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cDepartment of Mathematics, Siirt University, 56100 Siirt, Turkey
dDepartment of Mathematics, Muş Alparslan University, Muş, Turkey

Abstract. In this paper, we introduce the concepts of ∆m
−deferred statistical convergence of order α and

strong ∆m
r −deferred Cesàro summability of order α of real sequences. Additionally, some inclusion relations

about ∆m
−deferred statistical convergence of order α and strong ∆m

r −deferred Cesàro summability of order
α are given.

1. Introduction, Definitions and Preliminaries

The idea of statistical convergence was introduced by Fast [10] and the notion was associated with
summability theory by Connor [3], Connor and Savaş [4], Fridy [11], Gökhan et al. [12], Işık [13], Kuçukaslan
et al. [15, 17], Šalat [16] and many others.

The deferred Cesàro mean of sequences was introduced by Agnew [1] such as:

(
Dp,qx

)
n

=
1

q (n) − p (n)

q(n)∑
p(n)+1

xk

where
{
p (n)

}
and

{
q (n)

}
are sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) = +∞.

Throughout this work
{
p (n)

}
and

{
q (n)

}
will denote sequences of non-negative integers that satisfy the

above conditions.
Let A be a subset ofN and denote the set

{
k : p (n) < k ≤ q (n) , k ∈ A

}
by Ap,q (n) . The α−deferred density

of A is defined by

δαp,q (A) = lim
n→∞

1(
q (n) − p (n)

)α ∣∣∣Ap,q (n)
∣∣∣ , provided the limit exists, α ∈ (0, 1] (1)
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The vertical bars in (1) indicate the cardinality of the set Ap,q (n).
It can be clearly seen that every finite subset ofN has zero α−deferred density. Beside, it does not need

to hold δαp,q (Ac) = 1 − δαp,q (A) for 0 < α < 1 in general. Note that the α−deferred density reduces to the
α−density given in [5] for q (n) = n, p (n) = 0. Additionally, if α = 1 then the notion coincides with the
natural density. It can be shown that the inequality δβp,q (A) ≤ δαp,q (A) is satisfied for 0 < α ≤ β ≤ 1.

If x = (xk) is a sequence such that xk satisfies property P(k) for all k except a set of α−deferred density
zero, then we say that xk satisfies P(k) for almost all k according Dα and we denote this by a.a.k (Dα).

The notion of difference sequence spaces was introduced by Kızmaz [14] and generalized by Et and
Çolak [7]. Later on Et and Nuray [8] improved it as follows

∆m (X) = {x = (xk) : (∆mxk) ∈ X} ,

where X is any sequence space, m ∈ N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx = (∆mxk) =
(
∆m−1xk − ∆m−1xk+1

)
and so ∆mxk =

m∑
v=0

(−1)v (m
v
)
xk+v.

If x ∈ ∆m (X), then there exists one and only one y = (yk) ∈ X such that yk = ∆mxk and

xk =

k−m∑
v=1

(−1)m
(
k − v − 1

m − 1

)
yv =

k∑
v=1

(−1)m
(
k + m − v − 1

m − 1

)
yv−m, (2)

y1−m = y2−m = · · · = y0 = 0

for sufficiently large k, for instance k > 2m. We shall use the sequence which is defined in (2) to define the
sequence in (4), (5), (6) and (7) (see [2, 9]).

The main goal of this work is to examine the relation between ∆m
−deferred statistical convergence of

order α and strong ∆m
r −deferred Cesàro summability of order α, where α ∈ (0, 1] and r ∈ R+. Also we

investigate some properties related these concepts.
Now we begin with three new definitions.

Definition 1.1. Let
{
p (n)

}
,
{
q (n)

}
be two sequences of non-negative integers satisfying conditions given

above, m ∈N and α ∈ (0, 1] be given. A sequence x = (xk) is said to be ∆m
−deferred statistically convergent

of order α to L if there is a real number L such that for each ε > 0,

lim
n→∞

1(
q (n) − p (n)

)α ∣∣∣{p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε
}∣∣∣ = 0, (3)

i.e.

|∆mxk − L| < ε a.a.k (Dα).

