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Suborbital Graphs for a Special Subgroup of the SL(3, Z)

Murat Besenk?

?Karadeniz Technical University, Faculty of Science, Department of Mathematics, 61080 Trabzon, Turkey

Abstract. In this paper we examine some properties of suborbital graphs for the group SL*(3, Z). We first
introduce an invariant equivalence relation by using the congruence subgroup SL*(3, Z) instead of I'y (1) and
obtain some results for the newly constructed subgraphs F, , whose vertices form the block [co]. We obtain

edge and circuit conditions and some relations between lengths of circuits in F,, and elliptic elements of
r(](?’l).

1. Introduction

Let Z denote the set (Z X Z) U {co} and SL(3,Z) the special linear group of all matrices with integer
coefficients with determinant 1. Also

a b 0
SL*3,7):={|c d 0|:abc,deZ, ad—bc=1
0 0 1

is subgroup of SL(3, Z).

Let PSL(3, Z) be the group SL(3, Z)/{+I}. Then there is a homomorphism u : SL(3, Z) — PSL(3, Z) with
kernel {+]I}. It is known that G.A. Jones, D. Singerman and K. Wicks [6] used the notion of the imprimitive
action [3, 4] for a I-invariant equivalence relation induced on Q U {co} by the congruence subgroup

a b
To(n) = {(c d] :¢ =0 (mod n) }

to obtain some suborbital graphs and their properties.

In this study, we consider the action of the group SL*(3,Z) on the set Z in the spirit of the theory of
permutation groups, and graph arising from this action in hyperbolic geometric terms.
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2. The Action of SL*(3,Z) on Z

X 1 -1
Any element of 7. is represented as | Y|, with x,y € Z and also oo is represented as 0] =|0| The
0 0 0

action of SL*(3,Z) on Z now becomes

x ax + by
Ayl = ex+dy].
0

a b
c d
0 0 0

_ o O

Theorem 2.1. The action of SL*(3,Z) on 7. is transitive.

a

Proof. Tt is enough to prove that the orbit containing co is Z. If |V € Z then there exist a,f € Z with

0
a g 0 a
ac — bp = 1. Then the element b a Olisin SL*(3,Z) and sends oo to |V]. O
0 0 1 0

We now consider the imprimitivity of the action of SL*(3, Z) on Z, beginning with a general discussion
of primitivity of permutation groups. Let (G, Q) be a transitive permutation group, consisting of a group
G acting on a set () transitively. An equivalence relation ~ on Q is called G-invariant if, whenever a, f € Q
satisfy a ~ B, then g(a) = g(B) for all g € G. The equivalence classes are called blocks, and the block
containing «a is denoted by [a].

We call (G, Q) imprimitive if () admits some G-invariant equivalence relation different from

(i) the identity relation, @ = g if and only if a = f5;

(ii) the universal relation, & = g for all a, p € Q.

Otherwise (G, Q) is called primitive. These two relations are supposed to be trivial relations. Clearly,
a primitive group must be transitive, for if not the orbits would form a system of blocks. The converse is
false, but we have the following useful result in [3].

Lemma 2.2. Let (G, Q) be a transitive permutation group. (G, Q) is primitive if and only if G, the stabilizer of
a € Q, is a maximal subgroup of G for each o € Q.

From the above lemma we see that whenever, for some a, G, < H < G, then Q) admits some G-invariant
equivalence relation other than the trivial cases. Because of the transitivity, every element of Q has the
form g(a) for some g € G. Thus one of the non-trivial G-invariant equivalence relation on Q is given as
follows:

g(a) = ¢'(a) if and only if ¢’ € gH.

The number of blocks ( equivalence classes ) is the index |G : H| and the block containing « is just the
orbit H(a).

We can apply these ideas to case where G is the SL*(3, Z) and Q is Z.

1 A0

Lemma 2.3. The stabilizer of o in SL*(3,Z) is the set {|0 1 0]: A € Z} denoted by SL*(3, Z).
0 0 1
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Proof. The stabilizer of a point in Z is a infinite cyclic group. Since the action is transitive, stabilizers of any
two points are conjugate. Therefore it is enough to look at the stabilizer of co in SL*(3, Z).

1 a b 01 1
rlol=lc 4 ollo|=]o
0 0 0 1]l0 0
a 1 1 A 0
andso|¢|=|0|. Thena=1,c=0and asdetT =1,d = 1. Thereforeb=A e Z. SoT =|0 1 0] This
0 0 0 0 1

110
shows that the stabilizer of co in SL*(3,Z)is (|0 1 0f). O
0 01

Definition 2.4. SL*(3,Z) :={T € SL*(3, Z)| c = O(modn), n € Z} is a subgroup of SL*(3, Z).

