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On Double Sequence Spaces Defined by an Orlicz Function
on a Seminormed Space
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Abstract. In this paper we introduce and study the double sequence space m" (M, ¢, q) by using the Orlicz
function M. Also we obtain some inclusion results involving the space m” (M, ¢, ).

1. Introduction

The study of Orlicz sequence spaces was initiated with a certain specific purpose in Banach space
theory. Indeed, Lindberg [2] got interested in Orlicz spaces in connection with finding Banach spaces
with symmetric Schauder bases having complementary subspaces isomorphic to ¢y or [,(1 << p < ).
Subsequently Lindenstrauss and Tzafriri [3] investigated Orlicz sequence spaces in more detail and they
proved that every Orlicz sequence space [y contains a subspace isomorphic to ,(1 << peo). Parashar and
Choudhary [5] have introduced and discussed some properties of the four sequence spaces defined by using
an Orlicz function M, which generalized the sequence space /) and strongly summable sequence spaces
[C 1,p],IC 1,plo and [C, 1, ple. The Orlicz sequence find a number of useful applications in the theory of
nonlinear integral equations. Whereas the Orlicz sequence spaces are the generalizations of [,-spaces, the
L, spaces find themselves enveloped in Orlicz spaces.

The sequence space m(¢) was introduced by Sargent [9]. He studied some of its properties and obtained
its relationship with the space ¢,. In this paper we introduce and study the double sequence space m” (M, ¢, q)
by using the Orlicz function. Also we obtain some inclusion results involving the space m" (M, ¢, q).

2. Definitions and Background

An Orlicz function is a function M : [0, ) — [0, o0), which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0, for x > 0 and M(x) — o0, as x — 0.
An Orlicz function M is said to satisfy A,-condition for all values of x, if there exists a constant K > 0,

such that M(2x) < KM(x) for all x > 0. The A,-condition is equivalent to M(Lx) < KLM(x), for all values of
x>0and for L > 1.
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An Orlicz function M can always be represented in the following integral form: M(x) = f n(t)dt, where
0

7 is known as the kernel of M, is right differentiable for t > 0, (0) = 0, (¢) > 0, for t > 0, 17 is non-decreasing
and n(t) = coas t — oo.

If the convexity of the Orlicz function is replaced by M(x + y) < M(x) + M(y), then this function is called
as modulus function, introduced by Ruckle [8] and studied by Maddox [4] and others.

Remark 2.1. An Orlicz function satisfies the inequality M(Ax) < AM(x) for all A with0 < A < 1.

Let " denote the set of all double sequences of real numbers. In 1900, Pringsheim presented the
following definition for the convergence of double sequences.

Definition 2.2. ([Pringsheim, [6]]) A double sequence x = [x;] has Pringsheim limit L (denoted by P-
limx = L) provided that given € > 0 there exists N € N such that |xk,; - L| < € whenever k,[ > N. We shall
describe such an x more briefly as “P-convergent”.

We shall denote the space of all P-convergent sequences by ¢’ .

By a bounded double sequence we shall mean there exists a positive number M such that |x;;| < M for
all (k,1).

We shall also denote the set of all bounded double sequences by I.,. We also note in contrast to the case
for single sequence, a P-convergent double sequence need not be bounded.

Let P, ; denotes the class of all subsets of INXIN, those do not contain more than (, s) elements. Throughout
{gbm,n} represents a non-decreasing double sequence of positive real numbers such that (1, n)Pyi1n11 <
(m + 1)(n + 1)@y, for all (m, n) € INxIN.

Throughout the article w” (X) and ., (X) denote the spaces of all double and all double bounded sequences
respectively with elements in X, where (X, q) denote a seminormed space, seminormed by g. The zero
sequence is denoted by 0= (6,6,0,...), where 0 is the zero element of X.

In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choud-
hary [5], Et [1], Triphaty and Sen [17], Savas [11-16] and many others.

In this article we introduce the following sequence spaces.

(M, q) = {(xk,,) € w(X): supM(q (%)) < oo, for some p > 0} ,

ki1

m (M, ¢,q) = {(xkll) cw(X): sup (PL Z M(q (@)) < oo, for some p > 0}.
s kleo

1,521, 0€P, ¢ p

3. Main Results
In this section we prove some results involving the sequence spaces m" (M, ¢, q), and I, (M, q).
Theorem 3.1. m" (M, ¢, q) and €.,(M, q) are linear spaces.

