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Abstract. Since a locally finite topological structure plays an important role in the fields of pure and
applied topology, the paper studies a special kind of locally finite spaces, so called a space set topology (for
brevity, SST) and further, proves that an SST is an Alexandroff space satisfying the separation axiom T0.
Unlike a point set topology, since each element of an SST is a space, the present paper names the topology
by the space set topology. Besides, for a connected topological space (X,T) with |X| = 2 the axioms T0,
semi-T 1

2
and T 1

2
are proved to be equivalent to each other. Furthermore, the paper shows that an SST can

be used for studying both continuous and digital spaces so that it plays a crucial role in both classical and
digital topology, combinatorial, discrete and computational geometry. In addition, a connected SST can be
a good example showing that the separation axiom semi-T 1

2
does not imply T 1

2
.

1. Introduction

Finite, locally finite and, more generally, Alexandroff spaces (or A-spaces for short) [1] were investi-
gated by many authors: Alexandroff, McCord, Stong, and more recently by May, Hardie and Vermeulen,
Barmak and Minian. Further, both simplicial and abstract cell (for short, AC) complexes in [16] (see also
[10, 17, 18]) have been often used in studying pure and applied topology relevant to both computer and
discrete geometry as well as computer imaginary. However, we now need to point out that they can be
transformed into topological spaces in terms of a polyhedron and an axiomatic topological method, which
are a Hausdorff space and a complicated locally finite space, respectively [17, 18]. Besides, the earlier
researches are different from digital topological approaches. Thus the present develops a new type of
locally finite topological space (or space set topology, for short, SST) (see Definition 2.13), which is simpler
and more efficient than the axiomatic topological structure in [17], on a specially subdivided AC (for short,
SAC) complexes (see Definition 2.9). Indeed, an SST is different from an ALF space in [17]: while an SST
includes a singleton, an ALF space does not have the property. Besides, the types of open sets of an SST are
different from the ordinary ones in point set topology. These open sets are presented with a special kind
of neighborhoods consisting of elements endowed with an SAC complex instead of points in a Hausdorff
topological space. Concretely, in this state we need to point out some difference between elements in the
topology SST and points in the general topology including Hausdorff topology. Further, compared with
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Khalimsky topological spaces and Marcus-Wyse topological spaces, an SST can be substantially used for
studying both continuous and digital spaces so that it can be used in continuous and digital geometry such
as digital topology, computational topology, computer and discrete geometry, etc.

The paper [20](see [6]) introduced the notion of T 1
2
-separation axiom and the paper [19] established the

notions of a semi-open set and a semi-closed set. The axiom partially contributed to the study of digital
spaces such as one dimensional Khalimsky topological space. Motivated by these notions, the paper [2]
developed the notion of semi-T 1

2
-separation axiom. Further, this axiom has been often used in pure and

applied topology including fuzzy topology. Moreover, the paper [5] makes the axiom more simplified
(Proposition 4.6).

The aim of the paper is to study topological properties of an SST related to semi-T 1
2
-axiom [11], the

axioms T0 and T 1
2

and we prove that for a topological space (X,T) with |X| = 2 the axioms T0, semi-T 1
2

and
T 1

2
are equivalent to each other and if |X| ≥ 3, then we prove that semi-T 1

2
does not imply T 1

2
(see Theorems

4.7 and 4.9).
The rest of this paper proceeds as follows. Section 2 recalls some properties of an SAC complex which

is a special kind of subdivision of an abstract cell complex. It also explains a space set topological structure
on an SAC complex. Section 3 studies a relation between an SST and Khalimsky topological spaces. Section
4 proves that an SST satisfies the axioms T0 and further, shows that a connected SST (X,T) with |X| ≥ 3
satisfies the axiom semi-T 1

2
, it does not satisfy the axiom T 1

2
. Section 5 concludes the paper with a summary.

2. Space Set Topology on an SAC Complex and its Property

The works [16–18] developed the notion of an AC complex and studied its various properties. Since an
AC complex and ALF-space [17] can be used for studying both continuous and digital spaces, it can play
an important role in both classical and digital geometry [10]. Thus we need to study its various properties.
Let R, Z and N be the sets of real numbers, integers and natural numbers, respectively. For a, b ∈ Z we use
the notation [a, b]Z := {x ∈ Z | a ≤ x ≤ b}. For a set X we follow the notation |X| as cardinality of the set.

Let us consider a neighborhood space as a pair S = (E,U) in the classical textbook by Seifert and Threlfall
[21], where E is a nonempty set and U is a system of subsets of E, with the property that each element e
of E is contained in some element of U, and that each such set belonging to U and containing e is called a
neighborhood of e.

Based on the original version of an AC complex in [16] (see also [17]), we redefine below the notion of
an abstract cell complex on the basis of a neighborhood relation instead of the bounding relation of [17].

