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Abstract. The present study considers the solutions of hyperbolic partial differential equations. For this, an
approximate method based on Bernoulli polynomials is developed. This method transforms the equation
into the matrix equation and the unknown of this equation is a Bernoulli coefficients matrix. To demostrate
the validity and applicability of the method, an error analysis developed based on residual function. Also
examples are presented to illustrate the accuracy of the method.

1. Introduction

Hyperbolic partial differential equations are important for a variety of reasons. The defining properties
of hyperbolic problems include well posed Cauchy problems, finite speed of propagation, and the existence
of wave like structures with infinitely varied form. The infinite variety of wave forms make hyperbolic
equations the preferred mode for sending information for example hearing, sight, television and radio.
Well posed Cauchy problems with finite speed lead to hyperbolic equations. Since the fundamental laws of
physics must respect the principles of relavity, finite speed is required. This together with causality require
hyperbolicity. Thus there are many equations from Physics. Those which are most fundamental tend to
have close relationship with Lorentzian geometry. A source of countless mathematical and technological
problems of hyperbolic type are equations of fluid Dynamics [1].

Also there are many models problems of wave equation such as Vibrating string, fixed at both the ends,
electromagnetic waves, longitudinal vibration in a bar.

Hyperbolic partial differential equations have attracted attention and investigation of new methods to
solve these equations. Characteristics method [2] is used commonly to solve these equations. Also several
numerical methods is used such as Homotopy perturbation method, Adomian decomposition, Taylor
matrix method, Spline methods, Parameters spline methods, Bernstein Ritz-Galerkin Method, etc. [3]-[9].
In this study, we try to solve this problem using Bernoulli matrix method. Also this method has been used
to solve high-order linear differential-difference equations, linear delay difference equations with variable
coefficients and mixed linear Fredholm integro-differential-difference equations [10]-[12]. Also there are so
many studies about Bernoulli polynomials and its properties [13]-[15].

In this paper, we will consider the second-order linear hyperbolic partial differential-equation [16]-[17]
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A(x, y)
∂2u
∂x2 + B(x, y)

∂2u
∂x∂y

+ C(x, y)
∂2u
∂y2 + D(x, y)

∂u
∂x

(1)

+E(x, y)
∂u
∂y

+ F(x, y)u = G(x, y), 0 ≤ x, y ≤ 1,

with the Dirichlet boundary conditions

u(x, 0) = f1(x), 0 ≤ x ≤ 1, (2)

u(0, y) = 11(y), 0 ≤ y ≤ 1, (3)

with the Neumann boundary conditions

uy(x, 0) = f2(x), 0 ≤ x ≤ 1, (4)

and with the nonlinear integral conditions

1∫
0

u(x, y)dx = 12(y), 0 ≤ y ≤ 1. (5)

If B2
− 4AC > 0, then (1) is called a hyperbolic equation. Our purpose is to obtain an approximate solution

of (1) with the conditions (2), (3), (4) and (5) in the following Bernoulli polynomial form [18]

u(x, y) =

N∑
r=0

N∑
s=0

ar,sBr,s(x, y), (6)

where ar,s, unknown Bernoulli coefficients and Br,s(x, y) = Br(x)Bs(y). Here Br(x) and Bs(y) are r-th and s-th
degree Bernoulli polynomials, respectively.

For two variables functions, Bernoulli collocation points can be defined by

xi =
i

N
, y j =

j
N
, i = 0, 1, · · · ,N, j = 0, 1, · · · ,N. (7)

on the 0 ≤ x, y ≤ 1.

2. Fundamental Matrix Relations Second Order Linear Partial Differential Equations

The approximate solution of (1) in terms of Bernoulli polynomials can be expressed as

u(x, y) =

N∑
r=0

N∑
s=0

ar,sBr,s(x, y).

The matrix equation for this expression can be written as

u(x, y) = B(x)Q(y)A (8)

so that

B =
[

B0(x) B1(x) · · · BN(x)
]

1×(N+1)
,
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Q =


B0(y) · · · BN(y) 0 · · · 0 · · · 0 · · · 0

0 · · · 0 B0(y) · · · BN(y) · · · 0 · · · 0
...

. . .
...

