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Abstract. In this paper, we define and investigate the normalized Laplacian Estrada index of a graph.
Some bounds for the normalized Laplacian Estrada index of a graph in term of its vertex number, maximum
(or minimum) degree are obtained, some inequalities between the normalized Laplacian Estrada and the
normalized Laplacian energy are also obtained.

1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). Its order is |V(G)|, denoted by
n, and its size is |E(G)|, denoted by m. For v ∈ V(G), let d(v) be the degree of v. The maximum and minimum
degrees of G are denoted by ∆ and δ, respectively.

Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively.
The Laplacian and normalized Laplacian matrices of G are defined as L(G) = D(G) − A(G) and L(G) =
D(G)−1/2L(G)D(G)−1/2, respectively. The eigenvalues of A(G), L(G) and L(G) are called the eigenvalues, the
Laplacian eigenvalues and the normalized Laplacian eigenvalues of G, denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥
λn(G), µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) and γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G), respectively.

When only one graph G is under consideration, we sometimes use λi, µi and γi instead of λi(G), µi(G)
and γi(G) for i = 1, 2, . . . ,n, respectively. The basic properties on the eigenvalues, the Laplacian eigenvalues
and the normalized Laplacian eigenvalues of G can be founded in [5], [2]and [4], respectively.

The Estrada index of the graph G was defined in [11] as

EE = EE(G) =

n∑
i=1

eλi (1)

motivated by its chemical applications, proposed earlier by Ernesto Estrada [7, 8]. The mathematical
properties of the Estrada index have been studied in a number of recent works [6, 10, 11, 14].
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The Laplacian Estrada index of the graph G was defined in [12] as

LEE = LEE(G) =

n∑
i=1

e(µi−2m/n). (2)

Remark 1.1. Independently of [12], another variant of the Laplacian Estrada index was put forward in [9],
defined as

LEE[9] = LEE[9](G) =

n∑
i=1

eµi .

Evidently, LEE[9](G) = e2m/nLEE(G), and therefore results obtained for LEE can be immediately re-stated for
LEE[9] and vice versa. Some basic properties of the Laplacian Estrada index were determined in [9, 12, 13, 15–
17]. In particular, the appropriate relations between the Laplacian Estrada index and the Laplacian energy,
the first Zagreb index, the Estrada index of the graph and the Estrada index of its line graph were established
in [9, 12, 15, 16].

In full analogy with (1) and (2), we now define the normalized Laplacian Estrada index of a graph as
follows.

Definition. Let G be a connected graph of order n. The normalized Laplacian Estrada index of G, denoted
by NEE(G), is equal to

NEE = NEE(G) =

n∑
i=1

e(γi−1). (3)

Remark 1.2. Note that if G is a k-regular graph, then γi =
µi

k for i = 1, 2, . . . ,n (see [4]). Hence we have
ekNEE = LEE for any k-regular graph. Therefore, in the case of G is regular, results obtained for LEE can be
immediately re-stated for NEE.

In this paper, we investigate the normalized Laplacian Estrada index of G, and get some lower (or
upper) bounds for the normalized Laplacian Estrada index of G in term of its vertex number, maximum (or
minimum) degree, and also obtained some inequalities between the normalized Laplacian Estrada index
and the normalized Laplacian energy.

At the outset we note that

NEE = NEE(G) =

∞∑
k=0

1
k!

n∑
i=1

(γi − 1)k,

where the standard notational convention that 00 = 1 is used.

2. Preliminaries

Firstly, we select some basic properties on the normalized Laplacian eigenvalues of G which will be
used in this paper.

Lemma 2.1 ([4]). Let G be a connected graph of order n ≥ 2.

(1)
n∑

i=1
γi = n and

n∑
i=1
γ2

i = n + 2
∑

uv∈E(G)

1
d(u)d(v) .

(2) γ1(G) ≥ n
n−1 with equality holding if and only if G is a complete graph.

