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Abstract. In this paper, we extend the definition of weakly second submodule of a module over a
commutative ring to a module over an arbitrary ring. First, we investigate some properties of weakly second
submodules. We define the notion of weakly second radical of a submodule and determine the weakly
second radical of some modules. We also define the notion of weak m∗-system and characterize the weakly
second radical of a submodule in terms of weak m∗-systems. Then we introduce and study a topology on
the set of all weakly second submodules of a module. We give some results concerning irreducible subsets,
irreducible components and compactness of this topological space. Finally, we investigate this topological
space from the point of view of spectral spaces.

1. Introduction

Throughout this paper all rings will be associative rings with identity elements and all modules will be
unital right modules. Unless otherwise stated R will denote a ring. By a proper submodule N of a non-zero
right R-module M, we mean a submodule N with N , M. Given a right R-module M, we shall denote the
annihilator of M (in R) by annR(M).

A non-zero R-module M is called a prime module if annR(M) = annR(K) for every non-zero submodule K
of M. A proper submodule N of a module M is called a prime submodule of M if M/N is a prime module.
The set of all prime submodules of a module M is called the prime spectrum of M and denoted by Spec(M).
Several authors investigated and topologized the prime spectrum of a given module (see [11], [12], [20]).

In [23], S. Yassemi introduced second submodules of modules over commutative rings as the dual
notion of prime submodules. Second modules over arbitrary rings were defined in [2] and used as a tool
for the study of attached primes over noncommutative rings. A right R-module M is called a second module
provided M , (0) and annR(M) = annR(M/N) for every proper submodule N of M. By a second submodule of
a module, we mean a submodule which is also a second module. If N is a second submodule of a module
M, then annR(N) = P is a prime ideal of R and in this case N is called a P-second submodule of M. Second
submodules have been extensively studied in a number of papers (see for example [1], [5], [6], [14], [15],
[16], [17]). The set of all second submodules of a module M is called the second spectrum of M and denoted
by Specs(M). Recently, some authors have investigated and topologized the second spectrum of a given
module (see for example [1], [7], [8], [13], [18]).
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Email addresses: cekensecil@gmail.com (Seçil Çeken), alkan@akdeniz.edu.tr ( Mustafa Alkan )
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In [9], M. Behboodi and H. Koohy introduced the notion of weakly prime submodule as a generalization
of prime submodule. A right R-module M is called weakly prime module if the annihilator of any non-
zero submodule of M is a prime ideal and a proper submodule P of M is called weakly prime submodule
if the quotient module M/P is a weakly prime module. In [4], H. Ansari-Toroghy and F. Farshadifar
defined weakly second submodules of modules over commutative rings as the dual notion of weakly
prime submodules. Let R be a commutative ring. A non-zero submodule N of an R-module M is called a
weakly second submodule of M if Nrs ⊆ K, where r, s ∈ R and K is a submodule of M, implies either Nr ⊆ K
or Ns ⊆ K. In this paper, we extend this definition to modules over arbitrary rings and then we introduce
and study a topology on the set of weakly second submodules of a given module.

2. Weakly Second Submodules

Let R be a commutative ring. A non-zero submodule N of an R-module M is called a weakly second
submodule of M if Nrs ⊆ K, where r, s ∈ R and K is a submodule of M, implies either Nr ⊆ K or Ns ⊆ K (see
[4, Definition 3.1]). We extend this definition to modules over arbitrary rings as follows.

Definition 2.1. Let M be a non-zero right R-module. M is called a weakly second module if for all ideals A, B of R
and for every submodule K of M, MAB ⊆ K implies either MA ⊆ K or MB ⊆ K. A submodule N of M is called a
weakly second submodule of M if N is a weakly second module itself.

Remark 2.2. (1) It is clear that if R is a commutative ring, then Definition 2.1 is equivalent to [4, Definition 3.1].
Also if a submodule of a module over a noncommutative ring satisfies the commutative definition given in [4], then it
satisfies Definition 2.1. But, if R is a noncommutative ring, these two definitions are not equivalent in general. For
example, consider the matrix ring R := Mn(k) of n × n-matrices with entries in a field k and n ≥ 2. It is well-known
that R is a simple ring. Therefore, M := RR is a weakly second module in the sense of Definition 2.1, but it does not
satisfy the commutative definition given in [4].