Definition 2.1. [10] (see also [16]) An abstract cell (for short, AC) complex C = (E,N, dim) is a nonempty set E of
elements provided with
(1) a reflexive, antisymmetric and transitive binary relation N ⊂ E × E called the neighborhood relation, and
(2) a dimension function dim: E → I from E into the set I of non-negative integers such that if a is an element of a
neighborhood of b, then dim(a) ≥ dim(b).

In Definition 2.1, the elements ci
j of E = {ci

j | i ∈ M, j ∈ M′i } are called cells and the superscript i of the cell
means its dimension, the subscript j of the cell means the only index for discriminating the i-dimensional
cells, and the index sets M and M′i depend on the situation. In view of Definition 2.1, while the index set M
is finite, M′i need not be finite.

Remark 2.2. (1) As for the terminology “abstract element” of Definition 2.1, note that a cell of an abstract cell
complex, unlike a Euclidean cell or a simplex, is never a subset of another cell. For instance, in Figure 1(a) let us
consider the object as an AC complex. Then it consists of a two-dimensional cell (2-cell for short or open face), five
one-dimensional cells (1-cells for short or open line segments) and five 0-cells (or points). Thus we observe that each
cell of an abstract cell complex is never a subset of another cell, which implies that an AC complex is different from a
simplicial complex.



S.-E. Han / Filomat 30:9 (2016), 2475–2487 2477

(2) In this state the neighborhood of Definition 2.1 does not require a topological structure.
(3) Compared with the dimension of a classical topological space, the dimension of Definition 2.1 has its own

property (see Definition 3.1).

Let us define the notion of smallest neighborhood of an element of an AC complex.

Definition 2.3. [17](see also [10]) Let C = (E,N, dim) be an AC complex. For an element a ∈ E let N(a,E) :=
N(a) = {b ∈ E | (b, a) ∈ N}. Further, we denote by SN(a,E) := SN(a) the smallest N(a), called a smallest neighborhood
of a in E.

In this state we need to point out that the smallest neighborhood of Definition 2.3 is used without
topology. Instead, it is only derived from an AC complex.

Let us now define the terminology “adjacent (or joins)” between two cells of an AC complex, as follows:

Definition 2.4. [17](see also [10]) Let C = (E,N, dim) be an AC complex. For two distinct elements a and b in E we
say that a is adjacent to (or joins) b if a ∈ SN(b) or b ∈ SN(a).

For instance, consider the object in Figure 1(b) which is an AC complex. Then we say that each of the
2-cells c2

1 and c2
2 is adjacent to c1 because the faces c2

1 and c2
2 can be elements of SN(c1) = {c1, c2

1, c
2
2}.

For each cell of an AC complex we can define its boundary as follows:

Definition 2.5. [17](see also [10]) Let C = (X,N, dim) be an AC complex, where X := {ci
j | i ∈ M, j ∈ M′i }. For each

cell ci
j ∈ X we obtain its smallest neighborhood as follows:

SN(ci
j) = {ci

j} ∪ {c
i1
j1
| ci1

j1
is adjacent to ci

j, i1 > i}.

In this state the notion of boundary of Definition 2.5 is not a topological boundary.
In view of Definition 2.5, we obtain the following:

Remark 2.6. For a 0-cell (or a point) c0 we say that ∂c0 = ∅.

In Figure 1(a) we can observe that ∂c2 consists of five 1-cells and five 0-ones surrounding the 2-cell c2.
The notion of a subdivision of a given complex [23] was often used in geometric topology, as in the case

of a triangulation, by means of a series of elementary subdivisions of its cells. Kovalevsky [18] established
the notion of subdivision of an AC complex. More precisely, for an m-cell cm of an nD AC complex with
1 � m ≤ n the paper [18] proceeded to subdivide the m-cell cm. Using Remark 2.6 and Definition 2.5, we
can now generalize the original version of a subdivision of cm in [18] into that of cm with 1 ≤ m ≤ n which
is essentially used for establishing an SST (see Definition 2.9). Let us now suggest the correspondingly
modified notion of elementary subdivision, as follows:

Definition 2.7. [18] Let cm be an m-cell of an n dimensional AC complex C = (X,N, dim), where X := {ci
j | i ∈

M, j ∈ M′i } and 1 � m ≤ n. An elementary subdivision of the cell cm replaces the cell cm by two m-cells cm
1 , c

m
2 and

one (m − 1)-cell cm−1 whose smallest neighborhood SN(cm−1) contains both the m-cells cm
1 and cm

2 , while the elements
cm

1 , c
m
2 and cm−1 satisfy the conditions:

1) ∂({cm
1 , c

m−1, cm
2 }) = ∂cm;

2) cm−1 < ∂cm;
3) ∂cm−1

⊂ ∂cm.

