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(Integral) Equations with Two Fractional Orders and Four-point
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Abstract. This paper investigates the existence of solutions for nonlinear fractional g-difference equa-
tions and g-difference integral equations involving two fractional orders with four-point nonlocal integral
boundary conditions. The existence results are obtained by applying some traditional tools of fixed point
theory, and are illustrated with examples.

1. Introduction

Boundary value problems of fractional-order have recently been studied by many researchers. Fractional
derivatives appear naturally in the mathematical modelling of dynamical systems involving fractals and
chaos. In fact, the concept of fractional calculus has played an important role in improving the work
based on integer-order (classical) calculus in several diverse disciplines of science and engineering. It
has been probably due to the reason that differential operators of fractional-order help to understand the
hereditary phenomena in many materials and processes in a better way than the corresponding integer-order
differential operators. Examples include physics, chemistry, biology, biophysics, blood flow phenomena,
control theory, wave propagation, signal and image processing, viscoelasticity, percolation, identification,
fitting of experimental data, economics, etc. [1]-[4]. For some recent work on fractional differential

equations, we refer to [5]-[14] and the references therein.
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Fractional g-difference equations, regarded as fractional analogue of g-difference equations, have recently
been studied by several researchers. For some earlier work on the topic, we refer to [15]-[16], whereas some
recent work on the existence theory of fractional g-difference equations can be found in [17]-[27].

In this paper, we discuss the existence and uniqueness of solutions for a nonlocal boundary value
problem of nonlinear fractional g-difference equations and g-difference integral equations with four-point

nonlocal integral boundary conditions. As a first problem, we consider
DEED) + M)x(t) = f(t,x(t), 0<t<1,0<g<1,0<p<1, 0<y<1l, 1€R, 1)

et [ (1 g9) 7
x(0) = algy™ " x(n) = uj; mx(s)dqs,
(0 —gs)?
0 Fq(a -1)

)

x(1) = bI;"'x(0) = b x(s)dgs, >2,0<n,0<1,

where f € C([0,1] X R, R), ch and CDg are the fractional g-derivative of the Caputo type, a and b are real

numbers.

In the second problem, we consider the following nonlinear fractional g-difference integral equation

supplemented with boundary conditions (2):
DEED) + A)x(t) = pf(t, x(t) + kIog(t, x(t), 0<t<1,0<g<1, 1€R, 3)

where I,‘;(.) denotes Riemann-Liouville integral with 0 < £ < 1, f, g are given continuous functions, and p, k
are real constants.

The paper is organized as follows. Section 2 contains some necessary background material on the
topic, while the main results for the problem (1)-(2) are presented in Section 3. We make use of Banach’s
contraction principle, Krasnoselskii’s fixed point theorem and Leray-Schauder nonlinear alternative to
establish the existence results for the problem at hand. Although these tools are standard, yet their
exposition in the framework of the present problem is new. In Section 4, we present some existence results
for the problem (3)-(2).

2. Preliminaries on Fractional g-Calculus

Here we recall some definitions and fundamental results on fractional g-calculus [28]-[30].

Let a g-real number denoted by [a], be defined by

a

[a], = 1_‘;, a€R, g€ R\ (1}.

The g-analogue of the Pochhammer symbol (g-shifted factorial) is defined as

k-1
@Po=1, @Pr= H(l —ag'), ke N U {co}.

i=0
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The g-analogue of the exponent (x — y)* is

k-1
x-y?0=1 x-y®= H(x -yg), keN, x,y e R.
j=0
The g-gamma function I'y(y) is defined as
(1-g™
T =)
4(y) =gy

where y € R\ {0,-1,-2,...}. Observe that I';(y + 1) = [y];[';(y). For any x, y > 0, the g-beta function B,(x, y)
is given by
1
By(x,y) = f (701 - gDy,
0
which, in terms of g-gamma function, can be expressed as

Ty (0)Ty(y)

By(x,y) = TGty

(4)
Definition 2.1. ([28]) Let f be a function defined on [0, 1]. The fractional g-integral of the Riemann-Liouville type

of order B > 01is (I f)(t) = f(t) and

B = f (t_jf; F$)dys = #5(1 - qﬁZ k(fql WD e, >0, te 0,11

Observe that § = 1 in the Definition 2.1 yields g-integral

t .
)= [ s =i -0 Y g fe
k=0

For more details on g-integral and fractional g-integral, see Section 1.3 and Section 4.2 respectively in [29].
Remark 2.2. The g-fractional integration possesses the semigroup property (Proposition 4.3 [29]):

LIf6) =177 ft); 7. p € R". 5)

Further, it has been shown in Lemma 6 of [30] that

[(o+1)

BroN©O) _
f5() S T,B+o0+1)

(x)(ﬁ“’), 0<x< g,ﬁ € R+,G € (—1,00).

