engineering, considerable amount of work
has been done on solving them. The literature is very dense on the subject. Many analytical and numerical
techniques have been introduced so far and it is still expanding [13], [14],[23].
The kernel K(t, x) plays a vital role in classification of the integral equation and in constructing solution
methods. There exist different solution techniques for different types of kernels. Difference kernels form an
important class of kernels, some of which arise in neutron transport theory, gas dynamics, etc,[3],[7],[16],
[24]. In this article, we aim to investigate the Volterra integral equation of the second kind with a difference
kernel. We first focus on the kernel which is of the form K(t, x) = (t − x)n,n ∈ Z+. To be more precise, we
first consider

u(t) = f (t) + λ

∫ t

0
(t − x)nu(x) dx. (2)
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We show that this analysis form the basis for a more general kernels (see section 4). We then investigate
(see section 4)

u(t) = f (t) + λ

∫ t

0
K(t − x)u(x) dx. (3)

Approximations with polynomials or in general approximations with orthonormal functions have always
been an attractive method for scientists to solve integral equations. In addition to their nice properties
for analysis, they are also computer friendly. Easy to use algorithms can be obtained from them [5]. In
particular, some efficient methods in which polynomials are used as main tools constructed for solving
linear and nonlinear Volterra integral equations. These methods include Taylor polyomials, Chebyshev
polynomials, Legendre polynomials, Laguerre polynomials, etc, just to name a few, [8], [10], [15], [17].
The Bernstein polynomials form a useful class of functions of Mathematical Physics. A constructive proof of
Weierstrass approximation theorem based on the Bernstein polynomials is given in [4]. They have recently
been applied to some classes of integral equations to obtain numerical solutions [1], [2], [11], [21],[22], [25].
In [1], authors use them to solve the Abel’s integral equation. It is known that Abel’s integral equation is
a singular Volterra integral equation. In this article, we make an attempt to extend the application of the
Bernstein polynomials. In particular, we use them to find approximate solutions for (2) and (3).
The rest of this paper is organised as follows. In section 2, we give basic definitions and theorems required
for subsequent sections. In particular, analytic functions, the Bernstein polynomials, and their properties
are reviewed. In section 3, approximation properties of the Bernstein polynomials are introduced. In
section 4, the Bernstein polynomials are applied to solve the integral equation (2) and (3). Furthermore, we
summarize the method and give a simple procedure about how to apply it. In subsection 4.1, illustrative
examples are given. The graphs and error tables are also provided. In section 5, we conclude and discuss
the work done in this paper.

2. Review of Basic Concepts

Definition 2.1. The Bernstein polynomials of mth-degree are defined by

Bk,m(x) =

(
m
k

)
xk(1 − x)m−k, k = 0, 1, . . . ,m,

where the binomial coefficients are given by
(m

k
)

= m!
k!(m−k)! .

They have many useful properties [12]. What follows is a list of some of these properties, especially those
that will be used throughout the paper.

• The Bernstein polynomials of mth-degree, {Bk,m(x) : 0 ≤ k ≤ m, m ≥ 0}, form a complete system in

L2[0, 1] with inner product 〈 f , 1〉 =

∫ 1

0
f (x)1(x) dx, and the associated norm || f || = 〈 f , f 〉1/2.

• They form a partition of unity. That is,
m∑

k=0

Bk,m(x) =

m−1∑
k=0

Bk,m−1(x).

• They can be written in terms of power basis, {1, x, x2, . . . , xm
},

Bk,m(x) =

m∑
i=k

(−1)i−k
(
m
i

)(
i
k

)
xi.

• Power basis functions can be written in terms of the Bernstein polynomials. That is,

xk =

m∑
i=k

( i
k
)(m

k
)Bi,m(x).
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This list of properties and many others are known properties of the Bernstein polynomials. For a more
detailed treatment we refer the reader to the articles and books published on this subject [5], [6], [12],[18] -
[20].
We let

Ψm(x) = [B0,m,B1,m, . . . ,Bm,m]T and Tm(x) = [1, x, x2, . . . , xm]T (4)

so that we could writeΨm(x) = ATm(x), where A is a (m + 1)× (m + 1) nonsingular, upper triangular matrix
with entries

A(i + 1, j + 1) =

(−1) j−i(m
i
)(m−i

j−i
)

if i ≤ j,
0 otherwise,

(5)

where i, j = 0, 1, 2, . . . ,m, [1].

3. Approximation

Theorem 3.1. If H is a Hilbert space and if S is a closed subspace of H, then for any f ∈ H, the best approximation
exists and unique.