(3) γ1(G) = 2 with equality holding if and only if G is a bipartite graph.
(4) For each 1 ≤ i ≤ n, we have γi ∈ [0, 2] and γn = 0.

Lemma 2.2 ([3]). Let G be a connected graph of order n ≥ 3. Then the following statements hold.
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(1) G has exactly two distinct normalized Laplacian eigenvalues if and only if G is the complete graph.
(2) G has an normalized Laplacian eigenvalue with multiplicity exactly n − 2 if and only if G is a complete bipartite

graph.

Recall that the general Randić index of a graph G is defined in [1] as

Rα = Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α ,

where the summation is over all edges uv in G, and α , 0 is a fixed real number.
The general Randić index when α = 1 is

R−1 = R−1(G) =
∑

uv∈E(G)

1
d(u)d(v)

.

Combing the form of R−1(G) and Lemma 2.1, we have
n∑

i=1
γ2

i = n + 2R−1 holds for any graph G of order n.

Some properties on R−1(G) can be founded in [3]. In particular, the following upper and lower bounds on
R−1(G) in terms of maximum and minimum degrees are obtained.

Lemma 2.3 ([3]). Let G be a connected graph of order n with maximum degree ∆ and minimum degree δ. Then

n
2∆
≤ R−1(G) ≤

n
2δ
.

Equality occurs in both bounds if and only if G is a regular graph.

3. The main results

In this section, we deduce some bounds for the normalized Laplacian Estrada index of a (bipartite) graph
in term of its vertex number, maximum (or minimum) degree, respectively. Some inequalities between NEE
and NE are also obtained.

Theorem 3.1. Let G be a connected graph of order n. Then

NEE ≥ (n − 1)e1/(n−1) + e−1. (4)

Moreover, the equality holds if and only if G � Kn.

Proof. Recall that γn = 0. Directly from (3), we have

NEE = e(γ1−1) + e(γ2−1) + · · · + e(γn−1−1) + e−1

≥ e(γ1−1) + (n − 2)

n−1∏
i=2

e(γi−1)


1/(n−2)

+ e−1

= e(γ1−1) + (n − 2)e(2−γ1)/(n−2) + e−1 as
n∑

i=1

(γi − 1) = 0.

Let f (x) := ex + (n − 2)e(1−x)/(n−2) + e−1. Then we have f ′(x) = ex
− e(1−x)/(n−2)

≥ 0 for x ≥ 1
n−1 . Hence, f (x) is an

increasing function for x ≥ 1
n−1 . On the other hand, by Lemma 2.1, we have γ1 − 1 ≥ 1

n−1 . Therefore, we get

NEE ≥ f (γ1 − 1) ≥ f (
n

n − 1
− 1) = (n − 1)e1/(n−1) + e−1.
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Suppose that the equality in (4) holds. Then all inequalities in the above argument must be equalities,
i.e., γ1 = n

n−1 and γ2 = · · · = γn−1. Hence by Lemmas 2.1 and 2.2, we have G � Kn.
Conversely, it is easy to check that the equality in (4) holds for Kn, which completes the proof. �

Moreover, if G is a bipartite graph, then γ1 = 2 by Lemma 2.1. Using the same way as in Theorem 3.1,
we then have the following bound.

Theorem 3.2. Let G be a bipartite graph of order n. Then

NEE ≥ e + (n − 2) + e−1.

Moreover, the equality holds if and only if G is a complete bipartite graph.

Remark 3.3. In fact, Theorem 3.1 concludes that among all graphs of order n, the complete graph Kn with
minimum normalized Laplacian Estrada index; and Theorem 3.2 concludes that among all bipartite graphs
of order n, the complete bipartite graphs with minimum normalized Laplacian Estrada index.