Before giving the definition of fractional g-derivative, we recall the concept of g-derivative.

We know that the g-derivative of a function f(t) is defined as

00 =T, 120, 0,00) = timo, 00

Furthermore,

Dif = f, Dyf =Dy(Dy ' f), n=1,23,... ©)
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Definition 2.3. ([29]) The Caputo fractional q-derivative of order p > 0 is defined by
“Dyf =1/ (),
where [B] is the smallest integer greater than or equal to f.

Next we recall some properties involving Riemann-Liouville g-fractional integral and Caputo fractional

g-derivative (Theorem 5.2 [29]).

B
B ey _ +
Db f(t) = f(t) - Zr(k+1)(Df)(0) Vie(al p>0; ?)
DI = f(t), Yte(0,al p>0. (8)

In order to define the solution for the problem (1)-(2), we need the following lemma.
Lemma 2.4. For a given h € C([0, 1], R) the unique solution of the boundary value problem

DEED) + Mx(t) =h(t), 0<t<1,0<q<1,0<f<1, 0<y<l, )

7] (a=2)
0=l 0 =a || S
q

5 (CT _ qs)(a 2)

(10)
x(1) = blf;‘lx(a) = x(s)dys,

is given by

_ f(t_qu)(y—l) 5
x(t) = fﬂ W(Iqh(u)—/\x(u))dqu

_[0at” = 64] T (n—gs) @D (° (s —qu)0 D
A {aj; [y(@—-1) ( T,()
A Y S Py

410 - 2 {b ) Tha- 1) f 5,0) Iﬁh(u) - Ax(u))dqu)dqs}

3 1 (-1
_[61tVA f fo @ FZ(”;; (Ig0) = Ax(u0))dgu,

(In(ut) = Ax(u) g1 )dys )
(11)

where
ar](a_l)
1=
Iy(a)

pola-1)
@:(%—1), 65 = (

Proof. In view of (5) and (7), the solution of (9) can be written as

an@ VT, (y + 1))
Lyle+y) ’

bo @ UL, (y + 1)

Lya+y)

- 1), 8 =

- 1) and A = 636, — 6401.

(- oD P

_ BN _ _
x(t) = O [Iqh(u) /\x(u)]dqu OF o) t €[0,1]. (12)
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Using the boundary conditions (10) in (12) and the definition of g-Beta function together with the
property (4), we have

1 an @ =UL,(y + 1)) (an(“‘l) 1)
Ly +1) Lola+7) Iy(a) ' (13)

T —g9)? [T (s —qu)0
B aﬁ Fq(a -1) ( 0 Fq(V) (Igh(u) - /\x(u))dqu)dqs,

1 bg(aﬂ/—l)rq()} +1) ) <bo-(t¥—1) )
L,(y+1) Lia+y) [y(a) !

- (0 - g5) @D, (s —qu) D

= bf(; Tya—1) (L r,0) (Iqh(u) - /\x(u))dqu)dqs )

_ (Ao
o T4

Solving (13) and (14) for ¢y, c1, we get

T 1 1 — as) @2 (S (s — g \-1)
N r—
q q

(1) = Ax(u))dqu.

(0=q9)2 (6 —qu)h

- 6o

o o Tla=1) YJo Ty (Iqh(u) Ax(u))‘iq”)dqs
1 (1 - qu)0D

+o | W(I‘;h(u)—)\x(u))dqu},

_ 1 "= g
aq = Z{—(Swf(; Ta—1) ( ) T,0) (Iqh(u)—)\x(u))dqu)dqs

(0 - qS)(H)( o quY
0 rq(“ -1) rq(V)

11 _ -1
— fo %(Ish(u)—/\x(u))dqu}.

Substituting the values of co, c1 in (12), we obtain (11). O

+0,2b

(Ish(u) - )\x(u))dqu)dqs

Let # := C ([0, 1], R) denote the Banach space of all continuous functions from [0, 1] — R endowed with
the norm defined by ||x|| = sup{|x(¢#)| : t € [0, 1]}.