Example 2.8. Figure 1(a) and (b) show a process of an elementary subdivision of the proper 2-cell c2. The emphasized
points c0

1 and c0
2 in Figure 1(b) compose the 0-sphere lying in the boundary ∂c2. The 0-sphere is spanned by the 1-cell

c1. The original cell c2 (or an open 2-cell) is replaced in Figure 1(b) by the complex {c2
1} ∪ {c

1
} ∪ {c2

2} whose boundary
is the same as that of c2.
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Figure 1: (a)-(b): Configuration of a subdivision of the 2-cell c2 followed from the subdivision of Definition 2.7; (c)-(d) and (f)-(g):
Processes on constructing SAC complexes in terms of subdivisions of Definition 2.9.

In order to proceed a special kind of subdivision of an AC complex, we need to recall tilings of Rn,n ∈ N,
as follows: The real plane can be a highly symmetric tiling made up of congruent regular polygons. Only three
kinds of regular tilings exist: those made up of equilateral triangles, squares or hexagons. An edge-to-edge
tiling of a subplane in R2 is even less regular [7]. The only requirement is that adjacent tilings only share full
sides. Similarly, we can consider a face to face quasicrystallization of the 3D real space [22] and further, their
analogy to Rn,n ≥ 4. Motivated by these tilings and a (barycentric) subdivision of simplicial complexes
[23], we can establish the following:

Definition 2.9. Let C = (X,N, dim) be an AC complex, where X := {ci
j |i ∈ M, j ∈ M′}. According to Definition

2.7, proceed subdivisions of some m-cells in X to obtain an AC complex (X′,N, dim) such that there is no i-cell ci
j1

in
X′ satisfying that ∂ci

j1
is partially matched with ∂ci

j2
, where j1 , j2 in M′′, where X′ := {ci

jt
|i ∈ M1, jt ∈ M′′} with

M ⊂M1 and M′ ⊂M′′. Then we call the subdivided AC complex an SAC complex.

In view of Definitions 2.1 and 2.9, we observe that an SAC complex is a finer AC complex than given an
AC complex. Further, we need to point out the inclusion M ⊂ M1 of Definition 2.9 as follows: consider a
1-cell c1 without boundary. Then we can proceed a subdivision of c1 by adding a 0-cell inside of c1. This
processing explains the inclusion above.

Example 2.10. Consider the AC complex X of Figure 1(c). Then, according to Definition 2.9, we obtain an SAC
complex X′ derived from X. More precisely, while the object X is an AC complex, it cannot be an SAC complex
because some boundary of the 2-cells c2

1 and c2
2 are partially matched with ∂c2 (see the 1-cells represented by the line

segments pq and qr).
Similarly, according to Definition 2.9, Figure 1(f) and (g) show special kinds of subdivisions of c2 of Figure 1(e).

Based on the smallest neighborhood of Definition 2.4, for an SAC complex X we obtain a smallest
neighborhood of an element ci

j ∈ X as follows:

Proposition 2.11. Let C = (X,N, dim) be an SAC complex, where X := {ci
j |i ∈ M, j ∈ M′}. For each cell ci

j ∈ X we
obtain its smallest neighborhood on X as follows:

SN(ci
j) = {ci

j} ∪ {c
i1
j1
| ci1

j1
is adjacent to (or joins) ci

j, i1 > i}.

The neighborhood relation SN of Proposition 2.11 fulfils Definition 2.1 such as it is reflexive, transitive
and antisymmetric. Hereafter, we will use the smallest neighborhood suggested in Proposition 2.11.
Furthermore, this neighborhood will be used for establishing a topology on an SAC complex.
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Example 2.12. In Figure 2, according to the dimensions 0, 1, 2 and 3, we observe the corresponding smallest
neighborhoods of given cells. In Figure 2(1) and (2) we obtain SN(c0) = {c0, c1

i , c
2
i | i ∈ [1, 3]Z}, SN(c1) = {c1, c2

1, c
2
2}

(see Figure 2(2)). In particular, assume that the octahedron without boundary in Figure 2(3) is formulated by the six
points pi, i ∈ [1, 6]Z. Then it is exactly SN(c2), where c2 is generated by the four points pi, i ∈ [1, 4]Z. In Figure 2(4)
consider the proper tetrahedron c3 generated by the five points pi, i ∈ [1, 5]Z. Then SN(c3) is the whole object itself of
Figure 2(4).
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Figure 2: (1)-(4) Various types of smallest neighborhoods which can be considered in R2 and R3. In particular, the octahedron of Figure
2(3) is SN(c2) [17], where the element c2 is a rectangle generated by the four points p1, p2, p3 and p4. Further, the tetrahedron of Figure
2(4) is the smallest open set of the given 3-cell.

Using the smallest neighborhood mentioned in Proposition 2.11, we now formulate a topology on an
SAC complex X, named by a space set topology on X, as follows:

Definition 2.13. Let C = (X,N, dim) be an SAC complex. Let S := (X,U) be a binary set, where U is the set of all
SN(x), x ∈ X. Then we obtain the topology on X induced by the set U as a base, denoted by (X,T). Further, we call
this topology T a space set topology on X, briefly SST on X.