In this case, we write ∆m(DSαp,q) − lim xk = L.

The set of all ∆m
−deferred statistically convergent sequences of order α will be denoted by ∆m(DSαp,q).

If m = 0, then ∆m
−deferred statistical convergence of order α reduces to deferred statistical convergence of

order αwhich was defined and studied by Çınar et al. [6]. If m = 0, q (n) = n and p (n) = 0, then the concept
coincides statistical convergence of order α and in the special case m = 0, α = 1, q (n) = n and p (n) = 0,
∆m
−deferred statistical convergence of order α coincides with the usual statistical convergence. Also in the

special case α = 1, q (n) = n and p (n) = 0, ∆m
−deferred statistical convergence of order α coincides with

∆m
−statistical convergence which was defined and studied by Et and Nuray [8]. Therefore, ∆m

−deferred
statistical convergence of order α is more general than all these notions.

The ∆m
−deferred statistical convergence of order α is well defined for α ∈ (0, 1], but it is not well defined

for α > 1. For this let m = 2 and take a sequence y = (yk) such that ∆2xk = yk for the sequence x = (xk) as
follows

xk =


0 1 ≤ k ≤ 3

xk−1 + k−2
2 k = 2n,n ≥ 2

xk−1 + k−3
2 k = 2n + 1,n ≥ 2
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yk =

{
1 k = 2n
0 k , 2n n ∈N . (4)

Then ∆2(DSαp,q) − lim xk = 0 and ∆2(DSαp,q) − lim xk = 1 which is impossible, where q (n) = 4n2, p (n) = 2n and
α > 1.

It is clear that ∆m (c) ⊂ ∆m(DSαp,q) for each 0 < α ≤ 1, but the converse of this is not true in general. For
instance, let us take y = (yk) such that ∆mxk = yk for some x = (xk) as follows:

yk =

{
2 k = n2

0 k , n2 . (5)

Then we have

1(
q (n) − p (n)

)α ∣∣∣∣{p (n) < k ≤ q (n) :
∣∣∣yk − 0

∣∣∣ ≥ ε}∣∣∣∣ ≤ √
q (n) −

√
p (n) + 1(

q (n) − p (n)
)α .

Therefore, x = (xk) is ∆m
−deferred statistically convergent of order α to 0 for α > 1

2 , but x < ∆m (c) , where
∆m (c) = {x = (xk) : (∆mxk) ∈ c} .

Definition 1.2. Let
{
p (n)

}
and

{
q (n)

}
be two sequences of non-negative integers satisfying conditions given

above, m ∈ N and α ∈ (0, 1] be given. A sequence x = (xk) is said to be ∆m
−deferred statistically Cauchy of

order α if there is a natural number N = N(ε) such that

lim
n→∞

1(
q (n) − p (n)

)α ∣∣∣{p (n) < k ≤ q (n) : |∆mxk − ∆mxN | ≥ ε
}∣∣∣ = 0

for every ε > 0.

This notion reduces to the concept of ∆m
−statistically Cauchy given in [8] for q (n) = n, p (n) = 0 and

α = 1.

Definition 1.3. Let
{
p (n)

}
and

{
q (n)

}
be two sequences of non-negative integers satisfying conditions given

above, m ∈ N, r ∈ R+ and α ∈ (0, 1] be given. A sequence x = (xk) is called strongly ∆m
r −deferred Cesàro

summable of order α to L if

lim
n→∞

1(
q (n) − p (n)

)α q(n)∑
p(n)+1

|∆mxk − L|r = 0

and this is denoted by ∆m
−Dwα

r
[
p, q

]
− lim xk = L.

The set of all strongly ∆m
r −deferred Cesàro summable sequences of oderαwill be denoted by ∆m(Dwα

r
[
p, q

]
).

