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Abstract. For a finite group G, by the endomorphism ring of a module M over a commutative ring R, we
define a structure for M to make it an RG–module so that we study the relations between the properties
of R–modules and RG–modules. Mainly, we prove that RadRM is an RG–submodule of M if M is an RG–
module; also RadRM ⊆ RadRGM where RadAM is the intersection of the maximal A–submodule of module
M over a ring A. We also verify that M is an injective (projective) R–module if and only if M is an injective
(projective) RG–module.

1. Introduction

Let R be a commutative ring with unity and G a finite abelian group. Let us recall the group ring RG.
RG denote the set of all formal expressions of the form

∑
1∈G m11 where m1 ∈ R and m1 = 0 for almost

every 1. For elements m =
∑
1∈G m11, n =

∑
1∈G n11 ∈ RG, by writing m = n we mean m1 = n1 for all 1 ∈ G.

The sum in RG is componentwise as

m + n =
∑
1∈G

m11 +
∑
1∈G

n11 =
∑
1∈G

(m1 + n1)1

Moreover, RG is a ring with the following multiplication;

µη =
∑
1∈G

(
r1kh

)
(1h) =

∑
1∈G

∑
h∈G

(
r1kh−11

)
1

where µ =
∑
1∈G

r11, η =
∑

h∈G
khh ∈ RG.

Since G is finite, RG is a finite dimensional R–algebra. Finite dimensional R–algebras (especially
semisimple ones) have been more extensively investigated than finite groups; as a result RG has historically
been used as a tool of group theory. If G is infinite, however, the group theory and the ring theory is not
considerably well-known compared to one another. In this case, the emphasis is given to the relations
between the two.
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Consider the cyclic subgroup 〈x〉 of G, where x is a nonidentity element. Since R 〈x〉 is in RG, we simply
direct our attention to it. If x has finite order n ≥ 1, then 1, x, ..., xn−1 are distinct powers of x and in view of
the equation

(1 − x)(1 + x + ... + xn−1) = 1 − xn = 0, (1)

R 〈x〉, and hence RG, has a proper divisor of zero. On the other hand, if x has infinite order, R 〈x〉 consists of all
finite sums of the form

∑
aixi since all powers of x are distinct. Therefore, elements of R 〈x〉 are polynomials in

x divided by some sufficiently high power of x. Consequently, R 〈x〉 is contained in the Laurent polynomial
ring R

[
x, x−1

]
, which means it is an integral domain. In addition, the Laurent polynomial ring R

[
x, x−1

]
is

isomorphic to the group ring of the group Z of integers over R. In fact, the Laurent polynomial ring in n
variables is isomorphic to the group ring of the free abelian group of rank n.

In this paper, we impose a new structure on an R–module M to make it an RG–module, so that we study
the relations between the properties of these classes. Furthermore, we will give an alternative proof for
Generalized Maschke’s Theorem, and using the relations between RG–modules and R–modules, we will
get a sufficient condition for M to be a free R–module, in case M is a projective R–module.

2. Relations between R-modules and RG-modules

Let M be a module over a commutative ring R and EndM denotes the endomorphism ring of M. We use
the notation RadAM for the intersection of maximal A–submodules of module M over a ring A.

Firstly, we define the structure of an R–module M by making it an RG–module using the endomorphism
ring of M. We also study the properties of RG–modules.

Let τ be a group homomorphism from G to End(M). So, for all 1 ∈ G,m ∈M,we define the multiplication
m1 as

m1 = τ(1)(m).

With this multiplication, it is easy to check that M is an RG–module. The group homomorphism τ in
the multiplication is called a representation of G for M over R.

If τ(1) = 1End(M) for all 1 ∈ G, the structure of RG–module is the same with the structure of R–module.
The following is an example for the multiplication of an RG–module M.

Example 2.1. Let R = Z, M = Z ⊕Z,G = C2 = {e, a}.
i)Consider the R–homomorphism f from M to M such that f (x, y) = (3x − 4y, 2x − 3y). Clearly, f is an

endomorphism of M.
Let define a map τ from G to EndM such that τ(e) = 1 and τ(a) = f . Hence, τ is a group homomorphism and so

M is an RG–module. For any m = (x, y) ∈M = Z ⊕Z,

ma = f (a)(m)
= (3x − 4y, 2x − 3y)

ii) Consider the R–homomorphism f from M to M such that f (x, y) = (x,−y). Clearly, f is an endomorphism of
M.

Let define a map τ from G to EndM such that τ(e) = 1 and τ(a) = f . Hence, τ is a group homomorphism and so
M is an RG–module. For any m = (x, y) ∈M = Z ⊕Z,

ma = f (a)(m)
= (x,−y).