For an SAC complex X and an element x ∈ X the neighborhood SN(x) suggested in Proposition 2.11 is
exactly a smallest open set of an element x in the SST, (X,T).

Remark 2.14. (1) Based on Proposition 2.11 and Definition 2.13, we now consider a topological neighborhood of
an element of an SST. Further, for an SST, (X,T), the smallest neighborhood of Proposition 2.11 is exactly that of
Definition 2.5 and further, it is the smallest open set of an element of (X,T). Furthermore, if |X| ≥ 2, then a connected
SST (X,T) cannot be a discrete topological space.

(2) For an SST (X,T) consider two distinct elements x and y which are not adjacent to each other. Then there are
smallest open neighborhoods of the elements, denoted by SN(x) and SN(y) in T, such that y < SN(x) and x < SN(y).
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3. A Relation Between SSTs and Khalimsky Spaces

For an SAC complex C := (X,N, dim) in order to define a dimension of an element c ∈ X, we use the
following notation. Consider a sequence aNbNc · · ·Nk of pairwise distinct cells of X in which each cell
belongs to the smallest neighborhood of the next one: a ∈ SN(b) and a , b; b ∈ SN(c) and b , c etc. We shall
call it the neighborhood path from a to k. The number of cells in the sequence minus one is called the length
of the neighborhood path. We can now define the notion of dimension of a cell c ∈ C by using the notion of
the neighborhood path.

Definition 3.1. Let C := (X,N, dim) be an SAC complex. For c ∈ X the dimension dim(c,C) of the cell c of C is
the length of a longest neighborhood path from c to any element of C. For a cell that does not belong to any smallest
neighborhood of another cell the length and the dimension are zero. The dimension of an SAC complex is the greatest
dimension of its cells.

Since the neighborhood relation is transitive, smallest neighborhoods composing a neighborhood path
are interlocked in each other in the way symbolically shown in Figure 3. Hence, the dimension of a cell is
its depth in the “crater” of interlocked neighborhoods.

Figure 3: Symbolic representation of interlocked smallest neighborhoods of the cells vN f NcNp [17, 18].

This definition is equivalent to the known notion of the dimension or height of an element of a partially
ordered set (poset) as defined in the theory of poset topology [3] and of A-spaces [26].

Figure 3 shows some examples of the smallest neighborhoods of cells of different dimensions while
using the graphical representation suggested in [17]. Note that Figure 3 is only an example. Cells may have
quite different numbers of other cells in their smallest neighborhoods. The graphical representations can
also vary correspondingly as it was seen in Figure 2(2) and (3): for instance, cells of dimension 2 can be
represented as polygons with various numbers of elements (see Figure 2(2)).

To perform topological and geometrical calculations with abstract cell complexes, it is necessary to
assign “names” to the cells. One of the possibilities of doing this consists in introducing coordinates.

Remark 3.2. Combinatorial coordinates were called “topological coordinates” in the earlier publications of [18]. The
recent term “combinatorial coordinates” was introduced in [17].

Consider an AC complex C = (E,N, dim) whose elements compose a sequence E = (e0, e1, e2, · · · , e2m),m ≥
1. The smallest neighborhoods SN(ei) are the following: SN(ei) = {ei−1, ei, ei+1}∩E if i is even and SN(ei) = {ei}

if i is odd. The dimension of ei is defined according to Definition 3.1: dim(ei) = 0 if i is even and dim(ei) = 1
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if i is odd. Thus C becomes a one-dimensional AC complex consisting of a single adjacent path (Definition
2.4). We shall call such a complex a path complex.

We provide a path complex C with a coordinate function X : E → Z assigning subsequent integer
numbers (not necessarily positive) to subsequent cells of E in such a way that a cell of dimension 0 (a 0-cell
for short) obtains an even number while a cell of dimension 1 (1-cell) obtains an odd one. We call the
numbers combinatorial coordinates in C.

Definition 3.3. [17] A combinatorial coordinate axis A = (E,X) is a one-dimensional path complex provided with
a coordinate function X : E → Z assigning subsequent integer numbers to subsequent cells of E. It is also called a
coordinate axis for short.

The set of smallest neighborhoods of a path complex can be obviously a base for an SST. Thus a
coordinate axis is an SST. It is easily seen that the Khalimsky line [14] being regarded as a topological space
is equivalent to the coordinate axis since both have the same base. The difference between a coordinate axis
and the Khalimsky line is the presence of dimensions of cells of the axis. Another less important difference
is that elements of the Khalimsky line being not regarded as a quotient space of a Euclidean line are integer
numbers, while elements of a coordinate axis are cells with integer numbers assigned to them.