2. Main Results

In the present part we give the main results of this paper. For instance, in Theorem 2.6 we give
the relation between the ∆m

−deferred statistical convergence of order α and the ∆m
−deferred statistical

convergence of order β, and in Theorem 2.8, we give the relation between the strong ∆m
r −deferred Cesàro

summability of order α and the strong ∆m
r −deferred Cesàro summability of order β. Also the fact that

the strong ∆m
r −deferred Cesàro summability of order α implies the ∆m

−deferred statistical convergence of
order β for α ≤ β is given in Theorem 2.10.

The proof of each of the following results is straightforward, so we choose to state these results without
proof.
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Theorem 2.1. Let 0 < α ≤ 1 and x = (xk) , y =
(
yk

)
be two sequences of complex numbers. Then each of the

following assertions is true:
(i) If ∆m(DSαp,q) − lim xk = L and c ∈ R, then ∆m(DSαp,q) − lim cxk = cL,
(ii) If ∆m(DSαp,q) − lim xk = L1 and ∆m(DSαp,q) − lim yk = L2, then ∆m(DSαp,q) − lim(xk + yk) = L1 + L2,
(iii) If ∆m

−Dwα
r
[
p, q

]
− lim xk = L and c ∈ R, then ∆m

−Dwα
r
[
p, q

]
− lim cxk = cL,

(iv) If ∆m
−Dwα

r
[
p, q

]
−lim xk = L1 and ∆m

−Dwα
r
[
p, q

]
−lim yk = L2, then ∆m

−Dwα
r
[
p, q

]
−lim(xk+yk) = L1+L2.

Theorem 2.2. For each m ∈N,∆m(DSαp,q) ⊂ ∆m+1(DSαp,q) and the inclusion is strict.

Proof. Let x = (xk) ∈ ∆m(DSαp,q). Then there exists a real number L such that

lim
n→∞

1(
q (n) − p (n)

)α ∣∣∣{p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε
}∣∣∣ = 0,

i.e.

|∆mxk − L| < ε a.a.k (Dα)

for every ε > 0. Since ∆m+1xk = ∆mxk − ∆mxk+1 we can write that∣∣∣∆m+1xk

∣∣∣ ≤ |∆mxk − L| + |∆mxk+1 − L| <
ε
2

+
ε
2

= ε a.a.k (Dα),

which means ∆m+1(DSαp,q)− lim xk = 0. So x ∈ ∆m+1(DSαp,q). To see the strictness, let x be defined by x =
(
km+2

)
.

Then it can be easily seen that x ∈ ∆m+1(DSαp,q), but x < ∆m(DSαp,q) for q (n) = n, p (n) = 0 and α = 1.

The following result is easily derivable from Theorem 2.2.

Corollary 2.3. Let m1, m2 ∈N with m1 < m2. Then ∆m1 (DSαp,q) ⊂ ∆m2 (DSαp,q) and the inclusion is strict.

Theorem 2.4. If x = (xk) is ∆m
−deferred statistically convergent of order α, then it is ∆m

−deferred statistically
Cauchy of order α.

Proof. Let ∆m(DSαp,q) − lim xk = L and ε > 0, then the inequality |∆mxk − L| < ε
2 is satisfied for a.a.k (Dα). If N

is chosen so that |∆mxN − L| < ε
2 for a.a.k (Dα), then we obtain

|∆mxk − ∆mxN | ≤ |∆
mxk − L| + |∆mxN − L| <

ε
2

+
ε
2

= ε for a.a.k (Dα).

Hence x is ∆m
−deferred statistically Cauchy of order α.

Theorem 2.5. If x is a sequence for which there is a ∆m
−deferred statistically convergent of order α sequence y such

that ∆mxk = ∆myk for a.a.k (Dα), then x is ∆m
−deferred statistically convergent of order α.

Proof. Assume that ∆mxk = ∆myk for a.a.k (Dα) and ∆m(DSαp,q) − lim yk = L. Then for each n the following
inclusion is satisfied:{

p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε
}
⊆

{
p (n) < k ≤ q (n) : ∆mxk , ∆myk

}
∪

{
p (n) < k ≤ q (n) :

∣∣∣∆myk − L
∣∣∣ ≥ ε} .