Proof: The proof can be found in [9].
We assume that H = L2[0, 1] and S = {B0,m,B1,m, . . . ,Bm,m}.
Then for any f ∈ H,

f (x) ≈ f0(x) =

m∑
i=0

αiBi,m(x) = αTΨm(x),

where α = [α1, α2, . . . , αm]T.
In order to calculate α, we define

〈 f ,Ψm〉 =

∫ 1

0
f (x)ΨT

m(x) dx, 〈Ψm,Ψm〉 =

∫ 1

0
Ψm(x)ΨT

m(x) dx, (6)

and let 〈Ψm,Ψm〉 = Qm. We note that Qm is a (m + 1) × (m + 1) matrix with entires

Qm(i + 1, j + 1) =

(m
i
)(m

j
)

(2m + 1)
(2m

i+ j
) , (7)

where i, j = 0, 1, 2, . . . ,m, [1].

Lemma 3.2. [1] Suppose that f ∈ Cm+1([0, 1]) and S = span{B0,m,B1,m, . . . ,Bm,m}. If αTB is the best approximation
of f in S, then

‖ f − αTB ‖L2[0,1]≤
max| f (m+1)(x)|

(m + 1)!(
√

2m + 3)
.

4. Solution of Volterra Integral Equation

In this section, we consider the Volterra integral equation of type (2) and (3), respectively.
Case1 :K(t, x) = (t − x)n,n ∈ Z+

We first appoximate the function u(t) and f (t) by the Bernstein polynomials as follows.

u(t) ≈ αTΨm(t) and f (t) ≈ βTΨm(t). (8)
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By substituting (8) into (2) the integral equation turns out to have the following form:

αTΨm(t) = βTΨm(t) + λ

∫ t

0
(t − x)nαTΨm(x) dx. (9)

In order to transform (9) into an algebraic equation, we need to find the operational matrix F such that∫ t

0
(t − x)nΨm(x) dx ≈ FΨm(t). (10)

To find out F we interpret the integral in (10) as a convolution product and write it as∫ t

0
(t − x)nΨm(x) dx = tn

∗Ψm(t),

where ∗ denotes the convolution product and

tn
∗Ψm(t) =

[
tn
∗ B0,m, tn

∗ B1,m, . . . tn
∗ Bm,m

]T
= tn
∗ (ATm(t)) = A(tn

∗ Tm(t)), (11)

where Tm and A are as defined in (4), (5), respectively. If we expand the convolution product in (11), we
obtain

tn
∗ Tm(t) =

[
tn
∗ 1, tn

∗ t, . . . tn
∗ tm

]T
= Dn.mTn,m, (12)

where Dn,m is an (m + 1) × (m + 1) with entries

Dn,m(i + 1, j + 1) =

 n!
(i+1)(i+2)...(i+n+1) if i = j,
0 otherwise,

(13)

for i, j = 0, 1, 2, . . . ,m and Tn,m =
[
tn+1, tn+2, . . . tn+m+1

]T
.

We now want to approximate Tn,m and write it as Tn,m ≈ EΨm(t), where E is a (m + 1) × (m + 1) matrix. It
turns out that when we approximate each entries of Tn,m by the Bernstein polynomials, we obtain

tn+1 = ET
1Ψm(t), tn+2 = ET

2Ψm(t), . . . , tn+m+1 = ET
m+1Ψm(t), (14)

where ET
i = 〈tn+i,Ψm(t)〉(〈Ψm(t),Ψm(t)〉)−1 for i = 1, 2, . . . ,m + 1. From (6) and (7) ET

i can simply be written
as

ET
i = 〈tn+i,Ψm(t)〉Q−1 =

∫ 1

0
tn+iΨT

m(t) dt. (15)

We now let E = [E1,E2, . . . ,En]T so that Tn,m ≈ EΨm(t).
The last calculation allows us to write

F = ADn,mE. (16)

We finally ready to obtain the algebraic equation corresponding to the integal equation (2). Combining
equations from (8) to (16), we have

αTΨm(t) = βTΨm(t) + λ

∫ t

0
(t − x)nαTΨm(x) dx,

αTΨm(t) = βTΨm(t) + λαTFΨm(t),

αT(I − λF)Ψm(t) = βTΨm(t).
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Thus,

αT = βT(I − λF)−1. (17)

Then the approximate solution is

u(t) ≈ αTΨm(t). (18)

We now summarize the above calculation and give step by step directions for how to obtain an approximate
solution.

