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Abstract. In the context of an infinite locally finite weighted graph, we give a necessary and sufficient
condition for semi-Fredholmness of the Gauss-Bonnet operator. This result is a discrete version of the
theorem of Gilles Carron in the continuous case [5]. In addition, using a criterion of Anghel [2], we give
a sufficient condition to have an operator of Gauss-Bonnet with closed range. Finally, this work can be
considered as an extension of the work of Colette Anné and Nabila Torki-Hamza [3].

1. Introduction

Dirac type operators have become of central importance in many branches of mathematics such as
PDE’s, differential geometry and topology (see [4], [7], [12]..), since the introduction in 1928 by the physicist
Paul Dirac of a first-order linear differential operator whose square is the Laplacian operator. In particular,
this paper focuses on the conditions to have semi-Fredholmness of the discrete Gauss-Bonnet operator
needed to approach the Hodge decomposition theorem [3]. In fact, we present a discrete version of the
work of G. Carron [5], which defines a new concept “non-parabolicity at infinity” to have the Gauss-Bonnet
operator with closed range. Indeed, G. Carron’s condition is quite weaker than the one given by Anghel
[2]. Moreover, we provide a new sufficient condition to obtain a Gauss-Bonnet operator semi-Fredholm.
Finally, we give two explicit examples one example verifying the property of non-parabolicity at infinity,

and the other not.
2. Preliminaries

2.1. Definitions and notations

e A graph G is a couple (V,E) where V is a set at most countable whose elements are called vertices
and & is a set of oriented edges, considered as a subset of V x V.

e If the graph G has a finite set of vertices, it’s called a finite graph. Otherwise, G is called infinite graph.

e We assume that & is symmetric without loops:

veV = (U,U) ¢5, (01,02) e&=> (02,7)1) € &.
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Choosing an orientation of G consists of defining a partitionof &: E* LUE =&

(v1,12) €E" & (v,v1) €E.

For e = (v1,v2), we denote
e =vy, et =vyand —e = (vp, 7).

The graph G is connected if, any two vertices x, y in V' can be joined by a path of edges y,,, that
means,

~~~~~ i+l

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

deg(x) :=flee & ¢ =x}.
o If deg(x) < 0o, Vx € V, we say that G is a locally finite graph.

2.2. The weighted graph

The weighted graph (G, c, 1) is given by the graph G = (V, &), a weight on the vertices ¢ : V —]0, oo[ and
a weight on the edges r : & —]0, co[such that r(—e) = r(e).

Examples: - An infinite electrical network is a weighted graph (G, ¢, 7) where the weights of the edges
called resistances r; their reciprocals are called conductances. And the weights of the vertices given by
c(x) = Xy r(%y) < oo, VxeV.

-The graph G called a simple graph where the weights of the edges and the vertices equals 1.
All the graphs we shall consider on the sequel will be weighted, connected and locally finite.

2.3. The notion of subgraph
A subgraph of a graph G is a graph Gk := (K, Ex) suchthat KC Vand Ex :={e€ &; 7, e* € K}.
For such a subgraph we define:

e the vertex boundary :
IK:={xeV\K;,Jyek (x,y) €&},

e the edge boundary:
0Ex ={e€& e €eKandet ¢ Kore" € Kand e” ¢ K}.

2.4. Functional spaces
We denote the set of real functions on V by:

CV)={f: V->R}

and the set of functions of finite support by Co(V).

Moreover, we denote the set of real skewsymmetric functions on & by:
C'(E) ={p: 8-> R;p(—e) = —p(e)}

and the set of functions of finite support by Cj(E).

We define on the weighted graph (G, ¢, r) the following function spaces endowed of the scalar products.