(2) It is easy to see that a non-zero right R-module M is weakly second if and only if annR(M/N) is a prime ideal
of R for every proper submoule N of M.

(3) It is easy to see that every non-zero factor module of a weakly second module is also weakly second.
(4) It is clear that every second module is weakly second.

The following example shows that a weakly second module over a noncommutative ring need not to
be a second module.

Recall that a fully prime ring is a ring with the property that every proper ideal is prime (see [22]).
Clearly every non-zero module over a fully prime ring is weakly second.

Example 2.3. Let F be a field and let R be the set of infinite matrices over F that have the form
A 0 0 0 . . .
0 a 0 0 . . .
0 0 a 0 . . .
0 0 0 a 0
...

...
...

...
. . .


where A is an arbitrary finite matrix and a is any element of F. In [22, Example 3.2], it was shown that R is a fully
prime ring, R has only one non-zero proper ideal P and P2 = P. Thus RR is a weakly second module which is not
second.

Proposition 2.4. The following statements are equivalent for a submodule N of a right R-module M.
(1) N is a weakly second submodule of M.
(2) {annR(N/K) : K � N} is a chain of prime ideals of R.
(3) For ideals A, B of R, either NAB = NA or NAB = NB.
(4) annR(N/K) is a prime ideal of R for every proper submoule K of N.
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Proof. (1) =⇒ (2) Let N be a weakly second submodule of M and K, L be proper submodules of N. Then,
annR(N/K)annR(N/L) ⊆ annR(N/K ∩ L). Since annR(N/K ∩ L) is a prime ideal, we have either annR(N/K) ⊆
annR(N/K ∩ L) ⊆ annR(N/L) or annR(N/L) ⊆ annR(N/K ∩ L) ⊆ annR(N/K).

(2) =⇒ (1) and (1)⇐⇒ (4) Clear by Remark 2.2-(2).
(1)⇐⇒ (3) Clear from the definition.

Theorem 2.5. Let R be a commutative ring and M be a Noetherian right R-module. Then every weakly second
submodule of M is second.

Proof. Let N be a weakly second submodule of M. N is isomorphic to a subdirect product of its cocyclic factor
modules {Mλ}λ∈Λ. For each λ ∈ Λ, Mλ is a finitely generated weakly second module. By [4, Proposition
3.4-(a)], Mλ is a weakly prime module, i.e., (0) is a weakly prime submodule of Mλ for each λ ∈ Λ. [10,
Proposition 2.4] implies that (0) is an intersection of prime submodules of Mλ. Since Mλ is a cocyclic
module, any intersection of non-zero submodules of Mλ is again non-zero. So Mλ is a prime module for
every λ ∈ Λ. [14, Lemma 1.3] implies that Mλ is homogeneous semisimple and so annR(Mλ) is a maximal
ideal of R for each λ ∈ Λ. By Proposition 2.4, the set {annR(Mλ) : λ ∈ Λ} is a chain. Since annR(Mλ) is a
maximal ideal for each λ ∈ Λ, the set {annR(Mλ) : λ ∈ Λ} is singleton. On the other hand N is isomorphic to
a submodule of

∏
λ∈Λ Mλ. This implies that annR(N) = ∩λ∈ΛannR(Mλ) = annR(Mλ), a maximal ideal of R. It

follows that N is a second submodule of M.

Let M be an R-module and N be a submodule of M. The sum of all second submodules of N is called the
second radical of N and denoted by sec(N). If there is no second submodule of N, then we define sec(N) = 0.
N is called a second radical submodule in case N = sec(N) (see [5] and [15]).

Now we define the notion of weakly second radical of a submodule.

Definition 2.6. Let M be a right R-module and N be a submodule of M. The sum of all weakly second submodules
of N is called the weakly second radical of N and denoted by w-sec(N). If there is no weakly second submodule of N,
then we define w-sec(N) = (0). N is called a weakly second radical submodule if N = w-sec(N).

Remark 2.7. (1) It is clear that Soc(N) ⊆ sec(N) ⊆ w-sec(N) for a submodule N of a right R-module M where Soc(N)
is the sum of all simple submodule of N.

