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Abstract. In this paper we introduce and study the double sequence space m′′ (M, φ, q) by using the Orlicz
function M. Also we obtain some inclusion results involving the space m′′ (M, φ, q).

1. Introduction

The study of Orlicz sequence spaces was initiated with a certain specific purpose in Banach space
theory. Indeed, Lindberg [2] got interested in Orlicz spaces in connection with finding Banach spaces
with symmetric Schauder bases having complementary subspaces isomorphic to c0 or lp(1 ≤< p < ∞).
Subsequently Lindenstrauss and Tzafriri [3] investigated Orlicz sequence spaces in more detail and they
proved that every Orlicz sequence space lM contains a subspace isomorphic to lp(1 ≤< p∞). Parashar and
Choudhary [5] have introduced and discussed some properties of the four sequence spaces defined by using
an Orlicz function M, which generalized the sequence space lM and strongly summable sequence spaces
[C, 1, p], [C, 1, p]0 and [C, 1, p]∞. The Orlicz sequence find a number of useful applications in the theory of
nonlinear integral equations. Whereas the Orlicz sequence spaces are the generalizations of lp-spaces, the
Lp spaces find themselves enveloped in Orlicz spaces.

The sequence space m(φ) was introduced by Sargent [9]. He studied some of its properties and obtained
its relationship with the space `p. In this paper we introduce and study the double sequence space m′′

(M, φ, q)
by using the Orlicz function. Also we obtain some inclusion results involving the space m′′

(M, φ, q).

2. Definitions and Background

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0, for x > 0 and M(x)→∞, as x→∞.

An Orlicz function M is said to satisfy ∆2-condition for all values of x, if there exists a constant K > 0,
such that M(2x) ≤ KM(x) for all x ≥ 0. The ∆2-condition is equivalent to M(Lx) ≤ KLM(x), for all values of
x > 0 and for L > 1.
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An Orlicz function M can always be represented in the following integral form: M(x) =
x∫

0
η(t)dt, where

η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) = 0, η(t) > 0, for t > 0, η is non-decreasing
and η(t)→∞ as t→∞.

If the convexity of the Orlicz function is replaced by M(x + y) ≤M(x) + M(y), then this function is called
as modulus function, introduced by Ruckle [8] and studied by Maddox [4] and others.

Remark 2.1. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

Let ω
′′

denote the set of all double sequences of real numbers. In 1900, Pringsheim presented the
following definition for the convergence of double sequences.

Definition 2.2. ([Pringsheim, [6]]) A double sequence x = [xk,l] has Pringsheim limit L (denoted by P-
lim x = L) provided that given ε > 0 there exists N ∈ N such that

∣∣∣xk,l − L
∣∣∣ < ε whenever k, l > N. We shall

describe such an x more briefly as “P-convergent”.

We shall denote the space of all P-convergent sequences by c′′ .
By a bounded double sequence we shall mean there exists a positive number M such that |xk,l| < M for

all (k, l).
We shall also denote the set of all bounded double sequences by l′′∞. We also note in contrast to the case

for single sequence, a P-convergent double sequence need not be bounded.
Let Pr,s denotes the class of all subsets ofNxN, those do not contain more than (r, s) elements. Throughout{

φm,n

}
represents a non-decreasing double sequence of positive real numbers such that (m,n)φm+1,n+1 ≤

(m + 1)(n + 1)φmn for all (m,n) ∈NxN.
Throughout the article w′′

(X) and `
′′

∞(X) denote the spaces of all double and all double bounded sequences
respectively with elements in X, where (X, q) denote a seminormed space, seminormed by q. The zero
sequence is denoted by θ = (θ, θ, θ, ...), where θ is the zero element of X.

In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choud-
hary [5], Et [1], Triphaty and Sen [17], Savaş [11–16] and many others.

In this article we introduce the following sequence spaces.