From now on, by the multiplication above we can consider an R–module M as an RG–module. The
R–module structure and the RG–module structure of M have many different properties. In the following
example, although a submodule N of an RG–module M is indecomposable as an RG–submodule, it is
decomposable as an R–submodule.
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Example 2.2. Let R = C, M = C⊕C, G = D8 =
〈
a, b : a4 = b2 = e, b−1ab = a−1

〉
. Consider the R–homomorphisms

f1, f2 from M to M such that

f1(x, y) = (−y, x), f2(x, y) = (x,−y)

Clearly, f1, f2 are endomorphisms of M. Let define a map τ from G to EndM such that τ(e) = 1 and τ(a) = f1 and
τ(b) = f2 . Hence, τ is a group homomorphism. For any m = (x, y) ∈M,

ma = a(x, y) = f1(x, y) = (−y, x)

(x, y)a2 = (−x,−y), (x, y)a3 = (y,−x)

mb = (x, y)b = f2(x, y) = (x,−y)

(x, y)ba = (y, x), (x, y)ba2 = (−x, y), (x, y)ba3 = (−y,−x)

Moreover, M is a semisimple RG–module since RG is a semisimple ring. Now we claim that M is an irreducible
RG–module. If there is a proper RG–submodule N and N , M, dim N = 1, then N = RG(α, β) for (α, β) ∈M.

(α, β)a = f1(α, β) = (−β, α)

(α, β)b = f2(α, β) = (α,−β)

Since N is an RG–submodule of M, (α, β), (−β, α), (α,−β) ∈ N. Moreover, (α, β)+ (α,−β) = (2α, 0) ∈ N and
(2α, 0) = (α, β)r1 for some 0 , r1 ∈ RG. Hence β = 0. Also, (α, β) − (α,−β) = (0, 2β) ∈ N and (0, 2β) = r2(α, β) for
some 0 , r2 ∈ RG. Hence α = 0. So we get α = β = 0. Thus, N = {0} and M is an irreducible RG–module. Then M
is a cyclic RG-module, (m ∈M, RGm = M). On the other hand, dimR M = 2 and there are proper R–submodules in
M.

It is clear that any RG–submodule of M is an R–submodule, but in generally the converse is not true.
Now we study some properties of RG–modules. Obviously, for a group homomorphism τ from G to End(M)
we have τ(G) ⊆ End(M). Then we define τ–fully invariant submodule as:

Definition 2.3. An R−submodule N of an RG–module M is called τ−fully invariant if for all f ∈ τ(G),

f (N) ⊆ N.

Lemma 2.4. Let N be an R–submodule of an RG–module M. Then NG =
∑
1∈G

N1 is a minimal RG–submodule

containing N.

Proof. Clearly, NG is an RG–submodule. So we show that NG is a minimal RG–submodule containing N.
Assume that N1 is an RG–submodule such that N ⊂ N1 ⊂ NG. Take an element n ∈ N and so for all 1 ∈ G,we
get n1 ∈ N1 since N1 is an RG–submodule containing N. This means that that N1 = NG.

Lemma 2.5. Let N be a maximal R–submodule of an RG–module M. Then NG = N or NG = M.
Furthermore, if N is τ–fully invariant then NG = N. If N is not τ–fully invariant then NG = M.

Proof. Clearly, N ⊆ NG ⊆ M. If N is τ–fully invariant, then f (N) ⊆ N for all f ∈ τ(G) and so N1 ⊆ N for all
1 ∈ G. Therefore, NG = N. On the other hand, if N is not τ–fully invariant, then clearly NG = M since N is
maximal.

Theorem 2.6. Let M be a finitely generated RG–module and N the only maximal R–submodule of M. If N is not
τ–fully invariant, then M is a cyclic RG–module.

Proof. Since N is not τ–fully invariant, we get N , NG and NG = M. So there exists n1 ∈ NG, n1 < N for
some 1 ∈ G, n ∈ N. Thus we have an RG–submodule n1RG of M and n1RG is not in N. On the other hand,
n1RG is also an R–submodule of M. Since N is the only maximal R–submodule of M, we get n1RG = M.
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Following [1, page 72], recall that a submodule K of an R–module M is essential (or large) in M,
abbreviated K EM, in case for every submodule L of M, K∩ L = 0 implies L = 0. Moreover, a submodule K
of an R–module M is superfluous (or small) in M, abbreviated K �M, in case for every submodule L of M,
K + L = M implies L = M.

Lemma 2.7. Let M be an RG–module. If N is an essential R–submodule of M, then NG is an essential RG–submodule
of M.

Proof. Let L be an RG–submodule of M such that NG ∩ L = 0. Thus N ∩ L = 0 and so L = 0 since N is an
essential R–submodule of M. Hence NG is an essential RG–submodule of M.

Lemma 2.8. Let τ be a group homomorphism from G to End(M). If N is a superfluous R–submodule of M, then
N1 = τ(1)(N) is a superfluous RG–submodule of M.