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a)
P(V) = { fecV); Y cfiw < oo},
xeV
with the inner product
£,y =) cf@)g()
xeV
and the norm
Hf”IZ(rV) = \[ <f’ f>‘V

b)

P(E) = {(p € C'(8); %Z re)p(e) < oo},

ee&

with the inner product

@05 = 5 3, OPEOVE)

ee&

”(PHZZ(((;) = \/ <(P, (p>8

As a consequence, we define the direct sums of I>(V) and I*(E) by:

and the norm

P(G) = B(V)o (&) = |(f,9), f € B(V) and ¢ € P(E)},

with the norm

“(f' (P)HIZZ(G) = ”f“zzzw) + “§0“122(8) :

2.5. Operators and properties
The difference operator: it is the operator

d: Co(V) — CY(6),
given by
d(f)e) = f(e*) = f(e).
The coboundary operator: it is 0 the formal adjoint of d. Thus it satisfies
df, )g =f, 6@)q 2.1)
for all f € Co(V) and for all ¢ € C{(E).

As consequence, we have the following formula characterizing 6 :

Lemma 2.1. The coboundary operator & is characterized by the formula

dp(x) = % Y. re)ple),

eet=x

for all p € C{(E).
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Proof: For f € Co(V) and ¢ € C}(E), using (2.1), we get

Afgds = 5 ) HOfEPE

ee&

- 1T O - fe N
ec&

- %Z f(x){ Y e - Y r(e)fp(e)]-
eV eet=x ee=x

But, r(—e) = r(e) and Z e)p(e) = Z r(e)p(e).

eet=x e =x

So we have,

(df, 9 = Zc(@f(@[% y r<e>¢<e>}
xeV eet=x
= (f,09)y-

We introduce now a very important result inspired by [11].

Lemma 2.2. Let x and xo in V, then there exists a positive constant Cy, such that

|f(x)| < Cay, (|f(x0)| + “df”l?(a))’
forall f € Co(V).

Proof: As G is connected, then we can find a path )., joining x to x, i.e,

Vixo = k=1, n Withe] =x, e =xgandif n>2,¥j;1<j<(n-1) = e;r =€,

Then, using the triangle inequality, we have

lf) = fxo)| = [f(0) = fle)) + flet) = fled) + ... + flef,) — f(xo)|

IA

)df(e1)| |df(e2)| + ... +|df(en)|
2 W ldf).

eeyx,{o

Applying the Cauchy-Schwarz inequality, we obtain

[Z %] [Z r(e)<df(e)>2]

S S

[2 r(e)(df(e))z]

|f() = f(x0)|

IA

ee§
Seco [l ey

IA

with Sy, = [ Y, %] .

€€y,

1912

2.2)
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Thus, we deduce that
[f@] < [f@) - f(xo)| + | f(xo)]
Sz de”ﬂ(a) + |f(x0))

Caxy (||df“12(8) + |f(x0)|),

with Cyy, = max(Syx,, 1). ]
Before giving another important result, for f € Co(V), we define the mean value f of f by

o = L)

IN A

IA

foralle € &.

And we have from [10] the following derivation property:
Lemma 2.3. For f, g € Co(V) and ¢ € C{(E), it follows
d(fg)e) = f(e")dg(e) + 9(6‘)d(f)(e). (2.3)

S(Fp)) = Fx)op(x) - m 2 rA(F)OP(e). (24)

Proof: For f,g € Co(V)ande € &,
d(fg)(e) (o)) = (f9e)

f(e") (ge™) = g(en)) + g(e™) (f(e*) — f(e7))
f(e")d(g)(e) + gle)d(f)(e).

On the other hand, for ¢ € C{(E) applying the characterization of 6 from Lemma (2.1) to the function
?(p € Ci(E), we have

5(F)(x) ( PG

eet=x

- & Lro(F e

eet=x

. . fe) - fe)
- @e;:f(e)ﬂe ><p<e>+ﬂ”2 <>(—) ©

= g L oo+ o () -0

= fo(p)) - T Z rOA(F)P(e).