In view of Lemma 2.4, we define an operator ¥ : # — ¥ as

_ (y— 1) — B-1)
(Fo)t) f (= quy f (= qm)? F(m, x(m))dm—/\x(u))dqu

Ty(y) Ly(B)
e 90 (o qu)w D[ gmt D
A o Tgla— 1) 0 I4(B)
X f(m, x(m))dsm — /\x(u))d u) qs
LTS GRT S i T Dy Ry D )
A o Tgla=1) YJo  Tu(y) 0 L4(B)

X f(m, x(m))dym — /\x(u))dqu)dqs}
6,8 - 52]{ t(1- W)(y_l)( " (u— qm)®D
A o Ty 0 I4(B)

Fm, x(m))dgm = Ax(u))dgu).
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Observe that problem (1)-(2) has a solution if the operator equation ¥ x = x has a fixed point, where ¥ is

given by (15).

3. Existence of Solutions for g-Difference Equations

In the sequel, we assume that

(A1) f:]0,1] xR — Ris a continuous function and that there exists a g-integrable function C : [0,1] = R

such that [f(t,x) — f(t, I < CB)Ix—yl, t<[0,1], x,y e R.
For computational convenience, we set

Q= x1 + |Axo,
where

k1 = (1+ ) 0Q) + arlal(F PO 1) + aalbl(IF V0 0),

1
Ko :

= W(l + Ctz) +

1
————(alaln"* ) + bl D),
L0y + a)( N )

and

a =|53—54| N =|51—52|
YTTAr TP A

(16)

(17)

(18)

Theorem 3.1. Suppose that the assumption (A1) holds and that QO < 1, where Q is given by (16). Then the boundary

value problem (1)-(2) has a unique solution.

Proof. Let us fix sup, (1, 1f(£,0)] = H < o0 and choose

= HK3
P=1"q’

where

(1+0(2)
rg+y+1) TI,B+y+a)

K3 =

(a1|a|n(ﬁ+y+a—1) + 0(2|b|0('8+y+a_1))-

(19)

We define B; = {x € # : |lx|l < pl. We will show that #B; C B;, where ¥ is defined by (15). For

x € Bg, t €[0,1], it follows by the assumption (A;) that

(£ x(®)] < |f(t x(0) = f(E0) + |f(t 0) < C(BXDI + /(£ 0) < C(B)p + H.

(20)
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Then, for x € By, t € [0,1], and using (16) and (19), we have

0
_ (y 1) _
f - ZQ) f - q(ﬁ) (e )+ Y

ul (a=2) — U (-1
+ayal f a ZS) 1) E FZ?)Z) ( 0 . FZT(?;)) (C(m)p + H)d,m
+I)\|p)d u) 48
(0 = g9)" 2) (s =g (" w—gm®
d
A e e e - R

+IA[p)dyu)dgs
L (1= qu)oD (= gm)ED B -
+az | r,0) ; T,0) (C.(m)p + H)dqm + I)\Ip)dqu
<7| f (1= qu)0D (= qm)F-D
y(») o TP

(- qS)‘“ 2) (s —qu) D (" (= qgm)#D
+a1|a|f -1 f T,0) (fo T,6) C(m)dqm)dqu)dqs

C(m)dqm)dqu

St T et il W
e Rl ) f ROy Uy T e s
1 _ (y-1) U _ B-1)
+a; (=g (= qm) C(m)dqm)dqu]

o L) o T4

(1= g
H[f Lo U T e

(- qS)“’ 2> "5 qu)” ” (u —gm)FD
+011|€l|f - 1) T,0) f ) d u)d s

T(0 =99 (s -qu” ” " (= gD
+ab| | Fq(oz—l) f T,0) i ) dqm)dqu)dqs
1 (1 = gu)-D (-1
s [ SO [ i)

o L) o Ty

1 (} Ul S(a 2) S S — u(y_l)
+ |A|[f( du+a1|a|f u (Z)l fo( rz(y)> dyit)d,s

(0~ qS)‘“ S GO P gD
“‘2”"[ T | f T,0) d””)dqs+“2fo oyl

<p[(1 + )T 0O) + arlal(lFT VM) + bl V) (0)]

(1 + 0(2) N R
[F By + 1) T,(B+7 +0) (oc1la|17(ﬁ+y+ D 4 gy |blo B+ 1))]
1
_| |[ ( + 042) (allaln(Vﬂx—l) + a2|b|a(y+a_1))],

Ly(y +1) r(7/+04)
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which, on taking norm, yields || x|| < Hxs + pQ < p. This shows that ¥ B; C B