Proof. Let (xx)), (yx1) € m (M, ¢,q) and @, € C. Then there exists positive numbers p; and p, such that

1 X
sup L Y M (g2 <o
1,5>1, 0€P, (PV’S kleo 1
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and
sup = ZM(Q(@)) e
1,521, 0€P, s (Py,s kleo p2

Let p3 = max (2 | p1,2 |[3( Pz)- Since g is a semi-norm and M is a non-decreasing convex function , we
have

) < Zoh) )
%M[q( ps ,;;Mq ps )T\ s

IN

Xkl Ykl
< M[q(—)] * M|q(_)]
i +
5> sup —Y M Q(M)]
1521, 0€Prs TS e ps
< Tl
1521, 0€Ps WS (e L P
SAIE
+ su Fa M 0,
r,le,(EPv,s qbr,s k,IZEG _q( pZ
< 00

(axkr + Byry) € m’ (M, ¢,9).

Hence m" (M, ¢, q) is a linear space.
The proof for the case £.,(M, g) is a routine work in view of the above proof. [J

Theorem 3.2. The space m" (M, ¢, q) is a seminormed space, seminormed by

f (o) = inf{P >0: sup L Z M[q(@)] < 1}.

1,521, 0€P,s V1S kleo p
,

Proof. Obviously, f ((xx;)) = 0 for all (xi;) € m” (M, ¢,q) and f(6) = 0.
Let p1 > 0 and p, > 0 be such that

1 X
sup  — ZM[q(ﬂ)] =
1521, 0€Ps TS e p1

and

1
sup - ZM[Q(E)] <1
1,521, 0€P, s (PV’S kleo p2
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Let p = p1 + p2. Then we have

1 Xk + Y, )] 1 [ (Xk,l + Yk )]
su —_— M = su —_— M
r,szl,(EP,,s rs ,;; [q( p rs>1, (;IZP,,S rs ,;; 7 p1+p2

ey
< su M
rs>1, UIZPrS (;brs Z {pl + P2 q
Hem ((y’”))}
Pl *p2
< wiman a2
p1+p2 rs>1, oeP ¢rs kleo
S e L)
+ su M
P1+ P2 1551, CEP,G (prs l;; 1 P2
< 1.

Since the p’s are nonnegative, so we have

. 1 Xkl + Yk, )]
inf{p>0: sup — ) M ( <1
{p r,5>1, (Epr,s s lé [q p
' Xk,1
inf{p1 >0: sup [ ( )]
{ 1,621, 0€P, 5 qbrs kleo

. 1 Yk
+inf{p, >0: su M[( )] 1
{p rs>1, EEP, (;bfs ,;:, q p2
@)+ f(y).
Next for A € C, without loss of generality, let A # 0, then

flx+y)

IA

1 A
f(A(x) = inf{p>0: sup _ZM[q(ﬂ)} <1
1,521, 0€Ps WS (e Y
1
= infi[Ar>0: sup —ZM[q(@)]g
1,521, 0€P,s ‘1,8 kleo T

|A|inf{r>0: sup iZM[q(—)]g wherer_ﬁ}

1,521, 0€P, s V1,8 kleo M'
y

= JAf () -

This completes the proof of the theorem. [

The proof of the following theorem is similar to the previous theorem, so we state the result without
proof.

Proposition 3.3. The space {,,(M, q) is a seminormed space, seminormed by

g ((xx) = lnf{p >0: supM[q( ;’)] < 1}

k1>1

Theorem 3.4. m" (M, ¢,q) € m" (M, ,q) if and only ifsup, % < 00,
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Proof. Letsup,,, y** < oo and (x1) € m’ (M, ¢,q). Then

1 kI
su — M < o0, for some p > 0
2 <7>,; [q( p )] b

1,821, 0€P, 5

so we have
R B L e e M |
su M <{su su — M —
rs>1, GP.;p IPrs é [q( p r,szli 7,8 1,521, UIZ:Py,S 7,5 ](,];T 1 P

Thus (x;) € m" (M, 1, q).
Therefore m” (M, c{) q) < m’ (M, gb q)-
Conversely, let m" (M, ¢,q) € m" (M, ), q). Suppose that sup, .1 y,. = . Then there exists a sequence of

< o9,

naturals {r,s]} such that lim; ; e :r,57 = o0. Let (x¢;) € m(M, ¢, g). Then there exists p > 0 such that

o, ()

,
1,521, 0€P, s S kleo

Now we have

1 xk,l )}
su —_— M —
rsz1, CEP,Q Vrs ,;‘f [6]( p

v

(,brs 1 l (xk;)}
su su Mgl —
{1 j=>1 I:DV iSj i,j>1, JEP,S ¢715/ ]g:f q p

= 00.
Therefore (xy;) ¢ m’ (M, ¥,q). As such we arrive at a contradiction.