The Gauss-Bonnet operator: it is the endomorphism

D=d+06:Co(V)®CHE) — Co(V) ®CHE)

with,
D(f, @) = 0@ +df, Y(f,¢) € Co(V)® Ci(E).

And it is a symmetric operator.
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3. Non-Parabolicity at Infinity

Now we introduce the discrete result of Carron [5]:

Definition 3.1. We say that D is non-parabolic at infinity if there is a finite subgraph G of G such that for all finite
subset U of G \ G, there exists a positive constant C = C(U) such that holds the following inequality

Remark 3.2. We call a finite subset U of G a couple U := (Vy, Ey) such that Vy is a finite subset of V and Ey is a
finite subset of &. And, we denote

”(f' 90)“122@1) = Hf”fz((vu) + ”(P“zzZ(su)‘
Definition 3.3. Gy is a neighborhood of Gy if Gg := (K, &x) is a finite subgraph of G such that
i) K C K finite,
it) Ex U dEk C &g,

iii)e=(x,y) € &g = x, yef.

Since we can define the smallest neighborhood of G by G , where G, is a finite subgraph of G contains Gk and
its boundary.

Remark 3.4. In [9], G is called a combinatorial neighborhood of Gk.

Lemma 3.5. If D is non-parabolic at infinity then, for every finite subset U of G there exists a positive constant
C’ = C'(U) such that

c ‘ (f, (P)HIZ(U) < ”D(f’(p)HlZ(G) + ”(f' (P)”zqc,;) , V(f,9) € Co(V) @ C(6), (35

where Gy, is a neighborhood of G.

Proof: Since U is a finite subset of G it can be reduced to a point or an edge.

Let x any vertex of G, we start by proving

f(x)) = de”ﬂ(a) + ”f“ﬂ(i)' Vf€Co(V).

Gy is a finite subgraph of G, so according to Lemma 2.2, we obtain

C/

0 <& (Il + 1Ak 36

where C; is a positive constant which depends on x and K. Indeed:
let x € V and xj € K, using Lemma 2.2, we obtain

2
F2(x) < Cax, ( o) + || (8)). 3.7)
Multiplying (3.7) by c(xg) > 0, we get

WL < Co b)) + ) )
< Con (Al * <o) 111
<

Cla (Il * 1811 )
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where C, = max(Cyy,, ¢(x0)Cux, )-
Then, we have

fAx) < G
0)

c(x

(11 g + A1)

Finally, we obtain

£ <€ (Il + sl )

On the other hand, we want to show the following inequality, for any edgee € &

c” (p(e)| < “590“12(1/) + ”(PHZZ((S?) , Y € Co(6).

For e € &k C & finite, we have

’ 2 2 2
p(e) < ”(/)”12(85) = ”(P“ﬂ(af) + ”6@”12(%'
And if e € &\ Ek, we consider the indicator function of K¢, denoted by x

0Oif x e K

x(x) = (3.8)
1 otherwise.

which gives

0if e € &, 0if e € &,
dx(e) =3 +lifeedEk, & x(e)=1{ 1ifeecdEk,

0 otherwise. 1 otherwise.

Let ¢ € C{(E), we have then x¢ with finite support in & \ E. Thus, applying the definition of the
non-parabolicity at infinity of D to the function (0, Y¢), we obtain

”)_(@”122(11) <C “6()_((9)“122(41) ’

where C = ﬁ
Since we have ¢ € &\ &, this implies that

(0 < C 6T - (3.9)

The derivation property of Lemma (2.3), gives

0(xp)(x) = x(x)o@(x) — %(x) r(e)d(x)(e)p(e).