0 · · · 0 0 · · · 0 · · · B0(y) · · · BN(y)


(N+1)×(N+1)2

and unknown Bernoulli coeffients

A =
[

a0,0 a0,1 · · · a0,N a1,0 a1,1 · · · a1,N · · · aN,0 aN,1 · · · aN,N

]T

(N+1)2×1

And also we can write the Bernoulli polynomials Bn(x) in the matrix form as follows

BT(x) = ζXT(x)⇔ B(x) = X(x)ζT

where

B(x) =
[

B0(x) B1(x) · · · BN(x)
]
, X(x) =

⌊
1 x · · · xN

⌋
and

ζ =



(
0
0

)
b0 0 0 0 0 0 · · · 0(

1
0

)
b1

(
1
1

)
b0 0 0 0 0 · · · 0(

2
0

)
b2

(
2
1

)
b1

(
2
2

)
b0 0 0 0 · · · 0(

3
0

)
b3

(
3
1

)
b2

(
3
2

)
b1

(
3
3

)
b0 0 0 · · · 0(

4
0

)
b4

(
4
1

)
b3

(
4
2

)
b2

(
4
3

)
b1

(
4
4

)
b0 0 · · · 0(

5
0

)
b5

(
5
1

)
b4

(
5
2

)
b3

(
5
3

)
b2

(
5
4

)
b1

(
5
5

)
b0 · · · 0

...
...

...
...

...
...

...
...(

N
0

)
bN

(
N
1

)
bN−1

(
N
2

)
bN−2

(
N
3

)
bN−3

(
N
4

)
bN−4

(
N
5

)
bN−5 · · ·

(
N
N

)
b0


where bk are the Bernoulli numbers.

There is a matrix relation between B(x) and B(1)(x) as

B(1)(x) = B(x)TT

where

T =



0 0 0 0 0 · · · 0 0
1 0 0 0 0 · · · 0 0
0 2 0 0 0 · · · 0 0
0 0 3 0 0 · · · 0 0
0 0 0 4 0 · · · 0 0
0 0 0 0 5 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · N 0
0 0 0 0 0 · · · 0 0


(N+1)×(N+1)
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Similarly the matrix relation between B(x) and its second derivative can be expressed as

B(2)(x) = B(1)(x)TT = B(x)(TT)2.

If we continue to differentiate consecutively, the i-th derivative of B(x) is

B(i)(x) = B(i−1)(x)TT = B(x)(TT)i. (9)

Accordingly the j-th derivative of Q(y) is obtained

Q(1)(y) = Q(y)T
Q(2)(y) = Q(1)(y)T = Q(y)(T)2

...
Q( j)(y) = Q( j−1)(y)T = Q(y)(T) j

(10)

where

T =


TT 0 · · · 0
0 TT

· · · 0
...

...
. . .

...
0 0 · · · TT


(N+1)2×(N+1)2

Here T is block diagonale matrix which dimention is (N + 1)2
× (N + 1)2.

Consequently we obtain a matrix relation as

u(i, j)(x, y) = B(i)(x)Q( j)(y)A = B(x)(TT)iQ(y)(T) jA (11)

for the truncated Bernoulli series with two variables u(i, j)(x, y) =
∑N

r=0
∑N

s=0 ar,sB
(i, j)
r,s (x, y).

On the other hand,with the help of (8) and (11), the unknown function and its partial derivatives in (1)
can be written as follows

u(0,0)(x, y) = u(x, y) = B(x)Q(y)A

u(1,0)(x, y) =
∂u
∂x

= B(x)(TT)Q(y)A

u(2,0)(x, y) =
∂2u
∂x2 = B(x)(TT)2Q(y)A

u(0,1)(x, y) =
∂u
∂y

= B(x)Q(y)(T)A (12)

u(0,2)(x, y) =
∂2u
∂y2 = B(x)Q(y)(T)2A

u(1,1)(x, y) =
∂2u
∂x∂y

= B(x)(T)TQ(y)(T)A

The corresponding matrix form of the conditions (2), (3), (4) and (5) respectively, is obtained as follows

u(x, 0) = B(x)Q(0)A = f1(x), 0 ≤ x ≤ 1, (13)

u(0, y) = B(0)Q(y)A = 11(y), 0 ≤ y ≤ 1, (14)

uy(x, 0) = B(x)Q(0)TA = f2(x), 0 ≤ x ≤ 1, (15)
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and

1∫
0

B(x)Q(y)Adx =


1∫

0

X(x)dx

 ζTQ(y)A (16)

= LζTQ(y)A = 12(y), 0 ≤ y ≤ 1

where

L =
[

1 1
2

1
3 · · ·

1
N+1

]
.

3. Collocation Method

We substitute the matrix relations (12) into (1) to construct fundamental matrix equation. So we obtain
the matrix equation

A(x, y)B(x)(TT)2Q(y)A + B(x, y)B(x)TTQ(y)(T)A+

C(x, y)B(x)Q(y)(T)2A + D(x, y)B(x)(TT)Q(y)A+ (17)

E(x, y)B(x)Q(y)(T)A + F(x, y)B(x)Q(y)A = G(x, y).