We must point out that the above equivalence relation is different from the one in [6]. Here let us take
the group SL*(3, Z), instead of I'g(n).
It is clear that SL*(3, Z)s < SL*(3,Z)¢ < SL*(3,Z). We shall define an equivalence relation = induced on
r

x
Z by SL*(3,Z). Now let |5 |,| Y| € Z. Corresponding to these there are two matrices
0

0
r = 0 x * 0
Ti:=|s * 0|, T,:=|ly * 0
0 01 0 01
r X
in SL*(3, Z) for which Ty(c0) = | S | and Ta(c0) = | ¥ |. We get the following imprimitive SL*(3, Z)-invariant
0 0

equivalence relation on Z by SL*(3, Z) as

r

~
=~

ifand only if T;'T, € SL*(3,Z)o,

o v xR

s
0
r

x
and so from the above we can easily verify that |$ |~ |Y| ifand onlyif; ry—sx =0 (mod n). Here, the
0 0

number (1) of blocks is |SL*(3, Z) : SL*(3, Z)o|.

1
Theorem 2.5. The index |SL*(3,Z) : SL*(3,Z)o| = n Hmn (1 + 5), where the product is over the distinct primes p
dividing n € Z.

Proof. By our general discussion of imprimitivity, the number of equivalence classes under =, is given by
Y(n) = |SL*(3,Z) : SL*(3, Z)|, the following formula for y(n) is well-known but for completeness we will
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sketch a proof here. Firstly, we show that ¢ multiplicative function. Let n = Im with (I, m) = 1. Then, v =, w
if and only if v &; w and v =, w, so by counting equivalence classes we have

Y(n) = Yy (m)

as required. Now the functionn — n[],,

1
1+ ;) on the right-hand side is clearly also multiplicative, so to
prove the theorem it is sufficient to consider the case where 7 is a power of some prime p.

r r 1 r 1

If v = | 8| € Z and is therefore a unit modn we see that S| ~,, | i |or |5 | =, | j | for somei € Z, or jE€Z,.
0 0 0 0 0

Hence 2n classes are distinct.The number of such coincident pairs is Euler’s function ¢(n) = n(1 — %), so

the number of distinct classes is 2n — ¢(n) = n(1 + ’1—]) as required. Consequently we have 1p(n) = |SL*(3,Z) :

1
SL*(3,Z)0| =n len (1 + E) O

3. Suborbital Graphs of SL*(3, Z) on Z

In [9], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set (),
these are graphs with vertex-set (2, on which G induces automorphisms. We summarize Sims’ theory as
follows:

Let (G, Q) be transitive permutation group. Then G acts on Q2 x Q) by

g(a, p) = (9(a), 9(B))

where g € G,a,B € Q. The orbits of this action are called suborbitals of G. The orbit containing (a, f) is
denoted by O(«, ). From O(a, ) we can form a suborbital graph G(a, B) : its vertices are the elements of
Q), and there is a directed edge from y to 0 if (y,0) € O(a, f). A directed edge from y to 6 is denoted by
y = 0. If (y,0) € O(a, B), then we will say that there exists an edge y — 0 in G(a, ). This theory reveals the
relationship between graphs and permutation groups. In this paper our calculation concerns SL*(3, Z), so
we can draw this edge as a hyperbolic geodesic in the upper half-space H? := {(x, y,z)Ix, y,z € R,z > 0}.

The orbit O(B, a) is also a suborbital graph and it is either equal to or disjoint from O(a, ). In the latter
case G(B,a) is just G(a,B) with the arrows reserved and we call, in this case, G(«, ) and G(B, o) paired
suborbital graphs. In the former case G(«a, ) = G(B, @) and the graph consists of pairs of oppositely directed
edges; it is convenient to replace each such pair by a single undirected edge, so that we have an undirected
graph which we call self paired.

The above ideas are also described in a paper by Neumann[7] and in books by Tsuzuku [10] and by Bigg
and White [3], the emphasis being on applications to finite groups.

In this study, G and Q will be SL*(3, Z) and Z, respectively. Since SL*(3, Z) acts transitively on Z, each
suborbital contains a pair (co,v) for some v € Z; writing v = %, we denote this suborbital by O, , and the
corresponding suborbital graph by G, .

Definition 3.1. By a directed circuit in G, we mean that a sequence vy, vs, ..., vy, of different vertices such
that vy — v, — ... — v, — v, where m > 3; an anti-directed circuit will denote a configuration like
the above with at least an arrow ( not all ) reversed.

If m = 2, then we will call the configuration v; — v, — v1 a self paired edge: it consists of a loop
based at each vertex.