And by the inequality (a — b)> < 2(a® + b?), we obtain
oGPy, = Zvc<x><6<%¢>>2
. 2
< 2|} ) (d@) + ), e | 5o ) rOd00ER(E)
xeV xeV eet=x

I ]
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So, for the first term we have

1= Y ) (0p() < Hé(pnfzm (3.10)
xeV\K

and for the second one, we get

2 2
1 1
] = ;W(Z r(e)d(x)(e)qo(e)] + ), W(Z‘ r(e)d()()(e)(p(e)] . (3.11)

ootmx xeV\K et =x

i J2

Using that supp(dx) = d&x C E; and the Cauchy-Schwarz inequality, we obtain
2

Y 5| L repe
xeK

eet=x
eesuppdx

2
= cK[ Y, r(e>¢<e>]

eesuppdy

cK[ Y r(e)][ Y. r<e><p2<e>]

eesuppdy eesuppdy

CkCy ) rle)g?(e)

668]?

Ji

IA

IA

2
= G ”(P“P(a,;) ’
where Cx = max chx), = fE¢ max r(e) and C; = CxCy.

And for |, we have e = (e~ ,e*) € suppdy = dEk, soif e~ € K, e* € JK.

2

1
h= Lo Z re)p(e)

2
= C}é[ Y r(e)¢<e>]

ecsuppdy

c;[ Y r(e)][ Y. r(e)qf(e)]

ecsuppdy ecsuppdy

CiCy ) re)p*()

EESE

2
(P”zz(si) ‘

IA

IA

=G

where C{ = max 2c(x) and C, = C{Cy.
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Thus, (3.11) becomes

j<cy

Pleer (3.12)
where CJ = max(Cy, C}).
So by (3.10) and (3.12), we get
0G|y < max(@,205) (o0l + el ) (313)
Finally, (3.9) and (3.13) give
7 < C([o9ller, * ol
o

where C = 2. O

Proposition 3.6. If D is non-parabolic at infinity, then we can construct a Hilbert space W such that :

1. Co(V) ® Cy(E) is dense in W.
2. The injection of Co(V) @ C{(E) to C(V) & C*(E) extends by continuity to W.
3. D: W — I%(G) is a bounded operator.

Remark 3.7. In 1) and 2) we use the topology of ponctual convergence on C(V) & C*(E), it means, the sequence
(fu, @n) converges ponctually to (f, ) on C(V) ® C*(E) if fu(x) converges to f(x), Vx € V and @, (e) converges to
ple), Ye e &.

Remark 3.8. In Carron’s paper [5], the injection of the space of functions with compact support to I} extends by

continuity to W. But, in our case we didn’t need to introduce the space I} -because in discrete case this notion is
trivial.

Proof: Let us denote by W the closure of Co(V) @ Cj(E) for the norm
2 2 2
Nzl o) = ([ P, + IPE )
where Gy is a neighborhood of Gk (see Definition (3.3)).

Aim i): Ny is a norm on W, we just look at the nullity, we have

N]Z(f’ (P) = O < “(f/ (P)le(GE) = 0 Lli’ld ||D(f’ (P)le(G) = 0

< “f| e =0 (PHIZ(SE) =0, df“lz(.S) = 0and ”‘S(pnzz((v) =0.
For any x € V and as #K < oo, from Lemma (3.5), we get
£ = 1 (Flle + 141l ) .14
But, fHIZ(E) =0and ”df”lz(a) = 0. So it follows immediately that f = 0 on V.

It remains to show that if ”qo”lz(g_) =0and H(S@”IZW) = 0 then ¢ = 0. We suppose that ¢ # 0.

¢ is a finite support function in & \ & and therefore, by Lemma (3.5) where U equals to the support of
@, there exists a positive constant C such that

C H(P”ﬂ(su) s H(P”p(si) + “(Sq)“lz((‘/) :
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But,

(p“l2 &) = Héqu pev) = 0, since we get ¢ = 0 on &y, which is impossible.
Aim ii) Show that the space W is independent of the choice of Gg.
Let GE be another neighborhood of Gk such that K C Eo C El.

So, we have

Nz (f,9) < Ng (f, ¢).