By using in (17) collocation points defined by (7), the system of the matrix equation is obtained as

A(xi, y j)B(xi)(TT)2Q(y j)A + B(xi, y j)B(xi)TTQ(y j)(T)A+

C(xi, y j)B(xi)Q(y j)(T)2A + D(xi, y j)B(xi)(TT)Q(y j)A+

E(xi, y j)B(xi)Q(y j)(T)A + F(xi, y j)B(xi)Q(y j)A = G(xi, y j).
i = 0, 1, · · · ,N, j = 0, 1, · · · ,N

 (18)

or briefly the fundamental matrix equation becomes

AB(TT)2QA + BBTTQ(T)A + CBQ(T)2A+

DB(TT)QA + EBQ(T)A + FBQA = G.
(19)

(19) corresponds to a system of (N + 1)2 linear algebraic equations with unknown Bernoulli coefficients
a0,0, a0,1, · · · a0,N,a1,0, a1,1, · · · , a1,N, · · · , aN,0, aN,1, · · · , aN,N.

Therefore, we can write the fundamental matrix equation (19) corresponding to (1) as

WA = G (20)

where

W = AB(TT)2Q + BBTTQ(T) + CBQ(T)2+

DB(TT)Q + EBQ(T) + FBQ.

Also we express the matrix forms of conditions (13), (14), (15) and (16) by using collocation points as

UA = [F1] , (21)

VA = [G1] , (22)

UA = [F2] , (23)

VA = [G2] . (24)
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Here

U =
[

U0 U1 · · · UN

]T
,V =

[
V0 V1 · · · VN

]T
,

U =
[

U0 U1 · · · UN

]T
,V =

[
V0 V1 · · · VN

]T
,

F1 =
[

f1(x0) f1(x1) · · · f1(xN)
]T
,G1 =

[
11(y0) 11(y1) · · · 11(yN)

]T
,

F2 =
[

f2(x0) f2(x1) · · · f2(xN)
]T
,G2 =

[
12(y0) 12(y1) · · · 12(yN)

]T
,

i = 0, 1, · · · ,N j = 0, 1, · · · ,N

Ui = B(xi)Q(0) =
[

ui1 ui2 · · · ui(N+1)2

]
,V j = B(0)Q(y j) =

[
v j1 v j2 · · · v j(N+1)2

]
,

Ui = B(xi)Q(0)T =
[

ui1 ui2 · · · ui(N+1)2

]
,V j = LζTQ(y j) =

[
v j1 v j2 · · · v j(N+1)2

]
.

To obtain the approximate solution of (1) under conditions (2), (3), (4) and (5), we form the augmented
matrix

[
W̃, G̃

]
=


U ; F1
V ; G1

U ; F2

V ; G2
W ; G

 . (25)

The unknown Bernoulli coefficients are obtained as

A = (˜̃W)−1˜̃G
where

[˜̃W; ˜̃G]
is generated by using the Gauss elimination method and then removing zero rows of gauss

eliminated matrix.
By substituting the determined coefficients into (6), we obtain the Bernoulli polynomial solution

u(x, y) =

N∑
r=0

N∑
s=0

ar,sBr,s(x, y). (26)

4. Residual Correction and Error Estimation

In this section, the residual correction method [19]-[20], an efficient error estimation will be given for
the Bernoulli collocation method. For our purpose, we can define the residual function with two variables
of the Bernoulli collocation method as

R(x, y) = LuN,N − f (27)

where uN,N, which is the Bernoulli polynomial solution defined by (6), is the approximate solution of the
problem (1)-(5), hence uN,N satisfies the problem

L
[
uN(x, y)

]
= A(x, y) ∂

2u
∂x2 + B(x, y) ∂

2u
∂x∂y + C(x, y) ∂

2u
∂y2 + D(x, y) ∂u

∂x

+E(x, y) ∂u
∂y + F(x, y)u = G(x, y) + RN(x, y).

(28)

Also, the error function eN(x, y) can be defined as

eN(x, y) = u(x, y) − uN(x, y) (29)
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where u(x, y) is the exact solution of the problem (1)-(5). Substituting (29) into (1)-(5) and using (27)-(28),
we have the error differential equation

L
[
eN(x, y)

]
= L

[
u(x, y)

]
− L

[
uN(x, y)

]
= −RN(x, y)

with the homogenous conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,
u(0, y) = 0, 0 ≤ y ≤ 1,

uy(x, 0) = 0, 0 ≤ x ≤ 1,
1∫

0

u(x, y)dx = 0, 0 ≤ y ≤ 1.

or clearly, the problem

A(x, y) ∂
2eN
∂x2 + B(x, y) ∂

2eN
∂x∂y + C(x, y) ∂

2eN
∂y2 + D(x, y) ∂eN

∂x

+E(x, y) ∂eN
∂y + F(x, y)eN = −RN(x, y).

