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Abstract. In this paper, we prove that the Gromov hyperbolic space (X, h) which was introduced by Z.
Ibragimov and J. Simanyi in [3] is an asymptotically PT−1 space and extend the methods of [3] to the case
of uniform Cantor sets, show that the uniform Cantor set is isometric to the Gromov hyperbolic boundary
at infinity of some asymptotically PT−1 space.

1. Introduction

Hyperbolization is an important process to convert a geometry object into a metric space with non-

positive curvature in the sense of Gromov. Several such processess are described by many authors in the

past several years. For examples, in the paper [4], Ka-Sing Lau and Xiang-Yang Wang proved that, for an

iterated function system {S j}
N
j=1 of similitudes that satisfies the open set condition, there is a natural graph

structure in the representing symbolic space to make it a hyperbolic graph in the sense of Gromov, and the

Gromov hyperbolic boundary at infinity is homeomorphic to the self-similar set generated by {S j}
N
j=1. The

result of [4] has been generalized by Jun Jason Luo in [5] to the Moran set case. In [5], he proved that a

Moran set is homeomorphic to the Gromov hyperbolic boundary at infinity of the representing symbolic

space. In the complex dynamics context, V.Nekrashevych obtained that the Julia sets of postcritically finite

rational maps arise as Gromov hyperbolic boundaries at infinity in [7]. In [3], Z. Ibragimov and J. Simanyi

considered the hyperbolization of the ternary Cantor set and presented a new construction of the ternary

Cantor set within the context of Gromov hyperbolic geometry and proved that the ternary Cantor set is

isometric to the hyperbolic boundary of some Gromov hyperbolic space (X, h).

Recently, in order to generalize the well studied relation between the geometry of the classical hyperbolic

space and the Möbius geometry of its Gromov hyperbolic boundary at infinity to CAT(−1) space case,
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R.Miao and V.Schroeder defined the asymptotically PT−1 space and proved that the asymptotically PT−1

space is a Gromov hyperbolic space in [6], but has better properties than the Gromov hyperbolic space. For

examples, the asymptotically PT−1 space is boundary continuous and its Gromov hyperbolic boundary is

a Ptolemy space under the visual metric. Since the asymptotically PT−1 space has better properties than

the Gromov hyperbolic space, thus it is interesting to determine whether a Gromov hyperbolic space is an

asymptotically PT−1 space.

This paper is motivated by the above result of Z. Ibragimov and J. Simanyi. We prove that the Gromov

hyperbolic space (X, h) is an asymptotically PT−1 space and extend the methods of the paper [3] to the

uniform Cantor set case. We prove that the uniform Cantor set is isometric to the hyperbolic boundary of

some asymptotically PT−1 space, which generalizes the results of [3] to the uniform Cantor set case.

2. Uniform Cantor Set and Gromov Hyperbolic Space

Firstly, we define the uniform Cantor set, which is a class of more general Cantor type set, has abundant

exotic fractal structure and has been the object of a series of papers [1, 2].

Let E0 = [0, 1]. Let n = {nk}
∞

k=1 be a sequence of positive integers and c = {ck}
∞

k=1 be a sequence of real

numbers in (0, 1), such that nkck < 1 for all k. Suppose that {Ek} be a nested sequence of closed sets in [0, 1]

satisfying the following conditions:

(1) For every k ≥ 1, Ek is the union of disjoint closed intervals of the same length.

(2) For every component interval I in Ek−1 contains nk +1 component intervals of Ek. These nk +1 intervals

are of the same spacing ck|I|, the leftmost one and I have the same left endpoint, and the rightmost one and

I have the same right endpoint.

The set

E � E(n, c) =

∞⋂
k=0

Ek

is called a uniform Cantor set. Obviously, if ck = 1
3 and nk = 1 for all k, then E(n, c) is the ternary Cantor set.

Denote by Nk the number of components of Ek and by δk their common length. From the definition, we

obtain

Nk =

k∏
i=1

(ni + 1) and δk =

k∏
i=1

1 − nici

ni + 1
= δk−1

1 − nkck

nk + 1
.

Secondly, we begin with a brief discussion of Gromov hyperbolic spaces. Let (X, d) be a metric space.

For x, y, z ∈ X, the Gromov product of x and y with respect to z is defined by

(x|y)z =
1
2

[d(x, z) + d(y, z) − d(x, y)].