Moreover, to show the existence of a constant C > 0 such that N (f, ¢) < CNg (f, ¢), it suffices to show

the existence of a constant C > 0 such that “( f (p)”lz2 ( CNI% (f, @). Indeed, we have
0

- - <
Ki\Kg) —

H(f, (P)“li(f?l) + ”D(f’(P)”lzz(G)
= oz )+ 1 Ol + PPN,
(62 €0)||122<1?1\1?o> +Ng (£ 9)

N (f, @)

Using lemma (3.5) and as we have ﬂ([?l \ 1?0) < o0, we get

[ el s 74 W
where C = C(K; \ Ko, Ko).

And

ol (Il * ool
where C = C(El \E(), Ko)
So, we obtain

”(f' (P)||122 Ge\Ge) = CNI% (f o).
(Gg, \Gg,) 0

Thus, we have shown that the construction of a norm on W is independent of the choice of the neigh-
borhood associated to the subgraph Gg. We set:

1

2 2 \?
”(f'(P)”w = ”(f' (P)HIZ(GEO) + ”D(f’(P)”lZ(G) ’
for (£,) € Co(V) @ CL(©).
Aim iii): By Lemma (3.5), we have the injection of Co(V) & C(E) to C(V) & C*(E) extends by continuity

to W.
Aim iv): we have

I @l ey < 10,y + I @y = 0

Consequently, D : W — [?(G) is a bounded operator. o
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4. Semi-Fredholmness of the Discrete Gauss-Bonnet Operator
Definition 4.1. An operator is semi-Fredholm if its range is closed and its kernel is finite dimensional .

Now we come to our main result:

Theorem. Let W be a Hilbert space satisfying:

1. Co(V) @ Cj(E) is dense in W.
2. The injection of Co(V) ® C{(E) to C(V) & C*(E) extends by continuity to W.
3. D: W — [*(G) is a bounded operator.

Then, the following conditions are equivalent:
i)D: W — ?(G) is semi-Fredholm.
ii) There exists a finite subgraph G of G and a positive constant C = Ck such that

CllE @y < IDE Py YFP) € Co(VNK) X CHE N Ex). (4.15)

Proof: We take the same arguments used by Carron [5]. We start by showing the direct implication, we
assume that the conclusion is false. Then, we can find an increasing sequence of finite subgraph {Gg, },, such
that G = |, Gk, and a sequence {0,}, with finite support in V \ K,, satisfying the following conditions, for
alln>1

On = (fn/ (Pn) € Co(V\ K;) X Cg('g \ 81(,,)/
llonllw =1,

IDoullr) < -

On the other hand, it was assumed that D : W — *(G) is semi-Fredholm. Therefore, by [13] there exists
a bounded operator P : [*(G) — W such that
PoD=1Idw-H, (4.16)

where H is the orthogonal projection onto the kernel of D, it is an operator with finite rank.
Then, we obtain

loully < 1P © D)l + IHoulhy
< IPUIDoule) + Holly
P
< (”n—”+||Hon||w).

If
lim ||[Hoy|lw = 0 = lim ||lo,|lw =0,
n—o00 n—o0

which contradicts the assumption ||oy,|ly = 1.

So, our aim is to prove that {Ho,}, converges to 0 in W. Indeed, we set

On =0y + 0% (4.17)

with o}(= Ho,) € KerD and o2 € (KerD)*.
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Such as
(P o D)o, = a2,

IP 0 Daylly < IPIHIDG () —nseo O:
Then, for the norm of W

lim 0% = 0. (4.18)

n—oo

Moreover, {0}, is a bounded sequence of KerD which is of finite dimension. So we can extract a subse-

quence converging to ¢ in W, which we denote {a(lp(n)}n.
Using (4.17) and (4.18), {0p(m)}n converges in W to o (as a sum of two converging sequences) and as a
consequence o]l = 1.

1

Let us prove that 0 = 0 where 0 = lim g, = lim Cpme

We suppose that ¢ # 0. As W is injected continuously in C(V) & C*(E) , there exists x € V such
that {0, (x)}, converges to o(x) # 0. But, by construction the sequence {0}, converges ponctually to 0
(the sequence {0}, has a finite support outside of Gk, ). Hence, we conclude that o(x) = 0 which is absurd.