`
′′

∞(M, q) =

(xk,l) ∈ w(X) : sup
k,l≥1

M
(
q
(

xk,l

ρ

))
< ∞, for some ρ > 0

 ,

m
′′

(M, φ, q) =

(xk,l) ∈ w(X) : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(
q
(

xk,l

ρ

))
< ∞, for some ρ > 0

 .

3. Main Results

In this section we prove some results involving the sequence spaces m′′

(M, φ, q), and l′′∞(M, q).

Theorem 3.1. m′′

(M, φ, q) and `′′∞(M, q) are linear spaces.

Proof. Let (xk,l), (yk,l) ∈ m′′

(M, φ, q) and α, β ∈ C. Then there exists positive numbers ρ1 and ρ2 such that

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(
q
(

xk,l

ρ1

))
< ∞
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and

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(
q
(

xk,l

ρ2

))
< ∞.

Let ρ3 = max
(
2 |α|ρ1, 2

∣∣∣β∣∣∣ρ2

)
. Since q is a semi-norm and M is a non-decreasing convex function , we

have

∑
k,l∈σ

M
[
q
(
αxk,l + βyk,l

ρ3

)]
≤

∑
k,l∈σ

M
[
q
(
αxk,l

ρ3

)
+ q

(
βyk,l

ρ3

)]
≤

∑
k,l∈σ

M
[
q
(

xk,l

ρ1

)]
+

∑
k,l∈σ

M
[
q
(

yk,l

ρ2

)]
⇒ sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(
αxk,l + βyk,l

ρ3

)]
≤ sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ1

)]
+ sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

yk,l

ρ2

)]
< ∞

⇒
(
αxk,l + βyk,l

)
∈ m

′′

(M, φ, q).

Hence m′′

(M, φ, q) is a linear space.
The proof for the case `

′′

∞(M, q) is a routine work in view of the above proof.

Theorem 3.2. The space m′′

(M, φ, q) is a seminormed space, seminormed by

f
((

xk,l
))

= inf

ρ > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
≤ 1

 .
Proof. Obviously, f

((
xk,l

))
≥ 0 for all

(
xk,l

)
∈ m′′

(M, φ, q) and f (θ) = 0.
Let ρ1 > 0 and ρ2 > 0 be such that

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ1

)]
≤ 1

and

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ2

)]
≤ 1.
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Let ρ = ρ1 + ρ2. Then we have

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l + yk,l

ρ

)]
= sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l + yk,l

ρ1 + ρ2

)]
≤ sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

{
ρ1

ρ1 + ρ2
M

(
q
(

xk,l

ρ1

))
+

ρ2

ρ1 + ρ2
M

(
q
(

yk,l

ρ2

))}
≤

ρ1

ρ1 + ρ2
sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(
q
(

xk,l

ρ1

))
+

ρ2

ρ1 + ρ2
sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(
q
(

yk,l

ρ2

))
≤ 1.

Since the ρ’s are nonnegative, so we have

f (x + y) = inf

ρ > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l + yk,l

ρ

)]
≤ 1


≤ inf

ρ1 > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ1

)]
≤ 1


+ inf

ρ2 > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

yk,l

ρ2

)]
≤ 1


= f (x) + f (y).

Next for λ ∈ C, without loss of generality, let λ , 0, then

f
(
λ
(
xk,l

))
= inf

ρ > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(
λxk,l

ρ

)]
≤ 1


= inf

|λ|r > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(xk,l

r

)]
≤ 1


= |λ| inf

r > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(xk,l

r

)]
≤ 1, , where r =

ρ

|λ|


= |λ| f

((
xk,l

))
.

This completes the proof of the theorem.

The proof of the following theorem is similar to the previous theorem, so we state the result without
proof.