Definition 2.1. A metric space (X, d) is called Gromov δ-hyperbolic if there is a δ ≥ 0 such that

(x|y)v ≥ min{(x|z)v, (z|y)v} − δ

for all x, y, z, v ∈ X.
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Each Gromov hyperbolic space X has a Gromov hyperbolic boundary at infinity ∂X (also called the

Gromov boundary or the hyperbolic boundary). Fix a base point v ∈ X. We say that a sequence {ai} of

points in X converges to infinity if

lim
i, j→∞

(ai|a j)v = ∞.

It is easy to see that this definition does not depend on the choice of a base point. We say that two sequences

{ai} and {bi} converging to infinity are equivalent and write {ai} ∼ {bi} if

lim
i→∞

(ai|bi)v = ∞.

Once again, one can show that ∼ is an equivalence relation on the sequences converging to infinity and

that the definition of the equivalence does not depend on the choice of the base point v ∈ X.

Definition 2.2. Let (X, d) be a Gromov δ-hyperbolic space. The Gromov boundary ∂X of X is defined to be the

equivalence classes of sequences converging to infinity.

The Gromov boundary supports a family of so-called visual metrics. A metric d on ∂X is called a visual

metric if there is a v ∈ X,C ≥ 1 and ε > 0 such that for all x, y ∈ ∂X,

1
C
ρε,v(x, y) ≤ d(x, y) ≤ Cρε,v(x, y),

where ρε,v(x, y) = e−ε(x|y)v and (x|y)v is the Gromov product on ∂X defined by

(x|y)v = inf{lim inf
i→∞

(ai|bi)v : {ai} ∈ x, {bi} ∈ y}.

Here we set e−∞ = 0. The visual metric on the Gromov boundary of any Gromov hyperbolic is bounded

and complete.

3. Hyperbolic Construction

Let E = E(n, c) be a uniform Cantor set. Let F = [0, 1] \ E and X be the collection of all connected

components of F, that is X is the collection of all open intervals which are removed. Hence

E = [0, 1] \
⋃
I∈X

I.

Our goal in this section is to construct a metric h on the setX such that (X, h) is a Gromov hyperbolic space.

Now, we consider the upper Hausdorff distance uH on the set of all nonempty subsets of [0, 1] defined

by

uH(A,B) = sup{|x − y| : x ∈ A, y ∈ B}.

for A,B ⊂ [0, 1]. Note that if A,B ∈ X and A = (a, b),B = (c, d) with b < c, then uH(A,B) = |d − a|. Now,

and in what follows, we use l(A) to denote the Euclidean length of A ∈ X and a ∨ b = max{a, b} for positive

numbers a, b ∈ R. For A,B ∈ X, we obtain

uH(A,B) ≥ l(A) ∨ l(B) ≥
√

l(A) · l(B), (1)
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where the first equality holds only if A = B and the second equality holds only if l(A) = l(B).

According to the definition X, it has a natural ordered �. We say that I � J if I is to the left of J or I = J.

Obviously, if I � J � K, then

uH(I,K) ≥ uH(I, J) ∨ uH(J,K). (2)

In order to obtain our result, we need the following lemma from [3].

Lemma 3.1 ([3]). For all I, J,K,L ∈ X, we have

uH(I, J)uH(K,L) ≤ uH(I,K)uH(J,L) + uH(I,L)uH(J,K). (3)

Given I, J ∈ X, define

h(I, J) = 2 log
uH(I, J)√
l(I) · l(J)

. (4)

When E is the ternary Cantor set, Z. Ibragimov and J. Simanyi proved that (X, h) is a Gromov hyperbolic

metric space in the paper [3].

Definition 3.2. A metric space (X, d) is called asymptotically PT−1, if there exists some δ > 0 such that for all

quadruples x1, x2, x3, x4 ∈ X, we have

e
1
2 (ρ13+ρ24)

≤ e
1
2 (ρ12+ρ34) + e

1
2 (ρ14+ρ23) + δe

1
2 ρ,

where ρi j = d(xi, x j) and ρ = maxi, j ρi j.

Using Lemma 3.1, we obtain the following theorem, which provides an example of the asymptotically

PT−1 space.

Theorem 3.3. The metric space (X, h) is an asymptotically PT−1 space.

Proof. Given arbitrary four points I1, I2, I3, I4 ∈ X, we have

e
ρi j
2 = e

h(Ii ,I j )

2 =
uH(Ii, I j)√
l(Ii) · l(I j)

, i , j.

Direct calculation gives

uH(Ii, I j) =
√

l(Ii) · l(I j)e
ρi j
2 , i , j.

By Lemma 3.1, we obtain

uH(I1, I3)uH(I2, I4) ≤ uH(I1, I2)uH(I3, I4) + uH(I1, I4)uH(I2, I3).