(2) Let M be a right R-module. A maximal weakly second submodule of M is a weakly second submodule L of M
such that L is not properly contained in another weakly second submodule of M. It can be easily shown that whenever
{Si}i∈I is a chain of weakly second submodules of M, then ∪i∈ISi is a weakly second submodule. By using this fact
and applying Zorn’s Lemma, one can see that every weakly second submodule of M is contained in a maximal weakly
second submodue. This implies that if M has a weakly second submodule, then the weakly second radical of M is the
sum of all maximal weakly second submodules.

Theorem 2.8. Let M be a right R-module. If M satisfies descending chain condition on weakly second radical
submodules, then every non-zero submodule of M has only a finite number of maximal weakly second submodules.

Proof. The proof is similar to the proof of [4, Theorem 3.9], hence omitted.

Recall that an R-module M is said to be a comultiplication module if for any submodule N of M there exists
an ideal I of R such that N = (0 :M I) (see [3]).

Proposition 2.9. Let M be a right R-module. Then the following are true.
(1) Let M be a comultiplication module. Then, a submodule N of M is second if and only if it is weakly second.

Consequently, w-sec(M) = sec(M).
(2) If R is a ring such that every prime ideal of R is maximal, then every weakly second submodule of M is second,

consequently w-sec(M) = sec(M). In particular, if R is a right perfect ring, then w-sec(M) = sec(M) = Soc(M).
(3) If R is a ring such that the ring R/P is right or left Goldie for every prime ideal P of R and M is an injective

right R-module, then w-sec(M) = sec(M).
(4) If R is a commutative ring and M is a Noetherian R-module, then w-sec(M) = sec(M) = Soc(M).
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Proof. (1) Let N be a weakly second submodule of the comultiplication module M. Then N is also a
comultiplication module by [3, Theorem 3.17-(d)] and annR(N) is a prime ideal of R by Remark 2.2-(2). [1,
Proposition 3.17] implies that N is a second submodule. The converse and the consequence are clear.

(2) Let N be a weakly second submodule of M. Then, the set {annR(N/K) : K � N} is a chain of prime
ideals. Since every prime ideal of R is maximal, this set is singleton. This means that N is a second
submodule of M. Thus w-sec(M) = sec(M). It is well-known that every prime ideal is maximal in a right
perfect ring. So, in particular, if R is a right perfect ring w-sec(M) = sec(M) = Soc(M) by [14, Corollary 1.4].

(3) Let N be a weakly second submodule of M. Then p := annR(N) is a prime ideal of R. By [21,
Proposition 2.27], (0 :M p) is a non-zero injective right

(
R/p

)
-module. [14, Corollary 2.7 and Corollary 2.4]

implies that (0 :M p) is a second R-submodule of M. Since N ⊆ (0 :M p), we have w-sec(M) ⊆ sec(M). The
converse inclusion is always true. Thus w-sec(M) = sec(M).

(4) This follows from Theorem 2.5 and [15, Theorem 3.1].

In the following example we show that in general w-sec(M) , sec(M) for a module M.

Example 2.10. Consider the ring R and the ideal P in Example 2.3. Let M := RR. In Example 2.3, we have shown
that M is a weakly second R-module. Hence w-sec(M) = M. We claim that sec(M) = P. Since P is idempotent and it
is the only non-zero proper ideal of R, P is a second submodule of M. Let I be a second submodule of M. Then either
IP = (0) or IP = I. If IP = (0), then we get that I = (0) as R is a prime ring. Thus we must have I = IP = I ∩ P and
hence I ⊆ P. This implies that sec(M) = sec(RR) = P. Thus w-sec(M) , sec(M).

Now we define the notion of weak m∗-system and characterize the weakly second radical of submodules
in terms of weak m∗-systems.

Definition 2.11. Let M be a right R-module. A subset S  M\{0} is called a weak m∗-system, if (K :L A) ∪ S , M
and (K :L B) ∪ S ,M, where A, B are ideals of R and K, L are submodules of M, then (K :L AB) ∪ S ,M.

Proposition 2.12. Let M be a right R-module. A submodule Q of M is weakly second if and only if M\Q is a weak
m∗-system.