It remains to prove ii) = i).

First step: We construct a bounded operator Q : I>(G) — W such that Qo D —Idyy is a compact operator,
this will show that D : W — [(G) has a finite kernel and a closed range [13].

Let D; be the restriction of D on G \ G, so D; : W(G \ Ggx) — ?(G) is bounded, where W(G \ Gg) = {0 =
(f,@) € W; 0 = 0 on Gg}. Moreover, by assumption we have

Cllf @)y < DDy Y 9) € Co(V N K) X CE N\ Ex).
Then, D is injective with closed range, which allows the existence of a left inverse P; such that
P1 o D1 =1Id.

On the other hand, we denote _
Dz : lz(Kl) — ZZ(G)

where Rl is a neighborhood (see Definition (3.3)) of Eo, such that E() is the smallest neighborhood of K.

Since lZ(E) is a vector space of finite dimension, then D, is continuous with closed range. We denote P,
"“the parametrix” which is a continuous operator satisfying

P20D2:Id_H2,

where H, is the orthogonal projection onto the kernel of D,.

We consider now the indicator function x as in (3.8) by replacing K by Ko, which gives dy, x, 1 — x and
1 —x where
_ lifee 81?0 ,
1if x € Ko
1-xk)= and (1-x)(e) =4 1ifee JEz,
0 otherwise.
0 otherwise.
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Furthermore, we define the operator y. depending on the domain by:

If x.: Co(V) — Co(V)sowehave x.f = xf, forall f € Co(V).

If x. : C(E) — Ci(E) we get x.¢ = X, for all p € Cj(E).

If x. : Co(V) @ Ci(E) — Co(V) ® C((E) hence we obtain x.(f, ) = (xf, X¢),
for all (f, p) € Co(V) ® C{(E)-

We set
Qo := Py(1 - x)o + P1xo,

where ¢ = (f, ¢).

Second step: Let us check that the operator Q o D — Id is compact.
We denote the following bracket for any two operators A and B:

[A,B] = AB - BA.
Then, we obain

QoD = Py(1-x)D+PixD
= PD(1 - x)+ P2[1-x,D]+ P1Dx + P1lx, D]
= P2D>(1 - )+ P2[1 - x,D] + P1D1x + P1[x, D]
= (Id = H2)(1 = x) + P2[1 = x, D] + Id(x) + P1[x, D]
= Id—Hy(1 - x)+Ps[1 - x, D] + Pi[x, D].

We just calculate P[x, D]. We have
[x, D] =[x, d] + [x, 6].

For the first bracket, we obtain
o dlfe) = TOdE - duc)e)
= 2 )+ A ~ KO ~ Fle ()
= AKX,
And for the second one, we get
0 olp) = X3P - 5T
XN - X)) + 5 Y AP

eet=x

> Y e

eet=x

But, the support of d(y) is included in 8820 - 1?1 which is finite. Then, [x, D] has a finite range so it is a
compact operator.
Finally, Q o D = Id + H where H is a compact operator . O

Remark 4.2. In the Theorem , we obtain D Fredholm if it is an essential-selfadjoint operator [5].
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Remark 4.3. There is a second method inspired from [2] to show ii) = i) of the Theorem . This can be demonstrated
with the aid of the following claim: "If 0, = (fu, n) € Co(V) X C{(E) is W-bounded and (Do), is convergent in
I?(G), then (0,), has a W-convergent subsequence”.

We have the following result:
Proposition 4.4. Let W be a Hilbert space satisfying:

1. Co(V) @ C(E) is dense in W.
2. The injection of Co(V) @ C{(E) to C(V) ® C*(E) extends by continuity to W.
3. D: W — I*(G) is a bounded operator.

Then if there exists a finite subgraph G of G and a positive constant C = Cx such that

it @)y < IDE Py - YU 9) € CoV N K) x CHE N\ Ex), (4.19)

so necessarily, the operator D : W — 12(G) is semi-Fredholm.

