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Abstract. In this paper, first we give some necessary and sufficient conditions for multiplication conditional
type operators between two Lp-spaces to have closed range. Then we investigate Fredholm ones when the
underlying measure space is non-atomic. Finally we give some examples.

1. Introduction and Preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space. For any σ-finite subalgebraA ⊆ Σ with 1 ≤ p ≤ ∞, the
Lp-space Lp(X,A, µ|A) is abbreviated by Lp(A), and its norm is denoted by ‖.‖p. All comparisons between
two functions or two sets are to be interpreted as holding up to a µ-null set. The support of a measurable
function f is defined as S( f ) = {x ∈ X; f (x) , 0}. We denote the vector space of all equivalence classes of
almost everywhere finite valued measurable functions on X by L0(Σ).

For a σ-finite subalgebraA ⊆ Σ, the conditional expectation operator associated withA is the mapping
f → EA f , defined for all non-negative function f as well as for all f ∈ Lp(Σ), 1 ≤ p ≤ ∞, where EA f , by the
Radon-Nikodym theorem, is the uniqueA-measurable function satisfying∫

A
f dµ =

∫
A

EA f dµ, ∀A ∈ A.

As an operator on Lp(Σ), EA is an idempotent and EA(Lp(Σ)) = Lp(A). If there is no possibility of confusion
we write E( f ) in place of EA( f ). Let f ∈ L0(Σ). Then f is said to be conditionable with respect to E if
f ∈ D(E) := {1 ∈ L0(Σ) : E(|1|) ∈ L0(A)}. Throughout this paper we take u and w inD(E). This operator will
play a major role in our discussion and we list here some of its useful properties:

• If 1 isA-measurable, then E( f1) = E( f )1.
• |E( f )|p ≤ E(| f |p).
• If f ≥ 0, then E( f ) ≥ 0; if f > 0, then E( f ) > 0.
• |E( f1)| ≤ E(| f |p)|

1
p E(|1|p

′

)|
1
p′ , where 1

p + 1
p′ = 1 (Hölder inequality).

• For each f ≥ 0, S(E( f )) is the smallestA-measurable set such that S( f ) ⊆ S(E( f )).

2010 Mathematics Subject Classification. Primary 47B38; Secondary 47B37
Keywords. Conditional expectation, multiplication operators, Fredholm operators, closed range operator.
Received: 07 June 2015; Accepted: 28 September 2015
Communicated by Dragan S. Djordjević
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A detailed discussion and verification of most of these properties may be found in [11]. We recall that
an A-atom of the measure µ is an element A ∈ A with µ(A) > 0 such that for each F ∈ A, if F ⊆ A then
either µ(F) = 0 or µ(F) = µ(A). A measure space (X,Σ, µ) with no atoms is called non-atomic measure
space. It is well-known fact that every σ-finite measure space (X,A, µ|A ) can be partitioned uniquely as
X =

(⋃
n∈N An

)
∪B, where {An}n∈N is a countable collection of pairwise disjointA-atoms and B, being disjoint

from each An, is non-atomic (see [14]).

Compositions of conditional expectation operators and multiplication operators appear often in the
study of other operators such as multiplication operators and weighted composition operators. Specifi-
cally, in [10], S.-T. C. Moy characterized all operators on Lp of the form f → E( f1) for 1 in Lq with E(|1|)
bounded. Eleven years later, R. G. Douglas, [5], analyzed positive projections on L1 and many of his charac-
terizations are in terms of combinations of multiplications and conditional expectations. P.G. Dodds, C.B.
Huijsmans and B. De Pagter, [1], extended these characterizations to the setting of function ideals and vector
lattices. J. Herron presented some assertions about the operator EMu on Lp spaces in [7]. Also, some results
about multiplication conditional type operators can be found in [6, 8]. In [2–4] we investigated some classic
properties of multiplication conditional type operators MwEMu on Lp spaces. In this paper, some necessary
and sufficient conditions for closeness of range of multiplication conditional type operators between two Lp-
spaces are given. Also, Fredholm ones are characterized when the underlying measure space is non-atomic.