Proof. Let L be an RG–submodule of M and assume L + τ(1)(N) = M. Then (τ(1))−1(L) + N = M and so
M = (τ(1))−1(L) since N is a superflous R–submodule of M. This means that L = M and so N1 is a superfluous
RG–submodule of M.

Lemma 2.9. Let M be a finitely generated RG–module. If N is a superfluous R–submodule of M then NG is a
superfluous RG–submodule of M.

Proof. Assume that NG = M. Then we get

NG =
∑
1∈G

N1 = Ne + N11 + ... + N1k = M

where G =
{
e, 11, ..., 1k

}
. Since N is a superfluous R–submodule of M, we get N11 + ... + N1k = M. Then by

Lemma 2.8, N11 is a superfluous submodule of M and we get N12 + ...+ N1k = M and so on. Since N1k−1 is
also a superfluous submodule of M, we get N1k = M, a contradiction. Therefore, NG , M.

On the other hand, NG = N + N11 + ... + N1n is a sum of homomorphic images of superfluous R–
submodules of M. Hence NG is a superfluous R–submodule of M. Let L be an RG-submodule of M such
that NG + L = M. L is also an R–submodule of M and NG + L = M. Thus L = M and so NG is also a
superfluous RG–submodule of M.

Theorem 2.10. Let M be an RG–module. Then RadRM is an RG–submodule of M and RadRM ⊆ RadRGM.

Proof. It is known that RadRM is the sum of superfluous R–submodules of M and RadRM is a fully invariant
R–submodule of M and so (RadRM)G = RadRM. This means that RadRM is an RG-submodule of M. On the
other hand, by Lemma 2.9, we get

RadRM =
∑

N<<RM

N ⊆
∑

N<<RGM

NG ⊆ RadRGM.

Hence, RadRM ⊆ RadRGM.

3. Projectivity and Injectivity as RG–modules

In this section, we will show some relations about projectivity and injectivity between R–modules and
RG–modules. Moreover, we will give an alternative proof for Generalized Maschke’s Theorem at the end
of the section.

Lemma 3.1. Let M be a free RG–module and H be a subgroup of G. Then M is a free RH–module and a free R–module.
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Proof. Let S = {mi : i ∈ I} be an RG–basis of M and take an element m of M. Then m is written uniquely by S
such that m =

∑
i∈I

rimi as a finite sum where ri =
∑
1i∈G
1ir1i ∈ RG. Let the set T = {y j : y j ∈ G, j ∈ J} be a right

transversal for H in G. Then for any i, there is j ∈ J such that 1i ∈ Hy j and so 1i = h jiy j for some h ji ∈ H.
Then ri =

∑
h ji∈T

h jirh ji y j where rh ji = r1i , and m =
∑

h ji∈T
h jirh ji

(
y jmi

)
where m is written as a lineer combination of

the elements in RH. Hence, we have a new set S′ = {y jmi : i ∈ I, j ∈ J}.
We will show that S′ is linearly independent. Suppose that

∑
i∈I, j∈J

(y jmi)r ji = 0 where r ji ∈ RH for some

i ∈ I, j ∈ J. Since y jr ji ∈ RG and S an RG–basis of M, it follows that (y jr ji) = 0 for all i ∈ I, j ∈ J. This implies
that r ji = 0 and so S′ = {y jmi : i ∈ I, j ∈ J} is linearly independent. Therefore, M is a free RH–module.

In particular, for H = {e}, M is a free R {e}–module which implies M is a free R–module.

It is clear that converse of the lemma above is not true, in general.

Theorem 3.2. Let M be an RG–module, G a finite group and |G| invertible in R. Then M is a projective R–module
if and only if M is a projective RG–module.

Proof. Assume that M is a projective R–module. Let A,B be RG–modules and α, β be RG–homomorphisms.
Then we should have the following diagram

M
↓
β

A −→
α

B −→ 0

Obviously, A,B are also R−modules, α, β are R−homomorphisms. Then there exists an R–homomorphism

ϕ from M to A such that β = αϕ. Consider the following map
−

ϕ from M to A

−

ϕ(m) =
1
|G|

∑
1∈G

ϕ(m1)1−1

for all m ∈M. Then clearly,
−

ϕ is an R–homomorphism. Moreover, for any m ∈M, h ∈ G, we get

−

ϕ(mh) =
1
|G|

∑
1∈G

ϕ(mh1)1−1 =
1
|G|

∑
1
′
∈G

ϕ(m1
′

)1
′
−1h, where 1

′

= h1

= (
1
|G|

∑
1
′
∈G

ϕ(m1
′

)1
′
−1)h =

−

ϕ(m)h.