(30)

Solving the problem (30) in the same way as Section 3, we get the approximation eN,M(x, y) to eN(x, y),
(M ≥ N) which is the error function based on the Residual function RN(x, y).

Consequently, by means of the polynomials uN(x, y) and eN,M(x, y), (M ≥ N) we obtain the corrected
Bernoulli polynomial solution uN,M(x, y) = uN(x, y) + eN,M(x, y). Also, we construct the Bernoulli error
function eN(x, y) = u(x, y)− uN(x, y), the corrected Bernoulli error function EN,M(x, y) = eN(x, y)− eN,M(x, y) =
u(x, y) − uN,M(x, y) and the estimated error function eN,M(x, y).

5. Numerical Example

Consider the second order linear hyperbolic equation

∂2u
∂t2 −

∂2u
∂x2 = −2(x − t)e−x−t, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

with Dirichlet boundary conditions given by

u(x, 0) = 0, 0 ≤ x ≤ 1,
u(0, t) = 0, 0 ≤ t ≤ 1,

Neumann boundary condition

ut(x, 0) = xe−x, 0 ≤ x ≤ 1,

and the nonlinear integral condition

1∫
0

u(x, t)dx = −2te−t−1 + te−t, 0 ≤ t ≤ T.

The exact solution of the this problem is u(x, t) = xte−x−t [9]. By using Bernoulli Collocation Method, absolute
error functions and corrected Bernoulli error functions are compared in Table for the various values of M
and N. As shown in the table the better results may be obtained by increasing tha values of N and M.
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Table The Comparison of absolute error function |eN | and corrected Bernoulli error function
∣∣∣EN,M

∣∣∣.
(xi, ti) Absolute error function |eN | Corrected Bernoulli error function

∣∣∣EN,M
∣∣∣ Absolute error function |eN | Corrected Bernoulli error function

∣∣∣EN,M
∣∣∣

N = 3, M = 4 N = 7, M = 10
(0, 0) 3.7147e − 4 7.0844e − 4 1.6642e − 9 1.4642e − 9
(0, 1

2 ) 6.4603e − 4 8.1347e − 4 2.7762e − 8 2.7708e − 8
(0, 1) 2.9759e − 4 7.4609e − 4 1.7049e − 8 1.7038e − 8
( 1

2 , 0) 2.1300e − 3 2.4480e − 3 6.7822e − 8 6.8070e − 8
( 1

2 ,
1
2 ) 1.9052e − 3 1.3789e − 3 4.3160e − 8 3.7241e − 8

( 1
2 , 1) 5.3472e − 3 2.3655e − 3 5.3314e − 7 5.2575e − 7

(1, 0) 1.6690e − 3 2.3616e − 3 1.0216e − 7 1.0295e − 7
(1, 1

2 ) 2.5654e − 3 8.9822e − 4 4.9311e − 7 4.8538e − 7
(1, 1) 3.5809e − 2 1.5865e − 2 7.7803e − 6 7.8498e − 6

6. Conclusion

In the present article, Bernoulli matrix method is presented to solve numerically second order linear
hyperbolic equation. Also an error analysis based on Residual functions has been descriped. To illustrate
the accuracy and efficiency of the new method, an example has been analyzed.The obtained numerical
results show that this method can solve the problem effectively.
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[5] B. Bülbül, M. Sezer, A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Applied Mathe-

matics Letters 24(10) (2011) 1716–1720.
[6] J. Rashidinia, R. Jalilian, V. Kazemi, Spline methods for the solutions of hyperbolic equations, Applied Mathematics and

Computation 190 (2007) 882–886.
[7] H. Ding, Y. Zhang, Parameters spline methods for the solution of hyperbolic equations, Applied Mathematics and Computation

204 (2008) 938–941.
[8] S.A. Yousefi, Z. Barikbin, M. Dehghan, Bernstein Ritz-Galerkin method for solving an initial-boundary value problem that

combines Neumann and integral condition for the wave equation, Numerical Methods for Partial Differential Equations 26(5)
(2010) 1236–1246.

[9] F. Shakeri, M. Dehghan, The method of lines for solution of the one-dimensional wave equation subject to an integral conservation
condition, Computers and Mathematics with Applications 56 (2008) 2175–2188.
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