• Determine the degree m of the Bernstein polynomials.

• Since n is the degree of the kernel, given n and m, compute (5), (7), (13), and (15).

• Calculate F = ADn,mE and β.

• From (17), evaluate αT. Plug this into (18).

Case2 :K(t, x) = K(t − x)
In this section, we consider the Volterra integral equation of type (3). We assume that the kernel is analytic
at a = 0. The reason for this assumption is that we are going to use truncated Taylor expansion of the kernel.
We follow similar steps as in Case1. For the sake of simplicity, we only explain the steps which did not
show up in the previous case.
We again use the following approximations.

u(t) ≈ αTΨm(t) and f (t) ≈ βTΨm(t).

We replace the convolution product in (11) by K(t) ∗Ψm(t). Instead of K(t) we use its truncated Taylor
expansion. Convolution has the distributivity property over summation. This takes us to the previous case.
We note that the more terms we use in truncated Taylor series, the better approximation result we obtain.
In the following, we consider two examples whose exact solutions are known. In order to focus on to a
particular point, the graphs and error tables are provided only for example 2.

4.1. Illustrative Examples
Example 1: Consider the following Volterra integral equation of the second kind [23]:

u(t) = 1 −
∫ t

0
(t − x)u(x)dx.

Here f (t) = 1, λ = 1, and since k(t, x) = (t − x), n = 1.
We first let m = 3, so we use the 3rd Bernstein polynomials to approximate the functions. We let

u(t) ≈ αTΨ3(t) and 1 ≈ βTΨ3(t).

We obtain αT
≈ [0.9995, 1.0030, 0.8236, 0.5398], βT = [1, 1, 1, 1], and

F =


−1/504 1/84 1/8 25/126

1/420 −13/840 13/210 127/840
1/840 −1/210 1/840 43/420
−1/630 1/120 −3/140 121/2520


The approximate solution becomes u(t) ≈ 0.0788t3

− 0.5492t2 + 0.0107t + 0.9995
We now let m = 5, so we use the 5th Bernstein polynomials to approximate the functions. We let

u(t) ≈ αTΨ5(t) and 1 ≈ βTΨ5(t).
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We obtain αT
≈ [1, 1, 0.95, 0.85, 0.71, 0.54], βT = [1, 1, 1, 1, 1, 1], and

F =



−1/10296 19/25740 811/17160 191/2574 5669/51480 245/1716
1/3276 −283/120120 404/45045 20753/360360 153/1820 8597/72072
−1/4004 92/45045 −139/16380 829/30030 11267/180180 857/9009
−1/9009 113/180180 −29/30030 −61/16380 1808/45045 285/4004

17/72072 −3/1820 1877/360360 −454/45045 1433/120120 157/3276
−1/12012 43/72072 −179/90090 529/120120 −1583/180180 1709/72072


The approximate solution becomes u(t) ≈ −0.0040t5 + 0.0460t4

− 0.0023t3
− 0.4994t2

− 0.0001t + 1.

Example 2: Consider the following Volterra integral equation of the second kind [23]:

u(t) = sin(t) + cos(t) + 2
∫ t

0
sin(t − x)u(x)dx.

Here f (t) = sin(t) + cos(t), λ = 2 and since k(t, x) = sin(t− x). Since k(t, x) = sin(t− x) so we take k(t) = sin(t).
The Taylor series expansion of k(t) and the truncated series are given, respectively, by

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, sin(x) ≈

N∑
k=0

(−1)k

(2k + 1)!
x2k+1.

We first let m = 3 and N = 0 so we use the 3rd Bernstein polynomials to approximate the functions.

u(t) ≈ αTΨ3(t) and f (t) = sin(t) + cos(t) ≈ βTΨ3(t).

We obtain αT
≈ [0.9970, 1.3497, 1.7865, 2.8215], βT

≈ [0.9992, 1.3377, 1.4868, 1.3810], and

F =


−1/504 1/84 1/8 25/126

1/420 −13/840 13/210 127/840
1/840 −1/210 1/840 43/420
−1/630 1/120 −3/140 121/2520


The approximate solution becomes

u(t) ≈ 0.5142t3 + 0.2522t2 + 1.0581t + 0.9970.

Let m = 3 and N = 1. We again assume that

u(t) ≈ αTΨ3(t) and f (t) = sin(t) + cos(t) ≈ βTΨ3(t).