Brs
<00, [

Hence sup, ., m
P TS

The following result follows from Theorem 3.4.

Corollary 3.5. Let M be an Orlicz function. Then m" (M, $,q) = m" (M, ,q) if and only if sup, ., n,s < co and

SUp, o1 1,2 < 00, Where 1,5 = %for allr,s =1,2,3,....

Theorem 3.6. Let M, My, My be Orlicz functions satisfying A, — condition. Then
@) m’ (M, ¢,q) Sm" (Mo M, §,q),
(i) m (M, ¢,q9) Nm (Mp, ¢,q) €m (My + My, ¢, q).

Proof. (i) Let (x;) € m” (M1, ¢, q). Then there exists p > 0 such that
sup —ZM1 gl —=1| < co.
1,521, 0€P,s V1,8 kleo p

LetO0<e<land d with0 < 6 < 1such that M(t) < efor0 <t <.
Let yx; = My (q (%)) and for any o € P, let

Y M) = ZM(ykz)+ZM(yk1)

kleo

where the first summation is over y,; < 0 and the second is over y,; > 0.
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By the remark we have
Z M (Y1) < M(1) Z (Yi1) + M(2) Z (Yx1) -
1 1 2

For Yk > 0

Yii
5

since M is non-decreasing and convex, so

Ykl
<]+
Yk < 5

M(yk,,)<M(1+%)< SM@2) + 2M( %"’)

Since M satisfies A, — condition, so

1 1
M(y) < EK%M() E1<@M(2)

= kM.

Therefore,

Z M (yx1) < max (1r K5_1M(2)) Z (k1) -
2 2

By 1 and 2 we have (xi;) € m"” (M o My, ¢,9).
Thus m” (Mi, ¢,q) € m" (Mo My, ¢, q).
(i) (xx1) € m (Ma, @, q) N m (Ma, ¢, q).
Then there exists p > 0 such that

1 X
sup o3 M [q(ﬂ)] h
1,521, 0€Pns WS [, p

and

e, 5 L) <

1,521, 0€Ps WS ey
The rest of the proof follows from the equality

Fon e o) - Eon ()]« Do)

kleo klec kleo

Taking M;(x) = x in Theorem 3.6 (i) we have the following result. [J
Corollary 3.7. Let M be an Orlicz function satisfying A,— condition. Then
m'(¢,9) € m’ (M, $,9).
We now have from Theorem 3.4 and Corollary 3.7:

Corollary 3.8. Let M be an Orlicz function satisfying A,— condition. Then

m'(¢p,q) Sm’ (M,,q) ifand only if

rs>1

636

)
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Theorem 3.9. £ (M,q) € m" (M, ¢,q) C £,(M,q), where

f’l'(M, q) = {(xk,l) e w(X): Z M(q (x;l)) < oo, for some p > 0}
kI=1,1
Proof. Let (xi,) € €/ (M, q). Then we have
ZM[( )]<ooforsomep>0 3)
kI=1,1

Since (cpm,,) is monotonic increasing, so we have

#,;;M[q(%)] P11 ZM[ (xkl)]

kleo

1 00,00 X
o 2 ()
P11 k;l,l oy
0.

Thus,

1 X
wr LT ()<
1,521, 0€P, s (PV’S kleo p

Hence, (x;,) € m" (M, ¢, 9).
Therefore f/]' (M,q) € m" (M, p,q).
Next let (x;) € m” (M, ¢, ). Then we have

sup qb ZM[ (xkl)] < oo, forsome p > 0.

1,521, 0€P, ¢ keo

= sup —M[q( )] < oo, for some p >0,
kJENXN P11 P

(on taking cardinality of ¢ to be 1)
= (%) € ((M,q).

Therefore m” (M, ¢, q) C (oo (M, q).
This completes the proof of the theorem. [

Finally we conclude this paper by stating the following theorem. We omit the proof since it involves
known arguments.

Theorem 3.10. Let (X, q) be complete, then m” (M, ¢, q) is also complete.

If one considers a normed linear space (X, ||-||) instead of a seminormed space (X, g), then one will get
m’ (M, ¢, I]), which will be a normed linear space, normed by

i

The space m’ (M, ¢, |I1ll) will be a Banach space if X is a Banach space.

xkz
P

”(Xk,l)”M = inf{p >0: sup L Z M(
ke

1,521, 0€P,s VTS o
,
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