Now, for x, y € P, we obtain

17 ) = (Fyll
< SR D O il
“on'Jo T T0) o L)
+Alx() = ()] g

T (n - gs)@" 2) S (s — qu)(V‘l) “(u— qm)P-D
ol [ U S U e

><| F(m, x(m)) — f(m, y(m))|d m -+ A ll(u) = y(u)|)dgu)dys
oz ([ 0 = g
o Dgla—=1) L) 0 I4(B)
x‘ F(m, x(m)) — f(m, y(m))‘dqm Al (w) — (o) g )dys
(= qu)D (= gm) @Y
0 L) 0 I4(B)
HA () = y(u)l)dgu)

[Fom, x(m) ~ Flom, ym|dgm

+ao|b|

+ay

[Fom, xm) ~ Fm, ym|dgm

=)D, (= ) B
< Il = ylisupioy f ( rq?;) (] < q?;)) Com)dym)dyu
q

1] (TI qS)(a 2) S (S — qu)()’ 1) (u — qm ;B 1)
+ar]al f -1 f 5,0) f 0 C(m)dgm)dqgu )dys

( )(a 2) (s — )()/ 1) (u— )(13 1)
+“2'b'f i Z?y) (J, T comdamin

YA -qu)Y M (u— qm)f-
d.m)d
A o N S 7o) comig

1 1) 1 (1 — as)@2)
+ix = yllAlsupreto] f %dwanm f Uil Dl (211)
q

(S — l/]u)()’ (0 — qs)(a 2) s (S _ qu)(y_l)
X(fo Iy(y) TT,0) u d 5F szlblf T(a-1) f r,() dqu)dqs

P -quoh
————d.u
0 L) i }
< Qllx =yl

+an

+ay

where we have used (16).
Since Q € (0,1) by the given assumption, therefore # is a contraction. Hence it follows by Banach’s

contraction principle that the problem (1)-(2) has a unique solution. m]

In case ((t) = L (L is a constant), the condition QQ < 1 becomes Lk3 + |[A|x, < 1 and Theorem 3.1 takes the

form of the following result.
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Corollary 3.2. Assume that f : [0,1] X R — R is a continuous function and that

there exists a constant L € (0, %) with |f(t,x)— f(t, y)| < Lix—yl, t € [0,1], x, y € R, where x, and «3 are
given by (18)and (19).

Then the boundary value problem (1)-(2) has a unique solution.

Our next existence results is based on Krasnoselskii’s fixed point theorem [31].

Lemma 3.3. (Krasnoselskii). Let Y be a closed, bounded, convex and nonempty subset of a Banach space X. Let

Q1, Q2 be two operators such that:

(i) Qix+ Qoy € Y whenever x,y € Y;
(ii) Q1 is compact and continuous;
(ii1) Q, is a contraction mapping.

Then there exists z € Y such that z = Q1z + Q»z.

Theorem 3.4. Let f : [0,1] X R — R be a continuous function satisfying (A1). In addition we assume that
(Ap) there exists a function u € C([0, 1], R*) and a nondecreasing function ¢ € C([0,1], R*) with
If(E )l < u(Oe(x)), (£ x) €[0,1] X R;

(A3) there exists a constant ¥ with

72 @ @) llulics, @1

where k4 = 1_?%, 1= 1Al >0 and |lull = sup,pgq lu()I-

If

anlal@&7 V0 () + bl (1P V0 0) + (1P 0 (1)
(22)

- - @
+A| arlaln e + aplblo V) + ————| <1,
[ ( 1 2 ) T,(y + 1)]

L0y +a)

then the boundary value problem (1)-(2) has at least one solution on [0, 1].
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Proof. Consider the set B; = {x € £ : ||x]| < 7}, where 7 is given in (21) and define operators S; and S, on B;

as

(S10)(%)

Elr o NO=1) i (g NG
fo - rq?;) (fo . rqg)) fom, xm)dgm = 2x00)dgu, t€10,1],
g q

_[65#7 =04 f " (n - qs)? f (s —qu)oV f (u — qm)¢
(5290 A {a o Thla-1) ( o L) ( 0 L4(B)

X f(m, x(m))d,m — )\x(u))dqu)dqs}
61t = 5o] ( G qS)(“‘2’< (5 qu)(y‘”( " (u— qm)®
A o Tla-1) Ly(y) 0 Iy(B)
X f(m, x(m))d,m — /\x(u))dqu)dqs}
[6187 =621 [ (L= qu)?D (" (u — gm)ED
U, L) Jo o T
—Ax(u))d,,u}, te[0,1].