Proof. Suppose that Q is a weakly second submodule of M and S := M\Q. Let A, B be ideals of R and K,
L be submodules of M such that (K :L A) ∪ S , M and (K :L B) ∪ S , M. Assume that (K :L AB) ∪ S = M.
Then QAB ⊆ K ∩ L. Since Q is weakly second, we have either QA ⊆ K ∩ L or QB ⊆ K ∩ L. It follows that
(K :L A) ∪ S = M or (K :L B) ∪ S = M, a contradiction. Therefore S is a weak m∗-system.

Conversely, suppose that S := M\Q is a weak m∗-system. Let QAB ⊆ K, where A, B are ideals of R and
K is a submodule of Q. Assume that QA * K and QB * K. Then (K :M A) ∪ S , M and (K :M B) ∪ S , M.
Since S is a weak m∗-system, we have (K :M AB)∪ S ,M. This implies that QAB * K, a contradiction. Thus
Q is a weakly second submodule of M.

Proposition 2.13. Let M be a right R-module, S  M\{0} be a weak m∗-system and Q be a submodule of M minimal
with the property that Q ∪ S = M. Then Q is a weakly second submodule of M.

Proof. Let QAB ⊆ K, where A, B are ideals of R and K is a submodule of Q. Assume that QA * K and
QB * K. By the minimality of Q, we have (K :Q A) ∪ S , M and (K :Q B) ∪ S , M. This implies that
(K :Q AB)∪ S ,M, and so Q∪ S ,M, a contradiction. Therefore Q is a weakly second submodule of M.

Definition 2.14. Let M be a right R-module. For a submodule N of M, if there is a weakly second submodule of N,
then we define

ws√

N := {x ∈ N : there is a weak m∗-system S such that x < S and N ∪ S = M}

If there is no weakly second submodule of N, then we put ws√N = (0).

Theorem 2.15. Let M be a right R-module and N ≤M. Then ws√N = w-sec(N).
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Proof. Suppose that ws√N , (0). Let x ∈ ws√N. Then there is a weak m∗-system S such that x < S and
N ∪ S = M. Let Ψ = {P ⊆ N : P ∪ S = M}. Then Ψ , ∅, as N ∈ Ψ. Ψ is partially ordered with respect
to reverse inclusion. Let {Qi}i∈Λ be a chain in Ψ. It is clear that ∩i∈ΛQi ∈ Ψ is an upper bound for Ψ. By
Zorn’s Lemma, Ψ has a minimal element Q with respect to inclusion. By Proposition 2.13, Q is a second
submodule of N and we have x ∈ Q. Thus ws√N ⊆ sec(N).

Let Q be a second submodule of N. By Proposition 2.12, S = M\Q is a weak m∗-system. We also have
N ∪ S = M and x < S for every x ∈ Q. Therefore Q ⊆ ws√N and so w-sec(N) ⊆ ws√N.

3. The Weakly Second Classical Zariski Topology of a Module

Let M be a right R-module. The set of all weakly second submodules of M will be called the weakly
second spectrum of M and denoted by Specws(M). In this section we introduce and study a topology on
Specws(M).

Let M be a non-zero right R-module. For any submodule N of M we define the set Vws(N) := {S ∈
Specws(M) : S ⊆ N}. Then

(i) Vws(M) = Specws(M) and Vws(0) = ∅.
(ii) ∩i∈IVws(Ni) = Vws(∩i∈INi).
(iii) Vws(N) ∪ Vws(L) ⊆ Vws(N + L).
Let WS(M) := {Vws(N) : N ≤ M}. Then WS(M) contains the empty set and Specws(M), and also Wws(M)

is closed under arbitrary intersections. However, in general, WS(M) is not closed under finite unions. For
example, consider the Z-module M := Z2 ⊕ Z2. By Theroem 2.5, Specws(M) = Specs(M). [7, Remark 2.8]
implies that WS(M) is not closed under finite unions.

Definition 3.1. Let M be a right R-module. For each submodule N of M, we put Wws(N) = Specws(M)\Vws(N) and
Ωws(M) = {Wws(N) : N ≤ M}. Then we define ηws(M) to be the topology on Specws(M) by the sub-basis Ωws(M).
In fact, ηws(M) is the collection of all unions of finite intersections of elements of Ωws(M). We call this topology the
weakly second classical Zariski topology of M.