Now we give a definition of multiplication conditional type operators on Lp-spaces.

Definition 1.1. Let (X,Σ, µ) be a σ-finite measure space and let A be a σ-subalgebra of Σ such that
(X,A, µA) is also σ-finite. Let E be the conditional expectation operator relative to A. If 1 ≤ p, q < ∞ and
u,w ∈ L0(Σ) (the spaces of Σ-measurable functions on X) such that u f is conditionable and wE(u f ) ∈ Lq(Σ)
for all f ∈ D ⊆ Lp(Σ), whereD is a linear subspace, then the corresponding multiplication conditional type
operator is the linear transformation MwEMu : D→ Lq(Σ) defined by f → wE(u f ).

The results of [1] state that our results are valid for a large class of linear operators, since for finite
measure space (X,Σ, µ), we have L∞(Σ) ⊆ Lp(Σ) ⊆ L1(Σ) and Lp(Σ) is an order ideal of measurable functions
on (X,Σ, µ).

2. Closed Range and Fredholm Multiplication Conditional Type Operators

In this section first we describe closed range multiplication conditional type operators MwEMu between
two Lp-spaces. Let 1 ≤ p, q < ∞ and f ∈ Lp such that wE(u f ) ∈ Lq. Then it is easily seen that

‖MwEMu( f )‖q = ‖EMv( f )‖q,

where v = u(E(|w|q))
1
q . Thus without loss of generality we can consider the operator EMv instead of MwEMu

in our discussion about closedness of range. Also, we recall that for any operator T on a Banach space X,
N(T) = {x ∈ X : T(x) = 0} and R(T) = {T(x) : x ∈ X} are called null space and range of T, respectively. Now
in the next theorem we consider multiplication conditional type operator EMu on Lp.
Theorem 2.1. Let 1 < p < ∞ and let p′ be conjugate component to p. Then

(a) If the operator EMu from Lp(Σ) into itself is injective and has closed range, then there exists δ > 0
such that v = (E(|u|p′ ))

1
p′ ≥ δ a.e., on S, where S = S(v).

(b) If S(E(u)) = S(E(|u|p′ )) and there exists δ > 0 such that E(u) ≥ δ a.e. On S = S(E(|u|p′ )), then the
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operator EMu has closed range on Lp(Σ).

Proof. (a) Let f ∈ Lp(Σ). Then

‖EMu f ‖pp =

∫
X
|E(u f )|pdµ

≤

∫
X

(E(|u|p
′

))
p
p′ E(| f |p)dµ

=

∫
X

vp
| f |pdµ = ‖Mv f ‖pp.

Since EMu is injective and has closed range, then there exists δ > 0 such that for f ∈ Lp(Σ), ‖EMu f ‖p ≥
δ‖ f ‖p. Thus

‖Mv f ‖Lp(S) = ‖Mv f ‖Lp(X)

≥ ‖EMu f ‖p
≥ δ‖ f ‖Lp(X)

≥ δ‖ f ‖Lp(S)

and so ‖Mv f ‖Lp(S) ≥ δ‖ f ‖Lp(S), for all f ∈ Lp(Σ). This mean’s that Mv has closed range on Lp(X). Thus there
exists β > 0 such that v ≥ β a.e. on S.