Proposition 3.3. The space `”
∞(M, q) is a seminormed space, seminormed by

1
((

xk,l
))

= inf

ρ > 0 : sup
k,l≥1

M
[
q
(

xk,l

ρ

)]
≤ 1

 .
Theorem 3.4. m′′

(M, φ, q) ⊆ m′′

(M, ψ, q) if and only if supr,s≥1
φr,s

ψr,s
< ∞.
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Proof. Let supr,s≥1
φr,s

ψr,s
< ∞ and

(
xk,l

)
∈ m′′

(M, φ, q). Then

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
< ∞, for some ρ > 0

so we have

sup
r,s≥1, σ∈Pr,s

1
ψr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
≤

sup
r,s≥1

φr,s

ψr,s


 sup

r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
< ∞.

Thus
(
xk,l

)
∈ m′′

(M, ψ, q).
Therefore m′′

(M, φ, q) ⊆ m′′

(M, ψ, q).
Conversely, let m′′

(M, φ, q) ⊆ m′′

(M, ψ, q). Suppose that supr,s≥1
φr,s

ψr,s
= ∞. Then there exists a sequence of

naturals
{
ris j

}
such that limi, j→∞

φris j

ψris j
= ∞. Let

(
xk,l

)
∈ m(M, φ, q). Then there exists ρ > 0 such that

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
< ∞.

Now we have

sup
r,s≥1, σ∈Pr,s

1
ψr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
≥

sup
i, j≥1

φris j

ψris j


 sup

i, j≥1, σ∈Pris j

1
φris j

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
= ∞.

Therefore
(
xk,l

)
< m′′

(M, ψ, q). As such we arrive at a contradiction.
Hence supr,s≥1

φr,s

ψr,s
< ∞.

The following result follows from Theorem 3.4.

Corollary 3.5. Let M be an Orlicz function. Then m′′

(M, φ, q) = m′′

(M, ψ, q) if and only if supr,s≥1 ηr,s < ∞ and

supr,s≥1 η
−1
r,s < ∞, where ηr,s =

φr,s

ψr,s
for all r, s = 1, 2, 3, ... .

Theorem 3.6. Let M, M1, M2 be Orlicz functions satisfying ∆2 − condition. Then
(i) m′′

(M1, φ, q) ⊆ m′′

(M ◦M1, φ, q),
(ii) m′′

(M1, φ, q) ∩m′′

(M2, φ, q) ⊆ m′′

(M1 + M2, φ, q).

Proof. (i) Let
(
xk,l

)
∈ m′′

(M1, φ, q). Then there exists ρ > 0 such that

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M1

[
q
(

xk,l

ρ

)]
< ∞.

Let 0 < ε < 1 and δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t < δ.
Let yk,l = M1

(
q
( xk,l

ρ

))
and for any σ ∈ Pr,s, let∑

k,l∈σ

M
(
yk,l

)
=

∑
1

M
(
yk,l

)
+

∑
2

M
(
yk,l

)
,

where the first summation is over yk,l ≤ δ and the second is over yk,l > δ.
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By the remark we have∑
1

M
(
yk,l

)
≤M(1)

∑
1

(
yk,l

)
+ M(2)

∑
2

(
yk,l

)
. (1)

For yk,l > δ

yk,l <
yk,l

δ
≤ 1 +

yk,l

δ
,

since M is non-decreasing and convex, so

M
(
yk,l

)
< M

(
1 +

yk,l

δ

)
<

1
2

M(2) +
1
2

M
(

2yk,l

δ

)
.

Since M satisfies ∆2 − condition, so

M
(
yk,l

)
<

1
2

K
yk,l

δ
M(2) +

1
2

K
yk,l

δ
M(2)

= K
yk,l

δ
M(2).

Therefore,∑
2

M
(
yk,l

)
≤ max

(
1,Kδ−1M(2)

)∑
2

(
yk,l

)
. (2)

By 1 and 2 we have
(
xk,l

)
∈ m′′(M ◦M1, φ, q).

Thus m′′

(M1, φ, q) ⊆ m′′

(M ◦M1, φ, q).
(ii)

(
xk,l

)
∈ m′′

(M1, φ, q) ∩m′′

(M2, φ, q).
Then there exists ρ > 0 such that

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M1

[
q
(

xk,l

ρ

)]
< ∞

and

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M2

[
q
(

xk,l

ρ

)]
< ∞.