Let M be a right R-module. Note that the set

{Wws(N1) ∩ ... ∩Wws(Nk) : Ni ≤M, 1 ≤ i ≤ k, k ∈N}

is a basis for the weakly second classical Zariski topology of M.
For each subset Y of Specws(M), we will denote the closure of Y in Specws(M) by cl(Y).

Proposition 3.2. Let M be a right R-module. Then the following are true.
(1) If Y is a finite subset of Specws(M), then cl(Y) = ∪S∈YVws(S).
(2) If Y is a closed subset of Specws(M), then Y = ∪S∈YVws(S).
(3) Specws(M) is a T0-space.

Proof. The proofs of (1) and (2) are similar to the proofs of [8, 3.1-(a), (b)], hence omitted.
(3) This follows from part (1) and the fact that a topological space is a T0-space if and only if the closures

of distinct points are distinct.

A topological space X is called irreducible if X , ∅ and every finite intersection of non-empty open sets
of X is non-empty. A (non-empty) subset Y of a topological space X is called an irreducible subset if the
subspace Y of X is irreducible. For this to be so, it is necessary and sufficient that, for every pair of sets
Y1,Y2 which are closed in X and satisfy Y ⊆ Y1∪Y2, then Y ⊆ Y1 or Y ⊆ Y2. A maximal irreducible subspace
of X is called an irreducible component of X. An irreducible component of a topological space is necessarily
closed. Every irreducible subset of X is contained in an irreducible component of X, whence X is the union
of its irreducible components.

Let M be a right R-module and Y ⊆ Specws(M). We will denote
∑

S∈Y S by Tw(Y).
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Theorem 3.3. Let M be a right R-module and Y ⊆ Specws(M). Then the following are true.
(1) For every S ∈ Specws(M), Vws(S) is irreducible.
(2) If Y is irreducible, then Tw(Y) is a weakly second submodule of M.
(3) If Tw(Y) is a weakly second submodule of M and Tw(Y) ∈ cl(Y), then Y is irreducible.

Proof. (1) The proof is similar to the proof of [18, Lemma 2.2], hence omitted.
(2) Let Y be an irreducible subset of Specws(M). Then, clearly, Tw(Y) , (0) and Y ⊆ Vws(Tw(Y)). Let A,B be

ideals of R and K be a submodule of Tw(Y) such that Tw(Y)AB ⊆ K. Then we see that Y ⊆ Vws((K :M AB)) ⊆
Vws((K :M A)) ∪Vws((K :M B)). Since Y is irreducible, we have either Y ⊆ Vws((K :M A)) or Y ⊆ Vws((K :M B)).
This implies that either Tw(Y)A ⊆ K or Tw(Y)B ⊆ K. Thus Tw(Y) is a weakly second submodule of M.

(3) Let S := Tw(Y) be a weakly second submodule of M and S ∈ cl(Y). By Proposition 3.2-(1), we have
cl({S}) = Vws(S) ⊆ cl(Y) and clearly Y ⊆ Vws(S). Thus cl(Y) = Vws(S). Now let Y ⊆ Y1 ∪ Y2, where Y1 and Y2
are closed subset of Specws(M). Then we have cl(Y) = Vws(S) ⊆ Y1 ∪ Y2. By part (1), Vws(S) is irreducible.
This implies that either Y ⊆ Y1 or Y ⊆ Y2. So Y is irreducible.

Corollary 3.4. Let M be a right R-module and N be a submodule of M. Then Vws(N) is irreducible if and only if
w-sec(N) is a weakly second submodule of M. Consequently, Specws(M) is irreducible if and only if w-sec(M) is a
weakly second submodule of M.

Proof. Suppose that Y := Vws(N) is irreducible. Then Tw(Y) = w-sec(N) is a weakly second submodule of
M by Theorem 3.3-(2). Conversely, suppose that w-sec(N) is a weakly second submodule of M. Then, by
Proposition 3.2-(2), Y := Vws(N) = ∪S∈YVws(S). So w-sec(N) ∈ cl(Y). Hence Vws(N) is irreducible by Theorem
3.3-(3).

Theorem 3.5. Let M be a right R-module such that Specws(M) , ∅. Then, there is a bijective correspondence between
the set of all maximal weakly second submodules of M and the set of irreducible components of Specws(M).