Hence we can write
1(

q (n) − p (n)
)α ∣∣∣{p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε

}∣∣∣ ≤
1(

q (n) − p (n)
)α ∣∣∣{p (n) < k ≤ q (n) : ∆mxk , ∆myk

}∣∣∣+
1(

q (n) − p (n)
)α ∣∣∣∣{p (n) < k ≤ q (n) :

∣∣∣∆myk − L
∣∣∣ ≥ ε}∣∣∣∣ .

Taking the limit as n → ∞, we obtain that x = (xk) is ∆m
−deferred statistically convergent of order α to

L.
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Theorem 2.6. Let 0 < α ≤ β ≤ 1. Then ∆m(DSαp,q) ⊆ ∆m(DSβp,q) and the inclusion is strict.

Proof. The inclusion part of the proof is easy. To show that the inclusion is strict, let us define a sequence
y =

(
yk

)
by

yk =

{
1 k = n2

0 k , n2 (6)

such that ∆mxk = yk for some x = (xk). Then x ∈ ∆m(DSβp,q) for 1
2 < β ≤ 1, but x < ∆m(DSαp,q) for 0 < α ≤ 1

2 ,

where q (n) = 4n2 and p (n) = n2.

Theorem 2.7. If lim
n

(
q (n) − p (n)

)α
n

> 0, then ∆m(S) ⊂ ∆m(DSαp,q), where ∆m(S) is the set of all ∆m
−statistically

convergent sequences.

Proof. Let ∆m(S) − lim xk = L and lim
n

(
q (n) − p (n)

)α
n

> 0. For ε > 0, we have

{k ≤ n : |∆mxk − L| ≥ ε} ⊇
{
p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε

}
,

therefore

1
n
|{k ≤ n : |∆mxk − L| ≥ ε}|≥

1
n

∣∣∣{p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε
}∣∣∣

=

(
q (n)−p (n)

)α
n

1(
q (n)−p (n)

)α ∣∣∣{p (n)<k ≤ q (n):|∆mxk−L|≥ε
}∣∣∣ .

Taking limit as n→∞ and using the fact that lim
n

(
q (n) − p (n)

)α
n

> 0, we get ∆m(DSαp,q) − lim xk = L.

The proof of the following two theorems are straightforward, so we state these results without proof.

Theorem 2.8. Let α, β ∈ (0, 1] with α ≤ β, r ∈ R+ and m ∈ N. Then ∆m(Dwα
r
[
p, q

]
) ⊆ ∆m(Dwβ

r
[
p, q

]
) and the

inclusion is strict.

Theorem 2.9. Let α ∈ (0, 1] and 0 < r < s < ∞. Then ∆m(Dwα
s
[
p, q

]
) ⊆ ∆m(Dwα

r
[
p, q

]
).

Theorem 2.10. Let α, β ∈ (0, 1] with α ≤ β, r ∈ R+ and m ∈ N. If a sequence x = (xk) is strongly ∆m
r −deferred

Cesàro summable of order α to L, then it is ∆m
−deferred statistically convergent of order β to L.

Proof. Let x = (xk) be strongly ∆m
r −deferred Cesàro summable of order α to L. For the sequence y = (yk)

such that ∆mxk = yk and ε > 0, we can write

q(n)∑
p(n)+1

∣∣∣yk − L
∣∣∣r =

q(n)∑
p(n)+1
|yk−L|≥ε

∣∣∣yk − L
∣∣∣r +

q(n)∑
p(n)+1
|yk−L|<ε

∣∣∣yk − L
∣∣∣r

≥

q(n)∑
p(n)+1
|yk−L|≥ε

∣∣∣yk − L
∣∣∣r

≥

∣∣∣∣{p (n) < k ≤ q (n) :
∣∣∣yk − L

∣∣∣r ≥ ε}∣∣∣∣ .εr
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which gives the following inequality

1(
q (n) − p (n)

)α q(n)∑
p(n)+1

∣∣∣yk − L
∣∣∣r ≥ 1(

q (n) − p (n)
)α ∣∣∣∣{p (n) < k ≤ q (n) :

∣∣∣yk − L
∣∣∣r ≥ ε}∣∣∣∣ εr

≥
1(

q (n) − p (n)
)β ∣∣∣∣{p (n) < k ≤ q (n) :

∣∣∣yk − L
∣∣∣r ≥ ε}∣∣∣∣ εr.