An SST of dimension n > 1 can be defined as the Cartesian product of n coordinate axes. It possesses
the product topology derived from the topology of a coordinate axis in terms of the smallest neighborhood
suggested in Proposition 2.11, as follows:

Definition 3.4. An nD Cartesian SAC complex Cn = (En,N, dim) is the Cartesian product of n combinatorial
coordinate axes Ai = (Ei,Xi); i = 1, 2, · · · ,n; provided with a coordinate function Xn. The set En = E1 × E2 ×

· · · × En. A cell c of Cn is an n-tuple, i.e. an ordered sequence of cells ai of the axes: ai ∈ Ai. For an n-tuple
c = (a1, a2, · · · , an) ∈ En we define its smallest neighborhood as SN(c) = SN1(a1) × SN2(a2) × · · · × SNn(an) where
SNi(ai) is the smallest neighborhood of ai in Ai. The coordinate function Xn : En

→ Zn assigns the n-tuple
Xn(c) = (X1(a1),X2(a2), · · · ,X1(an)) to a cell c = (a1, a2, · · · , an) of En. The dimension function dim assigns to each
cell c ∈ En its dimension according to Definition 3.1. It is equal to the number of odd coordinates Xi(ai) of c.
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Figure 4: (a): Graphical representations of a combinatorial coordinate axis; (b): a two-dimensional Cartesian AC complex [18].

Figure 4(a) shows a combinatorial coordinate axis. The 0-cells of the axis have even coordinates, while
the 1-cells have odd coordinates. Figure 4(b) shows a two-dimensional AC (or SAC) complex C2 which is
the Cartesian product of two combinatorial coordinate axes. Two-dimensional cells (2-cells for short) are
represented in Figure 4(b) as interiors of squares; one-dimensional cells (1- cells) as line segments which
are sides of the squares and 0-cells as crossing points of lines which is the same as the corners of squares.
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Some cells are emphasized in Figure 4(b), while a square is shaded, a line is bold or a 0-cell is represented
as a small black square. Emphasized cells are accompanied by their combinatorial coordinates according
to the above Definition 3.4. A two-dimensional cell of a two-dimensional SAC complex is often called a
“pixel”, a 1-cell is called a “crack” and a 0-cell a “point”. Thus the cell with coordinates (3, 10) is a horizontal
and that with coordinates (4, 5) a vertical crack.

In relation to Theorem 3.5 below, let us now recall the notion of Khalimsky line topology on Z denoted
by (Z, κ) [14]. Motivated by the A-space in [1], Khalimsky line topology κ on Z is induced by the family of
the subset {{2n + 1}, {2m−1, 2m, 2m + 1}|m,n ∈ Z}which induces the open sets of κ. In addition, the notion of
T 1

2
-separation axiom of a topological space (X,T) was developed by Levine [20](see also [6]), which means

that each singleton of (X,T) is either open or closed. It turns out that (Z, κ) is a T 1
2
-space. In Khalimsky

topology the set [a, b]Z = {n ∈ Z| a ≤ n ≤ b} is considered as a subspace of (Z, κ), is called a Khalimsky interval.

Theorem 3.5. The Khalimsky line topological space is equivalent to an SST of Z.

Proof: Since the Khalimsky line (Z, κ) consists of alternating open and closed points, every element e of Z
has its smallest neighborhood SN(e) which is {2n − 1, 2n, 2n + 1} if e = 2n,n ∈ Z or {e} if e = 2n − 1,n ∈ Z.
These smallest neighborhoods can be a base for an SST of Z. �
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Figure 5: Different graphical representations of one and the same space: (a) A mixed p1, a closed p2 and an open p3 point in the
representation usual for the Khalimsky 2D space; (b) Smallest neighborhoods of the points pi, i ∈ {1, 2, 3}, of (a) [18]; (c) The same
points pi of (b), i ∈ {1, 2, 3} and their smallest neighborhoods SN(pi) in the representation usual for SAC complexes.

Unlike the axioms T0,T1,T2, the axiom T 1
2

does not have the product property. More precisely, let (Zn, κn)
be the product topological space of n-copies of (Z, κ),n ≥ 2. The product topological space (Z2, κ2) is called
the digital plane. Then it does not satisfy the axiom T 1

2
[15]. Consequently, if n ≥ 2, then the Khalimsky

n-space (Zn, κn) is a T0 space rather than a T 1
2

space since unlike the Khalimsky line topological space (Z, κ)
there are singletons of Zn with n ≥ 2 which are neither open nor closed [15]. Furthermore, using several
kinds of continuities and homeomorphisms in [9], we can also study some subspaces of the Khalimsky nD
space [13]. Let us recall that a point x = (x1, x2, · · · , xn) ∈ Zn of the Khalimsky nD space (Zn, κn), is open if
all coordinates are odd, and closed if all coordinates are even [14]. These points are called pure and other
points in Zn are called mixed. For a subset X of Zn let us consider a subspace (X, κn

X) of the nD Khalimsky
space (Zn, κn).