Hence,
−

ϕ is an RG–homomorphism. Furthermore,

α
−

ϕ(m) = α(
1
|G|

∑
1∈G

ϕ(m1)1−1) =
1
|G|

∑
1∈G

α(ϕ(m1)1−1) =
1
|G|

∑
1∈G

(αϕ(m1))1−1

=
1
|G|

∑
1∈G

β(m1)1−1 =
1
|G|

∑
1∈G

β(m11−1) =
1
|G|

∑
1∈G

β(m) =
1
|G|
|G| β(m)

= β(m)

Thus,
−

ϕ is the desired RG–homomorphism and M is a projective RG–module.
Conversely, let M be a projective RG–module. Then there is a free RG–module F and an RG–module N

such that F = M ⊕N. By Lemma 3.1, F is a free R–module and so M is a projective R–module.
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Theorem 3.3. Let M be a finitely generated projective R–module. If there are a decomposition G = AB for subgroups
A,B of G such that RB is an indecomposable RB–module and RA is isomorphic to ⊕n

i=1R as a ring where n is order of
A, then M is a free R–module.

Proof. If M is a projective R–module then M is a projective RG–module and so there is a positive integer m
and an RG–module N such that ⊕m

i=1RG � M ⊕N.
By the hypothesis, RA is isomorphic to ⊕n

i=1R as a ring. Then we also get RG = R(AB) = (RA)B by [6,
page 458] so that RG is isomorphic to ⊕n

i=1RB as a ring. Finally, we get that K = ⊕m
i=1

(
⊕

n
i=1RB

)
� M⊕N. So by

Krull-Schmitt theorem, M is isomorphic to direct sum of a finite number of indecomposable RB–submodules
of K. On the other hand, by the hypothesis, RB is an indecomposable RB–module and so M is isomorphic
to direct sum of RBs. Hence, M is a free RB–module. So by Lemma 3.1, M is a free R–module.

Theorem 3.4. Let M be an RG–module, G a finite group and |G| invertible in R. Then M is an injective R–module
if and only if M is an injective RG–module.

Proof. Assume that M is an injective R–module. Let I be an ideal of a ring RG and α be RG–homomorphisms,
i is the injection RG–map. Hence, both I and RG are R–modules, α is an R–homomorphism and i is the
injection R–map. Since M is an injective R–module, there is an RG–homomorphism ϕ such that ϕi = α. i.e
we have the following commutative diagram

M
↑
α
↖

ϕ

0 −→ I −→
i

RG

Consider the following map
−

ϕ from RG to M

−

ϕ(m) =
1
|G|

∑
1∈G

ϕ(m1)1−1

for m ∈M. We have already proved that
−

ϕ is an RG–homomorphism. Furthermore,

−

ϕi(m) =
−

ϕ(m) =
1
|G|

∑
1∈G

ϕ(m1)1−1 =
1
|G|

∑
1∈G

ϕ(i(m1))1−1 =
1
|G|

∑
1∈G

α(m1)1−1

=
1
|G|

∑
1∈G

α(m11−1) =
1
|G|

∑
1∈G

α(m) =
1
|G|
|G|α(m) = α(m).

Thus,
−

ϕ is the desired RG–homomorphism and M is an injective RG–module.
Assume that M is an injective RG–module. Let I be an ideal of a ring R and f an R–homomorphism, i

the injection R–map.

M
↑ f

0 −→ I −→
i

R

On the other hand, IG is an ideal of RG and consider the following map f̄ such that

f̄ (
∑
1∈G

r11) =
∑
1∈G

f (r1)1.

Clearly,
−

f is an RG–homomorphism by
−

f (
∑
1∈G

r11h) =
∑
1∈G

f (r1)1h = (
∑
1∈G

f (r1)1)h =
−

f (
∑
1∈G

r11)h
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where r1 ∈ I.
−

f (
∑
1∈G

r11) = m(
∑
1∈G

r11) for some m ∈ M since M is injective RG–module. Moreover, for x ∈ I,

xe ∈ IG. Then
−

f (xe) = f (x)e and also

−

f (xe) = mxe = mex = mx = f (x)e = f (x).

Thus the desired R–homomorphism 1 from R to M is defined as 1(r) = mr for r ∈ R. So, M is an injective
R–module.

Theorem 3.5. Let R be a ring, G a finite group and |G| invertible in R. Then RG is semisimple if and only if R is
semisimple.

Proof. Let RG be semisimple, G a finite group and |G| invertible in R. For any R–module M, M is an
RG–module by τ : G −→ End(M), 1 7→ 1 for all 1 ∈ G. By Theorem 3.4, any injective RG–module M is an
injective R–module. Therefore, every right module over R is injective and so R is semisimple.

Conversely, let R be semisimple, G a finite group and |G| invertible in R. For any RG–module M, M is
an R–module. Since R is semisimple, M is an injective R–module. By Theorem 3.4, any injective R–module
M is an injective RG–module. Therefore, every module over RG is injective and so RG is semisimple.
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