Proof. Let Maxws(M) denote the set of all maximal weakly second submodules of M and let IC(Specws(M))
denote the set of all irreducible components of Specws(M). Let S ∈ Maxws(M). Then Vws(S) is an irreducible
closed subset of Specws(M) by Proposition Theorem 3.3-(1). Suppose that A is an irreducible subset of
Specws(M) such that Vws(S) ⊆ A. Then S ⊆ Tw(A) and Tw(A) is a weakly second submodule of M by Theorem
3.3-(2). By the maximality of S, we must have S = Tw(A). This implies that A = Vws(S) and this shows that
Vws(S) is an irreducible component of Specws(M). Thus we can define the map

ψ : Maxws(M) −→ IC(Specws(M)) by ψ(S) = Vws(S) f or every S ∈Maxws(M).

Clearly, ψ is well-defined and one to one. Now we show that ψ is surjective. Let Y ∈ IC(Specws(M)).
Then Tw(Y) is a weakly second submodule of M by Theorem 3.3-(2). So there is a maximal weakly second
submodule K of M such that Tw(Y) ⊆ K. It follows that Vws(Tw(Y)) ⊆ Vws(K) and so Y ⊆ Vws(K). Since
Vws(K) is irreducible by Theorem 3.3-(1), the maximality of Y implies that Y = Vws(K) = ψ(K). Thus ψ is a
bijective map.

Corollary 3.6. Let M be an Artinian right R-module, then Specws(M) has only a finite number of irreducible
components.

Proof. The assertion follows from Theorem 3.5 and Theorem 2.8.

A topological space X is said to be a spectral space if X is homeomorphic to Spec(S), with the Zariski topol-
ogy, for some commutative ring S. Spectral spaces were characterized by Hochster [19, p. 52, Proposition
4] as the topological spaces X which satisfy the following conditions:

(a) X is a T0-space;
(b) X is compact and has a basis of compact open subsets;
(c) The family of compact open subsets of X is closed under finite intersections;
(d) Every irreducible closed subset of X has a generic point.
In the rest of this section we will prove that if M is a right R-module such that M satisfies descending

chain condition on weakly second radical submodules, then Specws(M) is a spectral space.
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Definition 3.7. Let M be a right R-module, and let P(M) be the family of all subsets of Specws(M) of the form
Vws(N) ∩Wws(K), where N,K ≤ M. Clearly, P(M) contains Specws(M) and ∅. Let Zw(M) be the collection of all
unions of finite intersections of elements of P(M). Then Zw(M) is a topology on Specws(M) and is called the finer
patch-like topology of M. In fact, P(M) is a sub-basis for the finer patch-like topology of M.

Theorem 3.8. Let M be a right R-module such that M satisfies descending chain condition on weakly second radical
submodules. Then Specws(M) with the finer patch-like topology is a compact space.

Proof. Let A be a family of finer patch-like open sets covering Specws(M), and suppose that no finite subfamily
of A covers Specws(M). Consider the set Ψ = {K ≤ M : K = w-sec(K) and no finite subfamily of A covers
Vws(K)}. Since Vws(M) = Vws(w-sec(M)) = Specws(M), w-sec(M) ∈ Ψ and hence Ψ , ∅. Since M satisfies
descending chain condition on weakly second radical submodules, Ψ has a minimal element, say N. We
claim that N is a weakly second submodule of M. Suppose on the contrary that N is not a weakly second
submodule of M. Then there exist a submodule L of N and ideals I, J of R such that NIJ ⊆ L, NI * L and
NJ * L. Thus (L :N I)  N and (L :N J)  N. By the minimality of N, there exists a finite subfamily A′ of A
that covers both Vws((L :N I)) and Vws((L :N J)). Let S ∈ Vws(N). Since NIJ ⊆ L, we have SIJ ⊆ L. Since S is
weakly second, we have either SI ⊆ L or SJ ⊆ L. Thus either S ∈ Vws((L :N I)) or S ∈ Vws((L :N J)). Therefore
Vws(N) ⊆ Vws((L :N I))∪Vws((L :N J)). This means that Vws(N) is covered with the finite subfamily A′ of A, a
contradiction. Hence N is a weakly second submodule of M.