[f(m, x(m))dgm

For x, y € By, we find that

I(S1x + Say)(2)]
F(E—qu)0D (- gm) D
< fo W(fo r—(m#(m)@(Ix(m)l)dqm + IAIIX(M)I)dqu
U G qu)(‘ " (= gm)@D
[ ([ 65 T oo

Al (20) ) gt )d s

(0 — qs)(“’z) S (s — qu)(yfl) f (u— qm)(ﬁfl)
+azlt 0 Tq(a -1 ( 0 rq(V) ( 0 rq(ﬁ) y(m)(p(lx(m)l)dqm

+A ()] )dg1e)dgs
LA =qu)D " (u—gm)FD
o Ty 0 T4(8)

- (1+a2) 1 (B+y+a-1) (B+y+a-1)
nm@wﬁr@+ +1)+n@+y+aﬁmwm aolblo )]

(1 + az) 1
W[F (y+1) * Ly + a)(
< lpllp(r)rs + FiAlk,

+az u(m)p(x(m) ) + Al ()] g

IN

anlaln®**7D + s plo? )]

< T
Thus, Si1x + S>y € Br. From (A;) and (22), it follows that S, is a contraction mapping. Continuity of f

implies that the operator S; is continuous. Also, S; is uniformly bounded on By as

Ol AIF
dBry+1) L(y+1)

IS1x]| < T
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Now, for any x € By, and #1, t; € [0,1] with t; < t, we have
[(S1%)(t2) — (S1%)(t)]

[ o [
q(V) 0 T q(ﬁ)

fop =D i N B-1)
- fo g’ fo O ftm, oy~ A

f(m, x(m))d,m — /\x(u))dqu

T,0) T,(6)
- L —qu)) T - qu))
< ol | =5 0 LEED T ), T T,0) LG+ it

fz _ 1) t _ (y-1)
_ (tr — qu)~ (th — qu)0
| f TT,0) T fo Ty ]

@ () [l B+y) B+ Al » _ )
|ty =tV It — 1]
LB+y+1) 72 ! L,(y+1)2

which is independent of x and tends to zero as t, — t;. Thus, S is equicontinuous. So S is relatively
compact on B;. Hence, by the Arzeld-Ascoli Theorem, S; is compact on By. Thus all the assumptions of
Lemma 3.3 are satisfied. So the conclusion of Lemma 3.3 implies that the boundary value problem (1)-(2)

has at least one solution on [0, 1]. O

In the special case when @(x) = 1 we see that there always exist a positive 7 so that (21) holds true. Thus

we have the following corollary.

Corollary 3.5. Let f:[0,1] X R — R be a continuous function satisfying (A1). In addition we assume that
If(t, )] < u(t), Y, x)€[0,1] X R, and u € C([0, 1], R*).

If (22) holds, then the boundary value problem (1)-(2) has at least one solution on [0, 1].

The next existence result is based on Leray-Schauder Nonlinear alternative.

Lemma 3.6. (Nonlinear alternative for single valued maps)[32]. Let E be a Banach space, C a closed, convex subset
of E, W an open subset of C with 0 € W. Suppose that F : W — C is a continuous, compact (that is, F (W) is a

relatively compact subset of C) map. Then either

(i) F has a fixed point in W, or

(ii) thereis a x € dW (the boundary of W in C) and A € (0,1) with x = AF (x).
Theorem 3.7. Let f : [0,1] X R — R be a continuous function. Assume that:

(Ag) there exist functions by, b, € L'([0,1],R*), and a nondecreasing function ¥ : R* — R* such that |f(t,x)| <
bi(E)W(Ix]) + ba(t), for (t,x)€[0,1] X R;
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(As) there exists a number N > 0 such that

W(N)wy + wr

N > ,
= Al

1— Ak, >0, (23)

where w; := (1+ ax)(Iy " bi)(1) + anlal (17" b)) + a2lbl(y 7 )(0), i = 1,2,
Then the boundary value problem (1)-(2) has at least one solution on [0, 1].

Proof. Consider the operator ¥ : P — P defined by (15). It is easy to show that ¥ is continuous. Next, we
show that ¥ maps bounded sets into bounded sets in P. For a positive number p, let Bs={xe®:|xll < p}

be a bounded set in C([0, 1], R). Then, we have

L g (= gm) P
o L) o Tq(B)

" (1 - gs)@? (s— qu)“’
+‘“'”'fo D | f

(TR qm)<ﬁ—1)
{J, T,

(0 —qs)*~ 2> * (s — qu) Y
b
tel |f q(a 1) f rq()’)