Then taking limit as n→∞we see that (xk) is ∆m
−deferred statistically convergent of order β to L.

Even if y =
(
yk

)
is a bounded and deferred statistically convergent sequence of order β such that

∆mxk = yk for some x = (xk), the converse of Theorem 2.10 does not hold in general. To show this we must
find a sequence that ∆m

−bounded (that is x ∈ ∆m(`∞)) and ∆m
−deferred statistically convergent of order β,

but need not to be strongly ∆m
r −deferred Cesàro summable of order α, for some α and β real numbers such

that 0 < α ≤ β ≤ 1. For this, let p(n) = 0 and q(n) = n for all n ∈ N, take r = 1 and consider a sequence
y = (yk) defined by

yk =

{ 1
√

k
, k , i3

1, k = i3
. (7)

It can be shown that x ∈ ∆m(`∞) ∩ ∆m(DSαp,q) for α ∈
(

1
3 , 1

]
, but x < ∆m(Dwα

r
[
p, q

]
) for α ∈

(
0, 1

2

)
if r = 1. So

x ∈ ∆m(DSαp,q) − ∆m(Dwα
r
[
p, q

]
) for α ∈

(
1
3 ,

1
2

)
if r = 1.

The proof of the following result is straightforward, so we omit the proof.

Theorem 2.11. Let α ∈ (0, 1] and r ∈ R+. Then ∆m(Dwα
r
[
p, q

]
) ⊆ ∆m+1(Dwα

r
[
p, q

]
) for all m ∈N.

In the following theorem we investigate inclusion properties related ∆m
−deferred statistical convergence

of order α under some particular conditions. We would like to state that
{
p(n)

}
,
{
q(n)

}
,
{
p′(n)

}
and

{
q′(n)

}
are sequences of non-negative integers satisfying

p(n) ≤ p′(n) < q′(n) ≤ q(n) for all n ∈N.

Theorem 2.12. Let
{
p(n)

}
,
{
q(n)

}
,
{
p′(n)

}
and

{
q′(n)

}
be given, α ∈ (0, 1] and m ∈ N. If lim

n→∞
( q′(n)−p′(n)

q(n)−p(n) )α > 0 then
∆m(DSαp,q) convergence of a sequence x = (xk) implies ∆m(DSαp′,q′ ) convergence.

Proof. We have{
p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε

}
⊇

{
p′ (n) < k ≤ q′ (n) : |∆mxk − L| ≥ ε

}
,

so

1(
q (n) − p (n)

)α ∣∣∣{p (n) < k ≤ q (n) : |∆mxk − L| ≥ ε
}∣∣∣ ≥

1(
q (n) − p (n)

)α ∣∣∣{p′ (n) < k ≤ q′ (n) : |∆mxk − L| ≥ ε
}∣∣∣ =

(
q′ (n) − p′ (n)
q (n) − p (n)

)α
1(

q′ (n) − p′ (n)
)α ∣∣∣{p′ (n) < k ≤ q′ (n) : |∆mxk − L| ≥ ε

}∣∣∣ .
Taking limit as n→∞, lim

n→∞
1

(q′(n)−p′(n))α
∣∣∣{p′ (n) < k ≤ q′ (n) : |∆mxk − L| ≥ ε

}∣∣∣ = 0 which means x ∈ ∆m(DSαp′,q′ ).
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[6] M. Çınar, M. Et, F. Temizsu , M. Karakaş , Deferred statistical convergence of order α, submitted.
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