(b) Let fn, 1 ∈ Lp(Σ) such that ‖E(u fn)− 1‖p → 0, when n→∞. Since E(u) ≥ δ a.e., on S, then 1
E(u) ≤

1
δ a.e.,

on S. This implies that 1

E(u)χS ∈ Lp(S) and E(u 1

E(u)χS) = 1 ∈ Lp(X,A, µ). Hence

‖E(u fn) − E(u
1

E(u)
χS)‖pp =

∫
X
|E(u fn) − E(u

1

E(u)
)χS|

pdµ

=

∫
S
|E(u fn) − E(u

1

E(u)
)χS|

pdµ

=

∫
S
|E(u fn) − 1|pdµ

≤ ‖E(u fn) − 1‖pp → 0,

when n→∞. So the operator EMu has closed range on Lp(Σ).
If u ≥ 0, then easily we have S(E(u)) = S(E(|u|p′ )). Hence in the part (b) of Theorem 2.1, the condition
E(u) ≥ δ on S, is a sufficient condition for closedness of range of EMu. In the next theorem we consider
bounded operator EMu : Lp

→ Lq, when 1 < q < p < ∞.

Theorem 2.2. Let 1 < q < p < ∞ and let p′, q′ be conjugate component to p and q respectively. Then
(a) If the operator EMu from Lp(Σ) into Lq(Σ) is injective and has closed range, then we have

1. v = 0 a.e. On B and the set {n ∈N : v(An) , 0} is finite.

2. Mv from Lp(Σ) into Lq(Σ) has finite rank.

Where v = (E|u|q′ )
1
q′ and S = {x ∈ X : v(x) , 0}.

(b) Let

1. The operator EMu has closed range.
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2. The operator EMu has finite rank.

3. v = 0 a.e. On B and the set Nv = {n ∈N : v(An) , 0} is finite.

4. E(u) = 0 a.e. On B and the set NN(u) = {n ∈N : E(u)(An) , 0} is finite.

Then
(3)→ (2)→ (1)→ (4).

(c) If u ≥ 0, then in part (b) the cases (1), (2), (3) and (4) are equivalent.

Proof. (a) Let f ∈ Lp(Σ). Then

‖EMu f ‖qq =

∫
X
|E(u f )|qdµ

≤

∫
X

(E(|u|q
′

))
q
q′ E(| f |q)dµ

=

∫
X

vq
| f |qdµ

= ‖Mv f ‖qq.

Since EMu is injective and closed range, then there exists δ > 0 such that for f ∈ Lp(Σ), ‖EMu f ‖q ≥ δ‖ f ‖p.
Thus ‖Mv f ‖q ≥ ‖EMu f ‖p ≥ δ‖ f ‖p and so ‖Mv f ‖q ≥ δ‖ f ‖p, for all f ∈ Lp(Σ). This mean’s that Mv from Lp(Σ)
into Lq(Σ) has closed range. Thus by [13] we have v = 0 a.e. On B and the set {n ∈ N : v(An) , 0} is finite.
Also, Mv from Lp(Σ) into Lq(Σ) has finite rank.

(b) If µ(S) = 0, then EMu is the zero operator. So we assume that µ(S) > 0. (3) → (2). If (3) holds, then
S = ∪n∈Nv An = ∪k

i=1Ani for some integer k > 0. Hence

EMu(Lp(X,Σ, µ)) ⊆ Lp(S,A, µ),

since for any f ∈ Lp(X,Σ, µ), σ(E(u f )) ⊆ S. This implies that EMu has finite rank.

(2)→ (1) is trivial.

(1) → (4). Suppose that EMu has closed range. First we show that E(u) = 0 a.e. On B. Suppose on the
contrary that µ({x ∈ B : E(u)(x) , 0}) > 0. Then we have µ({x ∈ B : E(u)(x) > δ}) > 0 for some δ > 0. Set
G = {x ∈ B : E(u)(x) > δ} and define a function v on G by v(x) = 1

E(u)(x) for x ∈ G. For every f ∈ Lp(G) and
1 ∈ Lq(G),

MvEMu( f ) = v(E(u)|G) f = f , ME(u)|G Mv(1) = 1.

Thus Mv is the inverse operator of EMu|Lp(G) = ME(u)|G and EMu|Lp(G) = ME(u)|G is a bounded operator from
Lp(G) into Lq(G) that has closed rang.