([t

(Fx)()] < |f (m, x(m)|dgm + |/\||x(u)|)dqu

|fm, x(m)ldgm + [ Allx(ue) ) g )dgs

|f G, x(m)ldgam + A l|x(u)l)dgue)dys

o Ty
1 1- (- 1) _ (-1)
taz | FZZZ) f . Z(ﬁ)) [Fom, x(m)ldgm + () Jdgi
f(t—qu)”’ ” " (u—gqm)FV
< f T )+ baon) g+ ANy
'7 qs)(“ 2= qu)oD
+a1|a|f (-1 f T,()
(-1
f - rq?; [b1 (m) P (Il + ba (m)1d g + [Mllx(10) ) g1e)ds
(0 — gs)@- 2) (s — qu)rD
+aab| o Ta-1) f T,(y)
u(u_q )( B-1)
(| [ ()W (lxll) + ba(m))dgm + |Allx(u)])dque)dgs
o Ty
(1 - qu)0- ” (— )60
_ 1(1—qu>0 o <u—qm><ﬁ‘”
< ¥(p) T T,0) (0 T,(p) by

V(- g9, (5 (s - qu 0 (= g6
+6¥1|11|f(; Fq(oz—l) f j; T (ﬁ) bl(m)dqm)dqu)dqs

(0—gs)*? (" (5= qu)(” ” (u—
+aaltl | Ta-D Uy 1,0 f ; ( ﬁ) bl(m)dqm)dqu)dqs
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1 _ -1 U _ (B-1)
o [
0 0

L) Ly(B)
1 (1 — gu)0-D wo(yy — ) (B-1)
+{f ( qu)) ( 0 < FZT(,’;)) bz(m)dqm>dqu
7 (a=2) S _ -1 U _ (B-1)
+041|ﬁ|f 0 (ZS) 1) : TZ?;) <£ v rqf(;)) bz(m)dqm)dqu)dqs

+a,b|

_ gs)@2) — -1 — gm)ED
(0 — gs)" (S qu) f(u qm) bz(m)dqm)dqu>dqs

rq(“ -1) 0 rq(V) q(ﬁ)
L N e ) e
”ﬁﬂ r@>(£ ) )

_ (1 qu )(v 1) 7] (T]—qs)(“ 2) (s — qu)(y 1)
L R v d”+mwf Tl —1) f‘ Ry e

(0-q9) 2, (* (s —qu)7 f (1 - qu)o"
+a|b dyu)d,s + ———d
bl 0o DIgla—=1) 0 L) qu) 7T 0 L,(0) qu}

< \I’(ﬁ)a)1 + wy + ﬁl)\h{z

This proves our assertion.

Now we show that # maps bounded sets into equicontinuous sets of . Let t1,t, € [0, 1] with t; < ¢, and
x € B;, where B;is abounded set of . Taking into account the inequality: (f, —qu)(“‘l) —(t—qu) @D < (ta—t1)
for0 <t <ty <1 (see, [21] p. 4) we have

[(Fx)(t2) — (Fx)(t1)l
| "t - fl)( “ (u — qm)FD
o Ty(») Ly(B)
. 2 (t, — qu)(V‘l) " — qm)(ﬁ—l)
b Ly(y) 0 Ly(B)

Y _ (=g (* (s —qu)V
|A|{Ia||53(f t )|f Ty(a—1) (f Ty(y)

([t
0o L)

+BlIo (£ — 1)
0

[b1(m)W(p) + ba(m)]dym + |A[p)dgu

(61 (m)W B) + bam) 1y + AP )yt

[b1(m) W (P) + ba(m))dym + |A[p)dqu)dys

w_%W%\FG_me
T,a—1) I,0)

(u— qm)<ﬁ 1 _ .
f BT [b1(m) W (P) + ba(m))dgm + |A[p)dqu)dys

(y— 1) u _ B-1)
Ho1(E) — £) f A-gquo fo M[bl(m)\y(ﬁ)mz(m)]dqm

T, L4(B)
+|/\|ﬁ)dqu}.

Obviously the right hand side of the above inequality tends to zero independently of x € B;ast —t; — 0.

Therefore it follows by the Arzela-Ascoli theorem that F : £ — % is completely continuous.
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Thus the operator F satisfies all the conditions of Lemma 3.6 and hence, by its conclusion, either
condition (i) or condition (ii) holds. We show that the conclusion (ii) is not possible.
Let W = {x € P : ||x]| < N} with N given by (23). Then it can be shown that [|¥ x|| < N. Indeed, in view of

(Ag), we have

I
V 1) U (1 (-1
< W( |x||>{ f < q(”y) fo < rq’z;)) by (m)dm)d
L7 q
1 (a 2) — -1 U (1 — (-1
+aila f - ZS o b FZ?;) 0 (v F‘Z’(’;)) b () 1),
_ gg)a-2) S (g — -1 Uo( — (-1
vl [ O ([ gl

ola=1) YJo  Ty(y) 0 T4(B)