Proof: We start by proving the following claim: if o, = (f, @u) € Co(V) X Cj(E) is W-bounded and (Do),
is convergent in I?(G), then (0,), has a W-convergent subsequence.

Let Gg be a neighborhood of the subgraph Gk (see Definition 3.3), then (0, [%)» is a bounded sequence
in a vector space with finite dimension. Hence, it admits a convergent subsequence.

In G\ Gg, we consider the indicator function x as in (3.8) by replacing K by K. Then, we obtain a function
X0, with finite support in G \ Gx and we can apply the inequality (4.19) to xo,, in particular to (x f,, 0) and
(0, Xpn). First, we obtain

lesully < ClldGAD e,
But, from the equality (2.3) of Lemma (2.3), we get

d(x fa)(e) = x(e")d(fu)(e) + fule )d(x)(e)

We have (d(f,)), is a convergent sequence and supp(dy) C &g is finite, thus, f,(x) ¢ admits a convergent
subsequence.
Then we may conclude that x f, admits a W-convergent subsequence, i.e, (f,
subsequence.

'\g)n admits a W-convergent

Second, we have
%nll, < ClloGpnz(y, -

Since the equality (2.4) of Lemma (2.3) gives
O(XPn)(¥) = x(x)0(en)(x) — ( ) Z r(@)d(x)(e)pnle), Yx € V.

Furthermore by assumptions the sequence (6(¢x)) is convergent and supp(dx) € E is finite, hence, (¢, Te.)
admits a convergent subsequence. As a result, we deduce that the sequence (x¢,), admits a W-convergent
subsequence. So, the sequence (¢ le\e;)n admits a W-convergent subsequence.

Now we can show that our operator D is semi-Fredholm.
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1. Westart by proving that KerD is finite dimensional, which is equivalent to show that {c € KerD; ||ollyy =
1} is compact.

Let (0,)n C KerD be such that ||o,|liy = 1 and Do, = 0. Then, by the claim, (0,,), admits a convergent
subsequence. So the result occurs.
2. Let us show that ImD is closed.

Let (y.). be a sequence of ImD such that (y,), converges to y in [*(G). Is that y in ImD?

Since (y)n C ImD, then there exist (6,), € KerD* and o, # 0 Vn, such that y, = Do,. (0,), must be
bounded. If not, by extraction we can construct s, = HJ‘Z—"“W, such that

(81)n C KerD+

llsnllw =1
Ds, — 0.
Using the claim, we can conclude that (s,), admits a convergent subsequence with limit denoted s
such that
s € KerD+
lIsllw =1
Ds = 0.

Then, s € KerD N KerD+ = {0}. So s = 0, which is absurd.

Hence the sequence (0,), is bounded and since (Do), converges to y, using the claim, the sequence
(0n)n admits a convergent subsequence and let ¢ be this limit. But, the operator D is bounded. Then,
Do, converges to Do and by uniqueness of the limit y = Do.

[m]

Corollary 4.5. D is non-parabolic at infinity if and only if there exists a finite subgraph Gk of G such that if we
complete Co(V) x C{(E) by the norm

165 @y = (19 + PG P )

in order to obtain W satisfying
1. Co(V) @ C(E) is dense in W.
2. The injection of Co(V) @ C{(E) to C(V) & C*(E) extends by continuity to W.
3. D: W — I%(G) is semi-Fredholm.

5. Examples

5.1. A star-like graph
Definition 5.1. The disjoint union of two graphs G, = (Va, E,) and Gg = (Vg, Ep) is the disjoint union of their
vertex and edge with no edge joining V, and V.

According to [6], we have the following definition:

Definition 5.2. An infinite graph G = (V, E) is called star-like, if there exists a finite subgraph Gk of G so that
G\ Gk is the union of a finite number of disjoint copies G, of the graph IN.