If m =3 or m =4, then the circuit, directed or not, is called a triangle or quadrilateral.
We call a graph a forest if it does not contain any circuits.
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Figure 1: Circuits

3.1. Graph G,

We now investigate the suborbital graphs for the action SL*(3, Z) on Z. We use the following theorem
frequently in our calculation.

Theorem 3.2. Let 1,s,x,y € Z* and then only the following occur

r X —-r —X

(I) there exists an edge | S| — |Y|or | =S| = | ~Y|in Gy, if and only if x = —ur (mod n), y = —us (mod n)

0 0 0 0
and ry —sx = —n,
r —-x - x
(IT) there exists an edge | S| — | =Y |or | =S| —= |Y|in G, if and only if x = ur (mod n), y = us (mod n)
0 0 0 0
and ry — sx = n,
—r —x r x
(III) there exists anedge| S | = | Y |or| =S| —=|~Y|in G, ifand only if x = —ur (mod n), y = —us (mod n)
0 0 0 0
and ry —sx =n,
—r x r —-x

(IV) there exists an edge| S | = | ~Y|or | =S| = | ¥ | in Gy, if and only if x = ur (mod n), y = us (mod n)
0 0 0 0
and ry — sx = —n.

Proof. Letr,s,x, y in positive integer.We suppose that there exists an edge
0

T X r
S| = |Y|inGy,and||5],

0 0
- u r
Oy, Therefore there exist some T in SL*(3, Z) such that T sends the pair 0 1,]n||to the pair || S
0 0
—a

0
-1 r u X a b 0
thatis T| 0 | =|s|and T|"|=|y| NowletT:=|c d 0],a,b,¢c,d e Z. Then we have that|—c| =[5
0 0 0 0 0 01 0 0
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au + bn X
and |cu +dn|=|y|. Therefore —a=r,—c=s, au + bn = x and cu + dn = y. Hence, we write that
0 0
a b 0\(-1 u O r x 0
c d 0|0 n Oj=|s vy O0Of,
0 0 1/f0 0 1 0 01
From the determinant, we get —n = ry — sx. Thus, we obtain that x = —ur(modn), y = —us(modn) and
Ty —sX = —1.
Conversely, we assume that x = —ur(modn), y = —us(modn) and ry — sx = —n. Then there exist b,d € Z
such that x = —ur + bn, y = —us + dn. Takinga = —r and ¢ = —s, then x = au + bn, y = cu + dn and so
a b 0\-1 u O r x 0 a b 0
c 0]]0 n Of[=|s y O|.Asry—sx=-n,wehavead—bc=1,s0|¢ d 0|eSL*3,Z)and hence
0 0 1/){0o 0 1 0 01 0 01
r X —r -x
5| —|Y|in G,,. The proof for | =S| — | =¥ | is similar. We can prove cases (II), (III) and (IV) similarly. O
0 0 0 0

Theorem 3.3. G, is self-paired if and only if u> + 1 = 0(modn).

X X

Proof. We suppose that G, is self-paired. If co — ||, then it must also be [¥| — co. From the edge

0 0
u 1
n| — |0, we have that 1 = —u?(modn). Therefore, u> + 1 = 0(modn).
0 0
Conversely, assume that u? + 1 = 0(modn). There exists some integer b such that u?> + 1 = bn. Hence
u -b 0 uy (u
~u>+bn=1 LetT:=|n —u O} thenT(co) =|"|T|"|=ccanddetT =1. O
0 0 1 0] 10
r x r x

If|s| = |Y]|in Gy, then Theorem 3.2 implies that ry — sx = +n, so || ~ |¥|. Thus each connected
0 0 0 0

component of G, , lies in a single block for =, of which there are (1), so we have:

Corollary 3.4. G, , has at least Y(n) connected components; in particular, G, , is not connected if n is not a unit.

3.2. Subgraph F, ,
As we saw, each G, is a disjoint union of 1(n) subgraphs, the vertices of each subgraph forming a
single block with respect to the relation ~. Since SL*(3, Z) acts transitively on Z, it permutes these blocks

transitively, so the subgraphs are all isomorphic. We let F,,, be the subgraph of G, , whose vertices form
the block

+1 X
[oo]:—l()]— Y[Ix,yeZ and y=0(modn)s,
0 0
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so that G,,, consists of {(n) disjoint copies of F,, ..