LA —qu) D, Y (u—gm)FD
“”Zfo 5,0) (fo T,0) bl(’”)dq’")dq”}

0 L) 0 T,(8)

M (1 — gg)@—2) (y-1 ] _ B-1)
+alal f - f S q”) f O )t
0

bz(m)dqm)dqu

Fy(ar - 1) L4(B)
a-2) _ (/ 1) _ (ﬁ 1)
+(X2|b| f (g q( qsz 1) (S FZZ(/I‘)Z)) (u 37(1;) bZ(m)dqm)dqu)qu
(1 - qu)0- 1) ( — gm)F-D
vy | rqz;) f ! Z;’;) bz(m)dqm)dqu}

(1 q )(V 1) 1 (77 qs)(a 2) S (S _qu)(}’_l)
+||x|||A|{ fo S+l [ F (f s

(@ =q9)2 (6 —qu)h f (1-qu)P }
+ap|b dould;s + a ———d.u
2It o Tgla-1) ( L) 7 ) 7 ? 0 Iy() i

< \I’(N)wl + wy + N|A|xy < N.

Suppose there exists a x € JW and a A € (0, 1) such that x = AF x. Then for such a choice of x and A, we have
N = lxll = AlF x|l < W(llxl)w1 + w2 + NIAkz = W(N)wr + w2 + N|AJkz <N,

which is a contradiction. Consequently, by the Leray-Schauder alternative (Lemma 3.6), we deduce that

has a fixed point x € W which is a solution of the problem (1)-(2). This completes the proof. m|
Remark 3.8. If by, by in (A4) are continuous, then w; = «3||bill, i = 1,2, where 3 is defined by (19).
Example 3.9. Consider the fractional g-difference nonlocal boundary value problem

1 1
DD + 2x(t) = L(5(xl + tan™' x) +sint +1), 0t <1, (24)
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1
x(0) = I2x(1/3), x(1) = 31x(2/3). (25)
Herep=y=g=b=1/2,a=1, a =3, n1=1/3, 0 =2/3, A =1/6, and L is a constant to be fixed later
on. Moreover, 61 = —0.925926, 0, = 0.030136, 063 = —0.851852, 04 = —0.914762 , A = —0.872674, a; =
0.072089, a, = 1.095555, k, = 2.37938, x3 = 2.158402, |f(t,x) — f(t, y)| < Llx — y| and Q = Lks + |A|x; < 1.
Choosing L < 0.279576, all the assumptions of Theorem 3.1 are satisfied. Therefore, by Theorem 3.1, problem (24)-(25)

has a unique solution.

Example 3.10. Consider the problem

e (2 +1)

1 1
1/2cy1/2 = 2 si
"Dy "Dy + P)x(l) = g cosEsin(nl/2) + gy + 3

0<t<1, (26)

x(0) = I2x(1/3), x(1) = %15x(2/3), (27)

where=y=q=b=1/2,a=1, a=3,n1=1/3, 0 =2/3, A =1/6. The values of 61, 02, 63, 04, A, a1, a2, K2

and «3 are the same as found in Example 3.9 and

1, e +1) 1) 1
f(t JC)| = COSt Sll'l(|X|/2) m + g < §|X| + 1.

Clearlyby = 1/8, b, =1, W(N) = N. In consequence, w1 = 0.269800, w, = 2.158402, and the condition (23) implies
that N > 6.469320. Thus, all the assumptions of Theorem 3.7 are satisfied. Therefore, the conclusion of Theorem 3.7
applies to the problem (26)-(27).

4. Existence Results for g-Difference Integral Equations

This section is devoted to some existence results for g-difference integral equations (3) with nonlocal
integral boundary conditions (2). As in case of g-difference equations, we define an integral operator

G : P — P related to the integral boundary value problem (3)-(2) as follows

— (r- 1) — B-1)
(62 = f Uk AR f I o, ),

( 6 q(?{)) T4(B)
u — qm)P+e
f T ZB s g(m, x(m))dsm — /\x(u))d u
_[65t7 = 8] (n—gs)" 2> (s —qu)"~ ” " (- qm)®Y

A {“fo La=D) J Lo e
X f (m, x(m))d,m + kf %g(m, x(m))dym — }Lx(u))dqu)dqs}

o LB+9) (28)

618~ 5] (v (0~ qS)<‘*‘Z>( (s - qu)(V‘”( f (u = qm)#~Y

A o Tgla=1) YJo Tu(y) 0 Ly(B)

d k ’ M dm—A )d )d }

X f(m, x(m))d,m + | T,(8+9) g(m, x(m))dgm — Ax(u) )d,u)dys
58 = 6]y (T (A qu)OV " (u— qm)®

A { o Tg(y) v o T4 Jlom xege

u (u — qm)(ﬁ'*’é‘”

k
R S TS

g(m, x(m))dsm — /\x(u))dqu}.