Now choose U ∈ A such that N ∈ U. This implies that N has a finer patch-like neighborhood
∩

n
i=1[Wws(Ki) ∩ Vws(Ni)] for some Ki,Ni ≤ M, n ∈ N such that ∩n

i=1[Wws(Ki) ∩ Vws(Ni)] ⊆ U. We claim
that for each i (1 ≤ i ≤ n)

N ∈Wws(Ki ∩N) ∩ Vws(N) ⊆Wws(Ki) ∩ Vws(Ni).

To see this assume that S ∈Wws(Ki∩N)∩Vws(N) so that S * Ki∩N and S ⊆ N. This implies that S ∈Wws(Ki).
Since N ∈ Vws(Ni) and S ⊆ N, we have S ∈ Vws(Ni). Hence we have:

N ∈ ∩n
i=1 [Wws(Ki ∩N) ∩ Vws(N)] ⊆ ∩n

i=1 [Wws(Ki) ∩ Vws(Ni)] ⊆ U.

Thus [∩n
i=1Wws(K′i )]∩Vws(N), where K′i := Ki∩N  N, is a neighborhood of N with [∩n

i=1Wws(K′i )]∩Vws(N) ⊆ U.
Since Vws(K′i ) = Vws(w-sec(K′i )), we may assume that K′i = w-sec(K′i ) for each i (1 ≤ i ≤ n). Since K′i  N, for
each i (1 ≤ i ≤ n), Vws(K′i ) can be covered by some finite subfamily A′i of A. But

Vws(N) = Vws(N) ∩ [
(
∩

n
i=1Wws(K′i )

)
∪

(
∩

n
i=1Wws(K′i )

)c
]

=
(
Vws(N) ∩ [∩n

i=1Wws(K′i )]
)
∪

(
Vws(N) ∩ [∩n

i=1Wws(K′i )]
c
)

=
(
Vws(N) ∩ (∩n

i=1Wws(K′i ))
)
∪ (Vws(N) ∩ (∪n

i=1Vws(K′i )))

Hence Vws(N) can be covered by A′1 ∪ ...∪A′n ∪ {U}, contrary to our choice of N. Thus there exists a finite
subfamily of A which covers Specws(M). Therefore, Specws(M) is compact with the finer patch-like topology
of M.

Proposition 3.9. Let M be a right R-module such that M satisfies descending chain condition on weakly second
radical submodules. Then

(1) Every irreducible closed subset of Specws(M) has a generic point.
(2) For each n ∈ N, and submodules Ni (1 ≤ i ≤ n) of M, Wws(N1) ∩ ... ∩Wws(Nn) is a compact subset of

Specws(M).
(3) Compact open subsets of Specws(M) are closed under finite intersections.

Proof. (1) This assertion is proved by using Theorem 3.8 and Proposition 3.2-(2) similar to the proof of [8,
Proposition 3.13].

(2) This assertion is proved by using Theorem 3.8 similar to the proof of [8, Theorem 3.15].
(3) This assertion is proved by using part (2) similar to the proof of [8, Corollary 3.16].
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Theorem 3.10. Let M be a right R-module such that M satisfies descending chain condition on weakly second radical
submodules. Then Specws(M) is a spectral space with the weakly second classical Zariski topology.

Proof. Specws(M) is a T0-space by Proposition 3.2-(3). By Proposition 3.9-(2), β = {Wws(N1) ∩ ... ∩Wws(Nn) :
n ∈ N, Ni ≤ M, 1 ≤ i ≤ n} is a basis for Specws(M) with the property that each basis element is compact.
Theorem 3.8 implies that Specws(M) is compact. The compact open subsets of Specws(M) is closed under
finite intersections by Proposition 3.9-(3). Finally every irreducible closed subset of Specws(M) has a generic
point by Proposition 3.9-(1). Thus Specws(M) is a spectral space by Hochster’s characterization.
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[18] S. Çeken, M. Alkan, On the second spectrum and the second classical Zariski topology of a module, Journal of Algebra And Its

Applications 14 (10) (2015), DOI: 10.1142/S0219498815501509.
[19] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60.
[20] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (3) (1999) 417-432.
[21] D.W. Sharpe and P. Vamos, Injective modules, Cambridge University Press, London, 1972.
[22] H. Tsutsui, Fully prime rings, Comm. Algebra 24 (1996) 2981–2989.
[23] S. Yassemi, The dual notion of prime submodules, Arch. Math (Brno) 37 (2001), 273–278.