For any E ∈ AG = {A ∩ G : A ∈ A} with µ(E) < ∞, put f = 1
E(u)(x)χE(x). Then f ∈ Lp(G). More-

over, ME(u) f = χE and so χE ∈ ME(u)(Lp(G)). Hence, ME(u)(Lp(G)) contains all linear combinations of such
χE’s. Since ME(u) has closed range and all linear combinations of such χE’s are dense in Lq(G), then
ME(u)(Lp(G)) = Lq(G). This implies that Mv maps Lq(G) into Lp(G), that is Mv is bounded from Lq(G) into
Lp(G). Since G is non-atomic, by theorem 1.4 of [13] we have v = 0 a.e on G. But this is a contradiction.
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Now, we show that NE(u) is finite. Since µ(S) > 0, it follows that NE(u) , ∅. Put w(x) = 1
E(u)(x) for x ∈ S and

consider the operator Mw. put f = 1
E(u)(x)χAn (x), then f ∈ Lp(G), by the same method of preceding paragraph

we see that Mw maps Lq(S) into Lp(S) that is Mw is bounded from Lq(S) into Lp(S). So by theorem 1.4 of [13]
we have

b = sup
n∈NE(u)

1
|E(u)(An)|rµ(An)

= sup
n∈NE(u)

|w(An)|r

µ(An)
< ∞,

where 1
p + 1

r = 1
q . Since NE(u) , ∅, then b > 0 and |E(u)(An)|rµ(An) ≥ 1

b . While Theorem 1.3 of [13] says
E(u) ∈ Lr(X,A, µ). So,

Σn∈NE(u)

1
b
≤ ‖E(u)‖rr < ∞.

This implies that NE(u) is finite.
(c) If u ≥ 0, then by some properties of E we get that S(E(u)) = S(v) and so Nv = NE(u). So (4) → (3) holds.
This completes the proof.

It is clear that (by Theorem 2.2), there is no non-zero closed range multiplication conditional type oper-
ators EMu with u ≥ 0 from Lp into Lq, when 1 ≤ q < p < ∞ and the underlying measure space is non-atomic.
In the next theorem we consider bounded operator EMu : Lp

→ Lq, when 1 < p < q < ∞.

Theorem 2.3. Let 1 < p < q < ∞ and let p′, q′ be conjugate component to p and q respectively.

(a) If the operator EMu from Lp(Σ) into Lq(Σ) is injective and has closed range, then

1. The set {n ∈N : v(An) , 0} is finite.

2. Mv from Lp(Σ) into Lq(Σ) has finite rank,

where v = (E|u|q′ )
1
q′ and S = {x ∈ X : v(x) , 0}.

(b) Let

1. The operator EMu has closed range.

2. The operator EMu has finite rank.

3. The set Nv = {n ∈N : v(An) , 0} is finite.

4. The set NN(u) = {n ∈N : E(u)(An) , 0} is finite.

Then
(3)→ (2)→ (1)→ (4).

(c) If u ≥ 0, then in part (b) the cases (1), (2), (3) and (4) are equivalent.

Proof. (a) Let f ∈ Lp(Σ). Then ‖EMu f ‖qq ≤ ‖Mv f ‖qq.
Since T is injective and closed range, then there exists δ > 0 such that for f ∈ Lp(Σ), ‖EMu f ‖q ≥ δ‖ f ‖p.

Thus ‖Mv f ‖q ≥ ‖EMu f ‖p ≥ δ‖ f ‖p and so ‖Mv f ‖q ≥ δ‖ f ‖p, for all f ∈ Lp(Σ). This mean’s that Mv from Lp(Σ)
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into Lq(Σ) has closed range. Thus by [13] the set {n ∈N : v(An) , 0} is finite. Also, Mv from Lp(Σ) into Lq(Σ)
has finite rank.