Theorem 3.4. Let G be a bipartite graph of order n with maximum degree ∆ and minimum degree δ. Then the
normalized Laplacian Estrada index of G is bounded as

e−1 + e +

√
(n − 2)2 +

2(n − 2∆)
∆

≤ NEE ≤ e−1 + e + (n − 3) −

√
n − 2δ
δ

+ e
√

n−2δ
δ . (5)

Equality occurs in both bounds if and only if G is a complete bipartite regular graph.

Proof. Note that by Lemma 2.1, γn(G) = 0 and γ1(G) = 2 for any bipartite graph G. Directly from (3), we get

(NEE − e−1
− e)2 =

n−1∑
i=2

e2(γi−1) + 2
∑

2≤i< j≤n−1

e(γi−1)e(γ j−1). (6)

In view of the inequality between the arithmetic and geometric means,

2
∑

2≤i< j≤n−1

e(γi−1)e(γ j−1)
≥ (n − 2)(n − 3)

 ∏
2≤i< j≤n−1

e(γi−1)e(γ j−1)


2/[(n−2)(n−3)]

= (n − 2)(n − 3)


n−1∏

i=2

e(γi−1)


n−3

2/[(n−2)(n−3)]

= (n − 2)(n − 3), since
n−1∑
i=2

(γi − 1) = 0.

(7)

Note that
n−1∑
i=2

(γi − 1)0 = n − 2,
n−1∑
i=2

(γi − 1) = 0 and
n−1∑
i=2

(γi − 1)2 = 2R−1 − 2. By means of a power-series

expansion and Lemma 2.3, we get
n−1∑
i=2

e2(γi−1) =

∞∑
k≥0

1
k!

n−1∑
i=2

[2(γi − 1)]k

= n − 2 + 4(R−1 − 1) +

∞∑
k≥3

1
k!

n−1∑
i=2

[2(γi − 1)]k

≥ n − 2 + 4(R−1 − 1) + t
∞∑

k≥3

1
k!

n−1∑
i=2

(γi − 1)k for t ∈ [0, 4]

= (1 − t)(n − 2) + (4 − t)(R−1 − 1) + t(NEE − e−1
− e)

≥ (1 − t)(n − 2) + (4 − t)
( n

2∆
− 1

)
+ t(NEE − e−1

− e).

(8)
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By substituting (7) and (8) back into (6), and solving for NEE − e−1
− e, we have

NEE − e−1
− e ≥

t
2

+

√
[t − 2(n − 2)]2 +

2(n−2∆)
∆ (4 − t)

2
.

It is elementary to show that for n ≥ 2 and ∆ ≤ d n
2 e the function

f (x) :=
x
2

+

√
[x − 2(n − 2)]2 +

2(n−2∆)
∆ (4 − x)

2

monotonically decreases in the interval [0, 4]. Consequently, the best lower bound for NEE − e−1
− e is

attained for t = 0. Then we arrive at the first half of Theorem 3.4.
Starting from the following inequality, we get

NEE − e−1
− e = n − 2 +

∞∑
k≥2

1
k!

n−1∑
i=2

(γi − 1)k

≤ n − 2 +

∞∑
k≥2

1
k!

n−1∑
i=2

|γi − 1|k

= n − 2 +

∞∑
k≥2

1
k!

n−1∑
i=2

[(γi − 1)2]k/2

≤ n − 2 +

∞∑
k≥2

1
k!

n−1∑
i=2

(γi − 1)2


k/2

= n − 2 +

∞∑
k≥2

(2R−1 − 2)k/2

k!

= (n − 3) −
√

2R−1 − 2 +

∞∑
k≥0

(√
2R−1 − 2

)k

k!

= (n − 3) −
√

2R−1 − 2 + e
√

2R−1−2.

It is elementary to show that the function 1(x) := ex
− x monotonically increases in the interval [0,+∞].

Consequently, by Lemma 2.3, the best lower bound for NEE − e−1
− e is attained for R−1 = n

2δ . This directly
leads to the right-hand side inequality in (5).