Figure 5 shows two different graphical representations of one and the same space. Figure 5(a) shows a
two-dimensional Khalimsky space with three emphasized points: p2 = (4, 2) is a closed point, p3 = (5, 7) is
an open and p1 = (1, 6) a mixed one. Figure 5(b) shows the smallest neighborhoods of these three points.
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Figure 5(c) shows the same space represented as a two-dimensional Cartesian complex in a graphical
representation usual for an SST. The closed point p2 = (4, 2) is here regarded as a 0-cell and is represented
as a small square. The open point p3 = (5, 7) is regarded as a 2-cell and is represented as the interior of a
square. This means that the square contains neither its sides nor its corners. The mixed point p1 = (1, 6)
can be considered a 1-cell or a horizontal crack and is represented here as a horizontal line segment. The
smallest neighborhoods of these cells are easier to be detected than in the representation of Figure 5(b)
because graphical representations of two incident cells touch each other. The smallest neighborhood looks
in this representation as a connected subset of the plane, which is not the case in the representation of Figure
5(b).

Lemma 3.6. Since Definition 3.1 uses only the notion of smallest neighborhoods, it can be applied to any SST for
defining the dimensions of its elements and the dimension of the space.

Theorem 3.7. Every connected SST containing at least two elements and satisfying the separation axiom T 1
2

is a
one-dimensional space.

Proof: An SST, (X,T), with the separation axiom T 1
2

has per definition only two kinds of elements: open
or closed ones [20]. If the space is connected, then the smallest neighborhood of a closed element contains
at least one open element. Let c ∈ X be a closed element of X and o ∈ X one of the open elements in
SN(c). Since the neighborhood relation is a reflexive partial order and o , c, we can write c < o. Then
there is no element a ∈ X such that c < a < o because in this case a can be neither open nor closed, thus it
would be called a “mixed” element. But there are no mixed elements in a T 1

2
space. Therefore, the longest

neighborhood path has the length 1 and each open element has dimension 1. The dimension of an SST is
according to Lemma 3.6 the greatest dimension of its elements. Therefore the dimension of (X,T) is equal
to 1. �

4. Topological Properties of an SST

This section investigates topological properties of an SST and proves that a connected SST is a T0-space
and further, proves that a connected SST is an good example showing that the axiom semi-T 1

2
does not

imply T 1
2
. Since the notions of semi-open and semi-closed can be often used in pure and fuzzy topology, we

need to recall them as follows:

Definition 4.1. [19] Let (X,T) be a topological space. A subset A of X is called semi-open if there is an open set
O ∈ T such that O ⊂ A ⊂ Cl(O), where Cl(O) means the closure of the set O. A subset F ⊂ X is called a semi-closed
set of a topological space (X,T) if X \ F is semi-open in (X,T).

The notion of “semi-open” of the subset A in Definition 4.1 can be equivalently represented as follows:
A ⊂ Cl(Int(A)) [19]. Further, the notion of “semi-closed” of the subset A in Definition 4.1 can be equivalently
represented as follows: there exists a closed set F in T such that Int(F) ⊂ A ⊂ F or Int(Cl(A)) ⊂ A [19].

Lemma 4.2. Let (X,T) be a connected SST with |X | ≥ 2, where X := {ci
j | i ∈M, j ∈M′}. Let Xt be a totally ordered

subset of the given partially ordered set X. For an i-cell ci
j in Xt we obtain its closure in (X,T) as follows:

Cl(ci
j) =

 {ci
j}; if ci

j is a minimal element of Xt up to a dimension, and
{ci

j, c
t
| ct is adjacent to ci

j, t � i} : else

Proof: If ci1
j is a minimal element of Xt up to a dimension, then it is closed in (X,T) because the set X \ {ci1

j }

is a union of smallest open neighborhoods of the other elements ci
j in X with ci

j , ci1
j , which implies that

Cl(ci1
j ) = {ci1

j }.
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If the given i-cell ci
j is not a minimal element of Xt, then Cl(ci

j) should be the set {ci
j, c

t
| ct is adjacent to ci

j, t � i}
because it is the largest subset of X containing the element ci

j such that X \Cl(ci
j) should be open in (X,T). �

For instance, consider a 1-cell d8 and a 2-cell 11 in X of Figure 6. Then we can observe that Cl(d8) =
{d8, p1, p2} and Cl(11) = {11, d1, d6, d7, p1, p6}.

Corollary 4.3. Let (X,T) be a connected SST with |X | ≥ 2, where X := {ci
j | i ∈ M, j ∈ M′}. Let Xt be a totally

ordered subset of the given partially ordered set X. Let ci
j be an i-cell in X which is not a maximal element of Xt up to

dimension. Then Cl(X \ Cl({ci
j}) = X.

For instance, consider the element d1 in X of Figure 6. In the SST (X,T) we obtain that Cl({d1}) = {d1, p1}

and Cl(X \ Cl({d1})) = X (observe the elements 11 or 12 because Cl({11}) includes the set Cl({d1}).
It is well known that the Khalimsky line topology [16](see also [15]) and the Marcus-Wyse topological

space [25] satisfies the separation axiom T 1
2
. As a weaker form of the axiom T 1

2
the following notion was

developed in [2]. Let us now investigate its properties.
Hereafter, we denote by sCl(A) the intersection of all semi-closed sets containing A, i.e. sCl(A) means

the semi-closure of A.