.
Theorem 3.5. Letr,s,x,y € Z* and |S|,| Y| € [eo]. Then
0] {0
(=1)ir (-1)ix
() there exists an edge | (=1)'s| — [(=1)'y| in F,,,, where i = 0 or i = 1 if and only if x = —ur (mod n) and
0 0

ry —sx = —n,
(-1’ (-1)x
(I1) there exists an edge =1)s| = | =Dy |in Funwherei=0,j=10ri=1,j=0ifand only if x = ur (mod n)
0 0

andry —sx =mn,
(=1)r (-1)x
(1) there exists an edge | (=1)s | —» | (=1)/y |in F,,, wherei=1,j = 0ori =0, j = 1ifand only if x = —ur (mod n)
0 0

and ry —sx =n,

(=1)r (-1)ix
(IV) there exists an edge (-1)/s| = | (=D'y|in Fyunwherei=1,j=00ri=0,j=1ifand only if x = ur (mod n)
0 0

and ry — sx = —n.

An automorphism of the graph F,, , is a permutation of [co] which takes edges to edges. In view of this
it can easily seen that SL*(3, Z)y < AutF,,,.

Theorem 3.6. SL*(3, Z), permutes the vertices and the edges of F, ,, transitively.

Proof. Suppose that u,v € [c0]. As SL*(3,Z) acts on Z transitively, g(u) = v for some g € SL*(3,Z). Since
u = oo and =~ is SL*(3, Z)-invariant equivalence relation, g(u) = g(o0); that is v = g(c0). Thus, as v = g(c0),
g € SL*(3,Z)o.

u

Assume that v,w € [o]; ki,kp € [0l and v — w, ki1 — ky € F,;,. Then (v,w), (ki,kz) € Ooo, |1

0
Therefore, for some S, T € SL*(3, Z);
u u
S(e0) =0, S| | =w; T(o0) =ky, T| 1| = k.
0 0

Hence S, T € SL*(3,Z) as S(c0), T(c0) € [e0]. Furthermore TS™'(v) = k; and TS™'(w) = ky; that is TS~ €
SL*(3,7Z)y. O

Theorem 3.7. F,, contains directed triangles if and only if u> + u + 1 = 0(modn).
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Proof. Suppose that F, , contains a directed triangle. Because of the transitive action, the form of directed
u X0 u X0

triangle can be taken as co — || — | Yo’ | — oo. Since || — | Yo" |, then uyy — xo = —1 and xg = —u*(modn).
0 0 0 0

X0 1

From [ Yo" | — | 0f yo = 1 is obtained. Hence xo = u + 1. Consequently, we have that u? + u + 1 = 0(modn).
0 0

Conversely, assume that u? + u + 1 = O(modn). Then by Theorem 3.2 the circuit o0 — v; — v, — 0 isa
directed triangle in F,,,,. [

3.3. Some results
u _ul+u+l u w?tu+l —y w+u+l —u _ulru+tl
‘ _ " B m 3 " B -
Corollary 3.8. Transformations 1 = [n -1 ],gbz = [—n - 1], ¢3 = (—n u+1 ] Qs = ( 0 u+l ]
in To(n), which are defined by means of the congruence u? + u + 1 = 0(modn), are elliptic element of order 3.
w2 +utl
=0
n

u

Andalso o1 :=|n —u—1 0|, dete; = 1. Furthermore, it is easily seen that

0 0 1
1 —u —u -u—-1 —u-1 -1
(Pl 0 = 1’[ , (Pl Vl = n , (Pl 11 = O .
0 0 0 0 0 0

Similarly, the others are also illustrated. The transformations ¢;, where 1 < i < 4, establish a connection between
circuits in the graph and elliptic elements in the group I'o(n).

Example 3.9. Letn = 3,u = 1. Then we have eight triangles in F 3 :

+1 1 2 +1) (+1 -1 -2 +1
0[->|3[-|3|>|0|,]0]>|-3|>|3|>]|0],
0 0 0 0 0 0 0 0
+1 1 -2 +1) (£1 -1 2 +1
0[->|3[>|3|l=>]0],|]0[>]|3|>|3|>]|0],
0 0 0 0 0 0 0 0
+1 -1 -2 +1) (+1 1 2 +1
01513 ]|=>|3|->|0],]0]>|3[>]|3|=]|0],
0 0 0 0 0 0 0 0
+1 -1 2 +1) (+1 1 -2 +1
013 ]-|3]-[0],[|0]>|3]>|3]|—>]0
0 0 0 0 0 0 0 0

These are pictured as,
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Figure 2: Triangles in F; 3

Example 3.10. Letn = 2,u = 1. Then, since u? + u+ 1 = 0 (mod 1) does not hold , there are not any triangles
in Fy . But there are 2-gons in Fy, :

+1 1 +1) (+1 -1 +1) (+1 -1 +1) (+1 1 +1
0151210 012l 0[0[5]12]=]0],[0[>]-2|=]0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 3: Self paired edges in Fy»
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