(b) Theorem 2.3 of [4] tells us that v = 0 a.e on B and so E(u) = 0 a.e on B. By the same method that
we used in last theorem, it is easy to see that (3) → (2) → (1). Now, we show that (1) → (4). Suppose that
NN(u) , ∅. If we put S = σ(E(u)), then we can write S = ∪n∈NE(u) An. Define a function w on S by w(x) = 1

E(u)(x)
for x ∈ S. By the same method that is used in the proof of last Lp(S). Hence by Theorem 1.3 of [13] we have
w ∈ Ls(A), where 1

q + 1
s = 1

p . While Theorem 1.4 of [13] says that b = supn∈NE(u)

|E(u)(An)|s

µ(An) < ∞. Since NN(u) , ∅

implies b > 0 and since |w(An)|sµ(An) =
µ(An)
|E(u)(An)|s ≥

1
b for all n ∈ NN(u), it follows that

Σn∈NE(u)

1
b
≤ ‖w‖ss < ∞

this implies that NE(u) is finite.

In the sequel we consider the function u is A-measurable. In this case E(u) = u and EMu = Mu |Lp(A).
Therefore we get the following results.

Corollary 2.4. Let 1 < p < ∞ and let p′ be conjugate component to p. If u ∈ L0(A) and EMu is injective
on Lp(Σ). Then the operator EMu has closed range if and only if there exists δ > 0 such that |u| ≥ δ a.e., on
S. Where S = {x ∈ X : u(x) , 0}.

Corollary 2.5. Let 1 < q < p < ∞ and let p′, q′ be conjugate component to p and q respectively. If
u ∈ L0(A) and EMu is injective from Lp(Σ) into Lq(Σ). Then the followings are equivalent:

1. The operator Mu has closed range.

2. The operator Mu has finite rank.

3. u = 0 a.e. on B and the set Nu = {n ∈N : u(An) , 0} is finite.

Corollary 2.6. Let 1 < p < q < ∞ and let p′, q′ be conjugate component to p and q respectively. If
u ∈ L0(A) and EMu is injective from Lp(Σ) into Lq(Σ), then the followings are equivalent:

1. The operator EMu has closed range.

2. The operator EMu has finite rank.

3. The set Nu = {n ∈N : u(An) , 0} is finite.

If the multiplication conditional type operator EMu is bounded from Lp(Σ) onto Lp(A), thenµ(Z(E(|u|p′ )) =
{x ∈ X : E(|u|p′ )(x) = 0}) = 0. Suppose that F ⊆ Z(E(|u|p′ )) with F ∈ A and µ(F) < ∞. Then χF ∈ Lp(A) =
R(EMu) and there exists f ∈ Lp(Σ) such that EMu f = χF. So by conditional-type Hölder inequality we have

µ(F) =

∫
F
|E(u. f )|pdµ

≤

∫
F
(E(|u|p

′

)
p
p′ .| f |pdµ = 0.
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Hence µ(Z(E(|u|p′ ))) = 0.
In the next theorem we characterize Fredholm multiplication conditional type operators on Lp-spaces

when the underlying measure space is non-atomic.

Theorem 2.7. Let 1 < p < ∞ and (X,Σ, µ) be a non-atomic measure space. If EMu is a bounded operator
from Lp(Σ) into Lp(A), then EMu is Fredholm if and only if EMu is invertible.

Proof. Let EMu be Fredholm, then EMu has closed range. First we show that EMu is surjective. Suppose
on the contrary. Let f0 ∈ Lp(A) \ R(EMu). Then there exists a bounded linear functional L10 on Lp(A) for
some 10 ∈ Lp′ (A) (p−1 + p′−1 = 1), which is defined as

L10 ( f ) =

∫
X

f 1̄0dµ, f ∈ Lp(A),

such that
L10 ( f0) = 1, L10 (R(EMu)) = 0.

Then there exists a positive constant δ such that

µ(Eδ = {x ∈ X : f0(x)10(x) > δ}) > 0.