Definition 4.4. [2] Let (X,T) be a topological space. A subset A of X is called semi-generalized closed if sCl(A) ⊂ O
holds whenever A ⊂ O and O is semi-open in (X,T).

Definition 4.5. [2](see also [20, 24]) We say that a topological space (X,T) satisfies the semi-T 1
2

separation axiom
(or a semi-T 1

2
space) if every semi-generalized closed set in (X,T) is semi-closed.

The paper [5] characterizes the axiom semi-T 1
2

as follows.

Proposition 4.6. [5] We say that a topological space (X,T) satisfies the semi-T 1
2

separation axiom (or a semi-T 1
2

space) if and only if every singleton of X is either semi-open or semi-closed.

In view of Definition 4.4, it is clear that an open set (resp. a closed set) implies a semi-open set (resp. a
semi-closed set). Thus we obtain that the axiom T 1

2
implies the axiom semi-T 1

2
. In addition, a topological

space (X,T) is called locally finite (for short, LF) if each element of X has a finite neighborhood and it is called
an Alexandroff topological space (A-space for short) if each point (or element) of X has its smallest open
neighborhood in X [1].

For a connected SST, (X,T), if | {i | ci
j ∈ X} | ≥ 3, then (X,T) cannot satisfy the T 1

2
-separation axiom.

However, according to Proposition 2.11, an SST has the following property.

Theorem 4.7. A connected SST satisfies the separation axiom T0.

Proof: For an SST, (X,T), take two distinct elements in X such as ct1
j1

and ct2
j2

with ct1
j1
, ct2

j2
. By Proposition

2.11, we obtain SN(ct1
j1

) or SN(ct2
j2

) such that at least either of them does not contain the other point ct1
j1

or ct2
j2

.
More precisely, according to Proposition 2.11, we can consider two cases as follows:
(Case 1) Assume that ct1

j1
is adjacent to ct2

j2
. Then it is obvious that t1 , t2. By Proposition 2.11, we obviously

obtain SN(ct1
j1

) and SN(ct2
j2

) such that ct2
j2
< SN(ct1

j1
) or ct1

j1
< SN(ct2

j2
). More precisely, for convenience assume

that t1 � t2. Then, by Proposition 2.11, it is obvious that SN(ct2
j2

) does not contain the element ct1
j1

.

(Case 2) Assume that ct1
j1

is not adjacent to ct2
j2

. Then, by Proposition 2.11, we obtain SN(ct1
j1

) and SN(ct2
j2

)

such that ct2
j2
< SN(ct1

j1
) and ct1

j1
< SN(ct2

j2
), which completes the proof. �

Example 4.8. Consider an SST (X, τ1) (resp. (Y, τ2)) endowed with the SAC complex X(resp. Y) of Figure 6,
where X composes six 2-cells such as {1i | i ∈ [1, 6]Z}, twelve 1-cells such as {di | i ∈ [1, 12]Z} and six 0-cells such
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as {pi | i ∈ [1, 6]Z}, and Y composes six 2-cells and six 1-cells without 0-cell. Then we observe that both (X, τ1) and
(Y, τ2) are connected. Take two distinct elements x and y in X or Y. For convenience, consider the two elements in X.
According to the adjacency of the two elements, we can consider the following two cases as follows:

(Case 1) Assume that x is adjacent to y in X. In this case it is obvious that dim x cannot be equal to dim y.
Thus, for convenience we may assume that dim y 
 dim x. Then we obtain SN(y) such that x < SN(y), which
implies that (X, τ1) satisfies the axiom T0. For instance, take two elements d8 := y and p1 := x in X of Figure 6.
This choice supports that x < SN(y), which implies that (X, τ1) satisfies the axiom T0 because SN(d8) = {d8, 12} and
SN(p1) = {p1, d1, d7, d8, 11, 12} in (X, τ1).
As another example, take two elements 13 := y and d3 := x in Y of Figure 6. This choice also explains that x < SN(y),
which implies that (Y, τ2) satisfies the axiom T0 because SN(d3) = {d3, 13, 14}.

(Case 2) Assume that x is not adjacent to y in X. In this case, by Remark 2.14(2), regardless of the dimensions of
the two elements x and y we can take two open sets SN(x) and SN(x) in (X, τ1) such that y < SN(x) and x < SN(y).
For instance, take two elements 13 := y and d8 := x in X of Figure 6. This choice supports that y < SN(x) and
x < SN(y) because SN(13) = {13} SN(d8) = {d8, 12}. Similarly, consider two elements d3 := y and d2 := x in Y of
Figure 6. This choice shows that y < SN(x) and x < SN(y) because SN(d3) = {13, d3, 14} SN(d2) = {12, d2, 13} in
(Y, τ2).
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Figure 6: Explanation of the axioms semi-T 1
2

and T0 of SST.