B. Ahmad, ].]. Nieto, A. Alsaedi, and H. Al-Hutami / Filomat 28:8 (2014), 1719-1736 1734

Observe that the problem (3)-(2) has solutions only if the operator equation x = Gx has fixed points.

In the sequel, we assume that

(B1) f,9:10,1]xR — R are continuous functions such that |f(f, x) — f(¢, y)| < L1|x — y| and |g(t, x) — g(¢, y)| <
Lolx —yl, Vt€[0,1], L1, L, >0, x,y € R.

For computational convenience, we set
Q=LA+ Alky, A =|plics + [klxa, (29)

where K3, k3 are given by (18), (19) respectively,

_ (1+0€2) + 1
CTB+E+y+l) L,B+E+y+a)

K4 (a1|a|n(ﬁ+é+y+a—1) + azlblo_(ﬁ+£+j/+a—1)),

and

_ 103 = 04 4y = |61 — O
Al |A]

Now we present some existence results for the problem (3)-(2). Since these results are analogue to the

ai

ones established in Section 3, so we omit the proofs.

Theorem 4.1. Suppose that the assumption (By) holds and that Q < 1, where Qs given by (29) and L = max{Ly, L,}.
Then the boundary value problem (3)-(2) has a unique solution on [0, 1].

Theorem 4.2. Let f,g:[0,1] X R — R be continuous functions satisfying the assumption (By) and
(B2) there exist w1, up € C([0,1],R*) with |f(t,x)| < wi(t), lgt,x)| < po(t), V(t,x) € [0,1] X R, where
SUPyeqo 17 (D = lluill, i=1,2.

Then the problem (3)-(2) has at least one solution on [0, 1] provided that

+a— _ o
(0(1 |a|n(ﬁ+) *a-1) + 32|b|0‘(ﬁ+7+a 1)) + Wé/%—l))
q

(B+&+y+a-1) Brety+a-1), X2
aqla + a|blo +
( 1laln 21b] ) Tq(ﬁ+5+y+1))]

L{IpI(
+[ki(

1
L,+y+a)

[+&+y+a)

1 a
s (y+a-1) (y+a-1) 2
+|A|[Fq o (anlaln® = + aylblo®+e~V) +

—Tq(y - 1)] <1.

Theorem 4.3. Let f,g:[0,1] X R — IR be continuous functions and the following assumptions hold:

(B3) there exist functions vi,v, € C([0,1],R*), and nondecreasing functions W1, ¥, : R* — R* such that
[f(E 0l < vi@®Wa(llxll), 19 0] < va())Wa(llxll), Y(E x) € [0, 1] X R.

(By) There exists a constant N > 0 such that

o IPlIva %1 (N)ies + [Kllvall P (N)res

N
1- |A|K2

, 1—=|Alx > 0.
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Then the boundary value problem (3)-(2) has at least one solution on [0, 1].

Example 4.4. Consider a boundary value problem of integro-differential equations of fractional order given by

DDy + Dx(t) = Lf(tx(1) + It x(), 0<t<1,0<q<]1,

1
2

X(O) = Iqx(g)/ x(l) = Iqx(g)/
wheref=y=1/4,a=k=1,b=p=q=E=1/2,a=3,n=1/3,0=2/3, A=1/8,and

|x|
1+ |x|

1 |x|
T +3)2 1+

flt) =1 (sint+ + ), g(t,x)

1
4 + 12)?

IA

With the given data, it is found that L1 = 1/8, Ly = 1/9 as |f(t,x) — f(t,y)| < %Ix -yl g, x) — g(t, y)l

1

§|x — yl, Moreover, 51 = —0.925926, 0, = 0.0461128, 63 = —0.851852, 04 = —0.890325, A = —0.863656, a1 =
0.0445466, ap = 1.12549,k, = 241227, k3 = 2.41376, k4 = 2.18964 and Q = 0.726099 < 1. Clearly
L = max{Li,L,} = 1/8 . Thus all the assumptions of Theorem 4.1 are satisfied. Hence, by the conclusion of

Theorem 4.1, the problem (30) has a unique solution.

Acknowledgment. The authors are grateful to the anonymous referee for his/her useful comments.
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