From the derivation of (5) and Lemmas 2.1 and 2.3 it is evident that equality will be attained if and only
if γ2(G) = · · · = γn−1(G) = 1 and G is regular. By Lemma 2.2, this happens only in the case of G is complete
bipartite and regular . The proof now is completed. �

Recall that for a general graph G, we have γ1(G) ≤ 2 and γn(G) = 0 by Lemma 2.1. If we consider

NEE− e−1 =
n−1∑
i=1

e(γi−1) in the same way as in Theorem 3.4, we then have the following bounds for the general

graphs.

Theorem 3.5. Let G be a graph of order n with maximum degree ∆ and minimum degree δ. Then the normalized
Laplacian Estrada index of G is bounded as

e−1 +

√
(n − 1)[1 + (n − 2)e2/(n−1)] +

2n
∆
< NEE ≤ e−1 + n − 1 −

√
n − δ
δ

+ e
√

n−δ
δ .

Moreover, the right equality holds if and only if G is a complete bipartite regular graph.
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Recall that the normalized Laplacian energy of a graph G is defined in [3] as

NE = NE(G) =

n∑
i=1

|γi − 1|. (9)

Some properties on NE(G) can be founded in [3]. In what follows, we give some inequalities between NEE
and NE.

Theorem 3.6. Let G be a bipartite graph of order n with minimum degree δ. Then

NEE −NE ≤ (n − 5) + e−1 + e −

√
n − 2δ
δ

+ e
√

n−2δ
δ (10)

or

NEE + NE ≤ (n − 1) + e−1 + e + e(NE−2). (11)

Equality (10) or (11) is attained if and only if G is a complete bipartite regular graph.

Proof. Note that γn = 0 and γ1 = 2. Then we get

NEE − e−1
− e = (n − 2) +

∞∑
k≥1

1
k!

n−1∑
i=2

(γi − 1)k
≤ (n − 2) +

∞∑
k≥1

1
k!

n−1∑
i=2

|γi − 1|k.

Taking into account the definition of graph normalized Laplacian energy (9), we have

NEE − e−1
− e ≤ (n − 2) + (NE − 2) +

∞∑
k≥2

1
k!

n−1∑
i=2

|γi − 1|k,

which, as in Theorem 3.4, leads to

NEE −NE ≤ (n − 4) + e−1 + e +

∞∑
k≥2

1
k!

n−1∑
i=2

|γi − 1|k

≤ (n − 5) + e−1 + e −
√

2R−1 − 2 + e
√

2R−1−2

≤ (n − 5) + e−1 + e −

√
n − 2δ
δ

+ e
√

n−2δ
δ .

The equality holds if and only if G is a complete bipartite regular graph.
Another route to connect NEE and NE, is the following:

NEE − e−1
− e = (n − 2) +

∞∑
k≥2

1
k!

n−1∑
i=2

(γi − 1)k

≤ (n − 2) +

∞∑
k≥2

1
k!

n−1∑
i=2

|γi − 1|k

≤ (n − 2) +

∞∑
k≥2

[∑n−1
i=2 |γi − 1|

]k

k!

= (n − 2) − 1 − (NE − 2) +

∞∑
k≥0

(NE − 2)k

k!

= (n − 1) −NE + e(NE−2)
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implying
NEE + NE ≤ n − 1 + e−1 + e + e(NE−2).

Also on this formula equality occurs if and only if G is a complete bipartite regular graph. This completes
the proof. �

Similarly, if we consider NEE − e−1 =
n−1∑
i=1

e(γi−1) in the same way as in Theorem 3.6, we then have the

following inequalities for the general graphs.

Theorem 3.7. Let G be a graph of order n with minimum degree δ. Then

NEE −NE ≤ (n − 3) + e−1
−

√
n − δ
δ

+ e
√

n−δ
δ (12)

or

NEE + NE ≤ n + e−1 + e(NE−1). (13)

Equality (12) or (13) is attained if and only if G is a complete bipartite regular graph.
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