As mentioned above, it is obvious that the T 1
2
-separation axiom implies the semi-T 1

2
separation axiom.

However, motivated by Theorem 4.7, we now need to compare the axiom semi-T 1
2

with T0, as follows:

Theorem 4.9. (1) For a topological space (X,T) with |X| = 2 the axioms T0, semi-T 1
2

and T 1
2

are equivalent to each
other.

(2) Let (X,T) be a topological space with |X| ≥ 3. Then the axiom semi-T 1
2

does not imply T 1
2
.

Proof: Let (X,T) be a topological space such that |X| = 2. First, let us prove that the axioms T0 and
semi-T 1

2
are equivalent to each other. Assume that (X,T) satisfies the axiom T0 and X := {a, b}. Then the

singleton composed one of the two distinct elements should be open or closed. More precisely, the axiom
T0 implies that a < Cl({b}) or b < Cl({a}). In case a < Cl({b}), the singleton {b} is closed because |X| = 2, which
means that {a} is open. Similarly, in case b < Cl({a}), the singleton {a} is closed, which means that {b} is open,
which implies that (X,T) satisfies the axioms semi-T 1

2
and T 1

2
.

Conversely, assume that (X,T) satisfies the axiom semi-T 1
2

and {a} is semi-open. Hence there is an open
set O ∈ T such that O ⊂ {a} ⊂ Cl(O), the open set O should be the singleton {a}, which implies that (X,T)
satisfies the axiom T0.
Second, assume that {a} is semi-closed. Since there is an open set U ∈ T such that U ⊂ X \ {a} := {b} ⊂ Cl(U),
the open set U should be the singleton {b}, which implies that (X,T) satisfies the axiom T0.
Let us now prove that T0 and T 1

2
are equivalent to each other. Using the same method as above, with the

hypothesis it is obvious that T0 and T 1
2

are also equivalent to each other.
(2) In order to prove that the axiom semi-T 1

2
does not imply T 1

2
, we consider a counter example of the

assertion. Let (X,T) be a connected SST with |X | ≥ 3, where X := {ci
j | i ∈ M, j ∈ M′}. Let Xt be a totally
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ordered subset of the given partially ordered set X. Let ci1
j (resp. ci2

j ) be a minimal (resp. maximal) element
of Xt up to a dimension. Then the cells ci

j in X have the following property.

(Case 1) The singleton {ci1
j } is semi-closed. Let us prove this assertion. Since the given space (X,T) is

connected and |X | ≥ 2, we may consider two cases, as follows:
(Case 1) In case | {i | ci

j ∈ X} | = 2, according to Proposition 2.11, the assertion is trivial because the singleton

{ci1
j } is closed and {ci2

j } is open. Consequently, {ci1
j } (resp. {ci2

j }) is semi-closed (resp. semi-open).
(Case 2) For each i with i1 � i � i2 the singleton {ci

j} is semi-closed. Let us prove this assertion. Assume
that | {i | ci

j ∈ X} | ≥ 3.

(1) By Proposition 2.11, we observe that the singleton {ci1
j } is closed because the set X \ {ci1

j } is a union of

smallest open neighborhoods of the other elements ci
j in X with ci

j , ci1
j , which implies that X \ {ci1

j } is an

open set. Consequently, the singleton {ci1
j } is closed, so semi-closed.

(2) Consider the singleton {ci
j} with i1 � i � i2. Since the singleton {ci

j} is neither open nor closed, let us
now take an open set X \ Cl({ci

j}) := O in (X,T). Then we obtain that

X \ Cl({ci
j}) ⊂ X \ {ci

j} ⊂ Cl(X \ Cl({ci
j})),

because, according to Corollary 4.3, Cl(X \ Cl({ci
j})) is the whole set X, which completes the proof. Let us

now consider an example guaranteeing. Consider the SST (X,T) endowed with the SAC complex X in
Figure 6. Then we observe that the element d7 has dimension 2 and further, X \ {d7, p1, p6} ⊂ X \ {d7} ⊂

Cl(X \ {d7, p1, p6}) = X, which implies that the singleton {d7} is semi-closed because Cl(d7) = {d7, p1, p6}.
(Case 3) The singleton {ci2

j } is semi-open. Let us prove this assertion. According to Proposition 2.11, the

singleton {ci2
j } is obviously open, which implies that it is obviously semi-open. �

5. Conclusion

We have investigated various properties of an SST which can be successfully employed for representing
locally finite topological spaces in a computer and for solving topological problems. Indeed, the theorem
can play an important role in classical, computer, discrete and digital geometry as well as digital topology
because it has its own property different from the classical one. As mentioned in Sections 3 and 4, it
turns out that SST is an Alexandroff topological structure with the axioms T0 and semi-T 1

2
[4], which can

contribute to applied topology relevant to computer science. Finally, an SST can be used for studying both
continuous and digital spaces so that it plays an important role in both classical and digital topology and
further, computer and discrete geometry [12].
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