The rest of the proof follows from the equality∑
k,l∈σ

(M1 + M2)
[
q
(

xk,l

ρ

)]
=

∑
k,l∈σ

M1

[
q
(

xk,l

ρ

)]
+

∑
k,l∈σ

M2

[
q
(

xk,l

ρ

)]
.

Taking M1(x) = x in Theorem 3.6 (i) we have the following result.

Corollary 3.7. Let M be an Orlicz function satisfying ∆2− condition. Then

m
′′

(φ, q) ⊆ m
′′

(M, φ, q).

We now have from Theorem 3.4 and Corollary 3.7:

Corollary 3.8. Let M be an Orlicz function satisfying ∆2− condition. Then

m
′′

(φ, q) ⊆ m
′′

(M, ψ, q) if and only if sup
r,s≥1

φr,s

ψr,s
< ∞.
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Theorem 3.9. `′′1 (M, q) ⊆ m′′

(M, φ, q) ⊆ `
′′

∞(M, q), where

`
′′

1 (M, q) =

(xk,l) ∈ w(X) :
∞,∞∑

k,l=1,1

M
(
q
(

xk,l

ρ

))
< ∞, for some ρ > 0

 .
Proof. Let

(
xk,l

)
∈ `

′′

1 (M, q). Then we have

∞,∞∑
k,l=1,1

M
[
q
(

xk,l

ρ

)]
< ∞, for some ρ > 0. (3)

Since
(
φm,n

)
is monotonic increasing, so we have

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
≤

1
φ1,1

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]

≤
1
φ1,1

∞,∞∑
k,l=1,1

M
[
q
(

xk,l

ρ

)]
< ∞.

Thus,

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
[
q
(

xk,l

ρ

)]
< ∞.

Hence,
(
xk,l

)
∈ m′′

(M, φ, q).
Therefore `

′′

1 (M, q) ⊆ m′′

(M, φ, q).
Next let

(
xk,l

)
∈ m′′

(M, φ, q). Then we have

sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k∈σ

M
[
q
(

xk,l

ρ

)]
< ∞, for some ρ > 0.

⇒ sup
k,l∈N×N

1
φ1,1

M
[
q
(

xk,l

ρ

)]
< ∞, for some ρ > 0,

(on taking cardinality of σ to be 1)
⇒

(
xk,l

)
∈ `”
∞(M, q).

Therefore m′′

(M, φ, q) ⊆ `
′′

∞(M, q).
This completes the proof of the theorem.

Finally we conclude this paper by stating the following theorem. We omit the proof since it involves
known arguments.

Theorem 3.10. Let
(
X, q

)
be complete, then m”(M, φ, q) is also complete.

If one considers a normed linear space (X, ‖·‖) instead of a seminormed space (X, q), then one will get
m′′

(M, φ, ‖·‖), which will be a normed linear space, normed by

∥∥∥(xk,l)
∥∥∥

M = inf

ρ > 0 : sup
r,s≥1, σ∈Pr,s

1
φr,s

∑
k,l∈σ

M
(∥∥∥∥∥xk,l

ρ

∥∥∥∥∥) ≤ 1

 .
The space m′′

(M, φ, ‖·‖) will be a Banach space if X is a Banach space.



E. Savaş, R. Savaş Eren / Filomat 30:3 (2016), 631–638 638

References

[1] M. Et, Sequence spaces defined by Orlicz function, J. Anal. 9 (2001) 21–28.
[2] K. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973) 119–146.
[3] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379–390.
[4] I.J. Maddox, Some new sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986) 161–166.
[5] S.D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. 25 (1994) 419–428.
[6] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289–321.
[7] D. Rath, B.C. Triphaty, Characterization of certain matrix operators, J. Orissa Math. Soc. 8 (1989) 121–134.
[8] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973) 973–978.
[9] W.L.C. Sargent, Some sequence spaces related to `p spaces, J. London Math. Soc. 35 (1960) 161–171.
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