That is√
l(I1) · l(I3)e

ρ13
2
√

l(I2) · l(I4)e
ρ24

2 ≤

√
l(I1) · l(I2)e

ρ12
2
√

l(I3) · l(I4)e
ρ34

2

+
√

l(I1) · l(I4)e
ρ14

2
√

l(I2) · l(I3)e
ρ23

2 ,
(5)
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i.e.

e
ρ13

2 e
ρ24

2 ≤ e
ρ12

2 e
ρ34

2 + e
ρ14

2 e
ρ23

2 . (6)

So we obtain

e
ρ13+ρ24

2 ≤ e
ρ12+ρ34

2 + e
ρ14+ρ23

2 . (7)

Thus the metric space (X, h) is an asymptotically PT−1 space.

Remark 3.4. In the paper [6], the authors proved that an asymptotic PT−1 space is a Gromov hyperbolic space and is

boundary continuous and ρo(x, y) = e−(x|y)o , x, y ∈ ∂X is a metric on ∂X such that (∂X, ρo(x, y)) is a Ptolemy space.

4. The Boundary at Infinity and Main Result

According to Theorem 3.3, the metric space (X, h) is an asymptotically PT−1 space, thus is a Gromov

hyperbolic space. In this section, we will construct a visual metric d on the Gromov boundary ∂X. Our

goal is to prove that the space (∂X, d) is isometric to the uniform Cantor set (E, | · |). By the definition of

∂X, we know that ∂X is the collection of equivalence classes of sequence in X at infinity. Firstly, we fix

a interval V = (t,w) ∈ X to be the base point. Notice that if the sequence {In} converges at infinity, then

lim j,k→∞(I j|Ik)V = ∞.

Our main result is the following theorem.

Theorem 4.1. The uniform Cantor set (E, | · |) is isometric to the metric space (∂X, d).

In order to obtain our theorem, we need several lemmas. The following lemma shows that there is a

bijective map between ∂X and the uniform Cantor set E.

Lemma 4.2. Given a ∈ ∂X, there exists unique xa ∈ E such that

lim
n→∞

uH(In, {xa}) = 0 for each {In} ∈ a.

Conversely, for each x ∈ E there exists a ∈ ∂X such that

lim
n→∞

uH(Jn, {xa}) = 0 for each {Jn} ∈ a.

Proof. Given {In} ∈ a, we obtain

(I j|Ik)V =
1
2

[h(I j,V) + h(Ik,V) − h(I j, Ik)]

= log
uH(I j,V)uH(Ik,V)

l(V)uH(I j, Ik)

≤ log
(w ∨ (1 − t))2

(w − t)uH(I j, Ik)
.
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Since

lim
j,k→∞

(I j|Ik)V = ∞,

we have

lim
j,k→∞

uH(I j, Ik) = 0.

Now, for each n, we choose some point xn ∈ In. Next, given ε > 0, we can find n0 ∈N such that

|x j − xk| ≤ uH(I j, Ik) < ε whenever j, k ≥ n0,

which shows that the sequence {xn} is a Cauchy sequence in [0, 1]. Because [0, 1] is complete, thus the

sequence {xn} converges to some point in [0, 1], call it xa. We claim that the point xa is well-defined. In order

to prove this claim, we choose a different sequence {yn}, where yn ∈ In, then

|yn − a| ≤ |xn − a| + |xn − yn| ≤ uH(In, In) + |xn − a|,

which implies that {yn} also converges to xa and shows that the point xa is well-defined. Finally, since

uH(In, {xa}) ≤ uH(In, {xn}) + uH({xa}, {xn}) ≤ uH(In, In) + |xn − xa|,

we obtain that limn→∞ uH(In, {xa}) = 0, as required.

Now let {Jn} be another sequence converging at infinity in a. Then we claim that limn→∞ uH(Jn, {xa}) = 0.

Since {In}, {Jn} ∈ a, according to the definition of boundary, we have

lim
n→∞

(In|Jn)V = ∞.

Note that

(In|Jn)V =
1
2

[h(In,V) + h(Jn,V) − h(In, Jn)]

= log
uH(In,V)uH(Jn,V)

l(V)uH(In, Jn)

≤ log
(w ∨ (1 − t))2

(w − t)uH(In, Jn)
.

Thus, we obtain limn→∞ uH(In, Jn) = 0. Since

uH(Jn, {xa}) ≤ uH(In, {xa}) + uH(Jn, In),

we obtain that limn→∞ uH(Jn, {xa}) = 0. This shows that xa is well defined and unique.