Since the underlying measure space is non-atomic, then we can find a disjoint sequences {En}n such that
En ⊆ Eδ and 0 < µ(En) < ∞. Let 1n = 10.χEn . Clearly 1n ∈ Lp′ (A) and for every f ∈ Lp(A) we have∫

X
f̄ (EMu)∗(1n)dµ =

∫
X

f̄ ūE(1n)dµ

=

∫
X
10E(ū f̄ .χEn )dµ

= L10 (EMu f ) = 0.

This implies that 1n ∈ N((EMu)∗) and so N((EMu)∗) is infinite dimensional. Therefore the codimension
of R(EMu) is not finite. This is a contradiction, therefore T is surjective. Let 0 , f ∈ Lp(Σ) such that
EMu( f ) = 0. Since S( f ) ⊆ S(E(| f |)), µ(S( f )) > 0 and S(E(| f |)) is A-measurable, then there exists A ∈ A with
0 < µ(A) < ∞ and µ(S( f ) ∩ A) > 0. Also since the underlying measure space is non-atomic, we can find a
disjoint sequence ofA-measurable subsets {An}n of A with µ(S( f ) ∩ An) > 0. Clearly fn = f .χS( f )∩An ∈ Lp(Σ)
and EMu( fn) = χAn .EMu( f ) = 0. This means N(EMu) is infinite dimensional, that is a contradiction. Thus
EMu should be injective and so is invertible. The converse is obvious.

Finally, in the next proposition we show that if there exists a non-zero function in the null space of EMu
such that it’s support is non-atomic set, then EMu can not be Fredholm.

Proposition 2.8. Let EMu be bounded from Lp(Σ) into Lq(Σ). If N(EMu) ∩ Lp(B) , ∅, then EMu can not
be Fredholm.

Proof. By the methods that we used in the proof of Theorem 2.7, it is easy to prove.
In the sequel we present some examples of conditional expectations and corresponding multiplication

conditional type operators.

Examples. (a) This example deals with a weighted conditional expectation operator which is in the form
of an integral operator. Let X = (0, 1] × (0, 1], dµ = dxdy, Σ the Lebesgue measurable subsets of X and letA
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be the σ-algebra generated by the family of the sets of the form A× (0, 1] where A is a Lebesgue measurable

subset of (0, 1]. For f in L2((0, 1]2), we have (EA f )(x, y) =
∫ 1

0 f (x, t)dt. Then for every non-zero measurable

function u such that
∫ 1

0 u(t)dt , 0, the by Theorem 2.2 the operator EMu has not closed range as an operator
from Lp(X) into Lq(X) when 1 ≤ q < p < ∞.

Let X = (0,∞) × (0,∞) andA be the σ-algebra generated by the family of the sets of the form A × (0,∞)
where A is a Lebesgue measurable subset of (0,∞). Then

T f (x, y) = (EAMu( f ))(x, y) =

∫
∞

0
u(x, t) f (x, t)dt.

Hence for every function f : (0,∞)→ R we can define the function f ′ on X as f ′(x, y) = f (y). So,

T f (x, y) = (EAMu( f ))(x, y)

= (EAMu( f ′))(x, y)

=

∫
∞

0
u(x, t) f (t)dt

= T′( f )(x).

This implies that T is an integral transform and specially by taking u(x, y) = e−xy we obtain one of the
most important classical integral transforms that is widely used in analysis, namely the Laplace integral
transform. We refer to [9] for some applications of integral transforms, especially Laplace integral trans-
forms.

(b) Let X = [−1, 1], dµ = 1
2 dx andA = 〈{(−a, a) : 0 ≤ a ≤ 1}〉 (σ-algebra generated by symmetric intervals).

Then

EA( f )(x) =
f (x) + f (−x)

2
, x ∈ X,

whenever EA( f ) is defined. If u(x) = x2 for −1 ≤ 1
2 and u(x) = 0 elsewhere. Then the operator EMu is not

Fredholm on Lp(Σ).
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