We obtain
αT
≈ [0.9992, 1.3377, 1.8202, 2.7142], βT

≈ [0.9992, 1.3377, 1.4868, 1.3810]

F =


−103/55440 23/2079 191/1485 269/1540

1/385 −103/6160 911/13860 1933/13860
19/13860 −79/13860 13/3696 113/1155
−1/660 83/10395 −43/2079 2603/55440


The approximate solution becomes

u(t) ≈ 0.2674t3 + 0.4321t2 + 1.0154t + 0.9992.

We now let m = 5 and N = 0 so we use the 5th Bernstein polynomials to approximate the functions. We
let

u(t) ≈ αTΨ5(t) and f (t) = sin(t) + cos(t) ≈ βTΨ5(t).
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Figure 1: Exact and approximate solutions (left figure); Comparison of errors (right figure).

We obtain αT
≈ [1, 1.2001, 1.4497, 1.7675, 2.1898, 2.8249], βT

≈ [1, 1.2, 1.3501, 1.4332, 1.4420, 1.3818], and

F =



−1/10296 19/25740 811/17160 191/2574 5669/51480 245/1716
1/3276 −283/120120 404/45045 20753/360360 153/1820 8597/72072
−1/4004 92/45045 −139/16380 829/30030 11267/180180 857/9009
−1/9009 113/180180 −29/30030 −61/16380 1808/45045 285/4004

17/72072 −3/1820 1877/360360 −454/45045 1433/120120 157/3276
−1/12012 43/72072 −179/90090 529/120120 −1583/180180 1709/72072


The approximate solution becomes u(t) ≈ 0.542t5 + 0.0880t4 + 0.1875t3 + 0.4946t2 + 1.0006t + 1.
We now let m = 5 and N = 1 so we use the 5th Bernstein polynomials to approximate the functions. We

consider

u(t) ≈ αTΨ5(t) and f (t) = sin(t) + cos(t) ≈ βTΨ5(t).

We obtain αT
≈ [1, 1.2, 1.4501, 1.765, 2.1754, 2.7150], βT

≈ [1, 1.2, 1.3501, 1.4332, 1.4420, 1.3818], and

F =



−1/10920 25/36036 2137/45045 379/5148 577/5544 7463/60060
1/3276 −11/4680 107/12012 1161/20020 4889/60060 1109/10296

−37/144144 151/72072 −481/55440 337/12012 4957/80080 6379/72072
−25/216216 203/308880 −113/108108 −607/166320 8747/216216 29347/432432
103/432432 −901/540540 1631/308880 −2221/216216 2437/196560 229/4914
−43/540540 19/33264 −2063/1081080 9197/2162160 −463/54054 4597/196560


The approximate solution becomes u(t) ≈ 0.0023t5 + 0.0494t4 + 0.1623t3 + 0.5011t2 + t + 1.

5. Conclusion

In this article we give a simple and efficient method for solving Volterra integral equations with special
type kernels using the Bernstein polynomials. We provide a simple formulation which depends both
the power of the kernel and the order of Bernstein polynomials. We make use of this formula to find
approximate solutions for the integral equations with convolution type kernels. Two examples with known
exact solutions are considered and approximate solutions by using the Bernstein polynomials are found
out. The graphs of exact and approximate solutions for example 2 are provided along with the error tables.
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Table 1: Error table for m=5
x Exact sol. N=0 & App.sol. N=1 & App.sol. N=0 & Abs.error N=1 & Abs.error
0 1.0 0.999986617462127 1.000002844157279 0.000013382537873 0.000002844157279

0.1 1.105170918075648 1.105184755739150 1.105169779818933 0.000013837663502 0.000001138256715
0.2 1.221402758160170 1.221539622730921 1.221403033251516 0.000136864570751 0.000000275091346
0.3 1.349858807576003 1.350574448272398 1.349857566625894 0.000715640696394 0.000001240950109
0.4 1.491824697641270 1.494153830383556 1.491812414952816 0.002329132742285 0.000012282688455
0.5 1.648721270700128 1.654548823255265 1.648673428670091 0.005827552555137 0.000047842030038
0.6 1.822118800390509 1.834502025235175 1.821976016229770 0.012383224844666 0.000142784160739
0.7 2.013752707470477 2.037292666813593 2.013387886685321 0.023539959343116 0.000364820785156
0.8 2.225540928492468 2.266801698609366 2.224711792278812 0.041260770116898 0.000829136213655
0.9 2.459603111156950 2.527576879355765 2.457888271028087 0.067973768198816 0.001714840128863
1 2.718281828459046 2.824897863886363 2.714998389313944 0.106616035427317 0.003283439145102
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