We claim that xa ∈ E. Assume by contrary that x ∈ [0, 1] \ E. Thus there is a element I = (e−, e+) ∈ X such

that xa ∈ I. Since

0 < |xa − e−| ∧ |xa − e+| ≤ uH(In, {xa})→ 0 as n→∞,

which yields a contraction. Thus xa ∈ E, which shows that the first part of the lemma holds.
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Now, we address the second part. At first, we show that for each x ∈ E, there is a sequence {In} in X

converging at infinity and such that

lim
n→∞

uH(In, {x}) = 0.

Since x ∈ E =
⋂
∞

k=0 Ek. For every integer number k > 1, let Ik(x) denote the connected component of Ek that

contains x and Fk = [0, 1]\Ek. According to the definition, if 0, 1 < Ik(x), there are two connected components

in Fk on the two sides of Ik(x). Let IR
k (x) denote the connected component of Fk on the right side of Ik(x) and

IL
k (x) denote the connected component of Fk on the left side of Ik(x). Define

Jk(x) =

{
IR
k (x) when |IL

k (x)| ≥ |IR
k (x)|,

IL
k (x) when |IR

k (x)| > |IL
k (x)|. (8)

If Ik(x) contains 0 (or 1), let Jk(x) denote the unique connected component in Fk on the right (or left) side of

Ik(x). Thus according to the definitions of Ik(x) and Jk(x), we have

|Ik(x)| = δk and |Jk(x)| = ckδk−1.

Since 0 < ck < 1 and

δk = δk−1
1 − nkck

nk + 1
≤

δk−1

nk + 1
≤
δk−1

2
< δk−1,

we obtain

uH({x}, Jk(x)) ≤ |Ik(x)| + |Jk(x)|

= δk + ckδk−1

≤ 2δk−1

· ··

≤
2δ1

2k−1
→ 0

(9)

as k→∞, which shows that limk→∞ uH({x}, Jk(x)) = 0 as required. Since

uH(Jn(x), Jk(x)) ≤ uH({x}, Jn(x)) + uH({x}, Jk(x)),

we obtain

lim
n,k→∞

uH(Jn(x), Jk(x)) = 0.

Thus

(Jn(x)|Jk(x))V = log
uH(Jn(x),V)uH(Jk(x),V)

l(V)uH(In(x), Jk(x))
→∞,

which shows that the sequence {Jk(x)} converges at infinity.

Finally, we let a ∈ X to be the equivalence class of sequences converging at infinity and equivalent to

{In}. Then it follows from the first part that

lim
n→∞

uH(a, Jn) = 0 for each Jn ∈ a.

This completes the proof of the lemma.

According to the above lemma, we define a map f : ∂X → E, given by f (a) = xa. Using the map f , we

define a metric d on ∂X by setting d(a, b) = | f (a) − f (b)| = |xa − xb|. Our result is the following lemma.
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Lemma 4.3. The metric d is a visual metric on ∂X.

Proof. Fix V = (t,w) ∈ X. For any a, b ∈ ∂X,

(a|b)V = inf{lim inf
n→∞

(In|Jn)V : In ∈ a, Jn ∈ b}.

Since

(In|Jn)V = log
uH(In,V)uH(Jn,V)

l(V)uH(In, Jn)
,

by Lemma 4.2, we have

lim
n→∞

uH(In, {xa}) = 0 and lim
n→∞

uH(Jn, {xb}) = 0.

Especially, since

|uH(In, Jn) − |xa − xb|| ≤ uH(In, {xa}) + uH(Jn, {xb}),

we obtain

lim
n→∞

uH(In, Jn) = |xa − xb| = d(a, b).

Since

|uH(V, In) − uH(V, {xa})| ≤ uH(In, {xa}),

we obtain

lim
n→∞

uH(In,V) = uH(V, {xa}).

Similarly

lim
n→∞

uH(Jn,V) = uH(V, {xb}).

Thus, we have

(a|b)V = log
uH(V, {xa})uH(V, {xb})

l(V)d(a, b)
,

which implies that

d(a, b) = e−(a|b)V
uH(V, {xa})uH(V, {xb})

l(V)
.

Since l(V) = w − t and w − t ≤ uH(V, {x}) ≤ w ∨ 1 − t for all x ∈ E, we obtain

(w − t)e−(a|b)V ≤ d(a, b) ≤
(w ∨ 1 − t)2

w − t
e−(a|b)V ≤

1
w − t

e−(a|b)V ,

which shows that d is a visual metric on ∂X. This completes the proof of the lemma.

Proof of Theorem 4.1. According to the above Lemma 4.2 and Lemma 4.3, the map f : ∂X → E, given by

f (a) = xa is an isometric map. This completes the proof of the theorem 4.1.
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