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" Figure 1: Star-like graph

Proposition 5.3. In the case where ¢ = ¥ = 1, D is non-parabolic at infinity in the star-like graph.

Proof: By the definition of the star-like graph, there exists a finite subgraph Gk of G so that G\ Gk = [ ],¢j Ga-
Let U be a finite subset of G \ Gk then, there exists « € | such that U C G,. We look for a positive constant
C = C(U) such that

Il Pl < IDE Dl Y 0) € CoVNK) @ CiE\ Ex). (5.20)

Let f € Co(V \ K) such that U is included in the support of f.

For U = {a}, we have
||f||122(U) = f*(@).
For 0 € K and as G is connected we can find a path y,, joining o to a. Suppose that this path is of length n
such that xy = a and x,, = o, using the Jensen’s inequality and f(x,) = 0, we obtain
FA@) = (flxo) = fe) + flnn) = f(2) + fx2) = oo = fluon) + fo1) = fn) + fx)’
n((f@) = fa)) + (Fa) = ) + oo+ (fGno1) = f(x))?),

IA

which implies
2
fHa) < nlld f||,2 W (5.21)

Remark 5.4. n depends only on U and K.

Similarly, for ¢ € C{(E \ Ek), we obtain

2 2
”(PHIZ(SU) <Cu ||6(P||lz(’V) .
Moreover, for U = {ay, ...,a,}, we prove the inequality (5.20).

By the inequality (5.21), for all i € {1, ..., n}, we get

f2@i) <n; “deIZZ(W)
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where 7; is the number of edge of the shortest path between 4; and any vertex of K.

For thus, we have
n n
Z fAa) < Z n; “df”lzZ(fV) .
i=1 i=1
Hence

“f||122(u) <Cu ||df”122(’V)'

And similarly, we show that

||§0”122(8u) <Cu ||6(P||122('V) :

5.2. The triadic tree

Definition 5.5. A tree is a connected graph containing no cycles. The triadic tree is the tree such that all the vertices
have degree 3.

Figure 2: Triadic tree

Proposition 5.6. In the triadic graph the condition of “non-parabolicity at infinity” is not verified.

Proof: We fix a vertex o, see the figure 2, we can find an increasing sequence of finite subgraph {G,}, such
that G, = {x € V; d(o,x) < n} and G = |J, G,. The contradiction of non-parabolicity at infinity property
could be: for all n there exists U outside of G, and a 1-form ¢, with finite support outside of G, such that
0@, =0and ”qon” ean * 0. Such ¢, exist. Indeed one can construct a skewsymmetric function ¢, supported

on the outward tree of every vertex x,, € G, with 0@, = 0 in the following way: let ey and by be the two

outward edges of x,, (the third one rely x, to x,-1) and denote e’,‘n, m>1,1<k< 2" resp. b],;, m>=1,

1 < k < 2™, the outward edges emanating from ey, resp. by, of generation m. We define ¢, to be 0 excepted
1 1

on these edges where ¢, (ef,) = 5» and Pn(bk) = —5w (the edge are oriented outward). So, we deduce that 6

does not satisfy the property of non-parabolicity at infinity. ]

Remark 5.7. We can generalize this example for the tree with degree d > 3, we can use the same argument with
Pn = *—L(d%)m-
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Remark 5.8. a) The importance of non-parabolicity at infinity appears with the operator 0. In fact, this property for
the operator d is always true on any connected graph.

b) In probability [8] and potential theory [15] there exists an interesting notion of non-parabolic for the graph which
is equivalent ([1] Theorem 2.1) to the following statement: there exists x € V and C > 0 such that

£ < Clldfllng, VS €ColG):

This notion is different from the non-parabolicity at infinity. Indeed, the graph Z. and Z* are parabolic, but Z"", n > 3
is non-parabolic. On the other side, we have 0 is non-parabolic at infinity in Z but in Z", n > 2, 6 does not verify
this property (since it has cycles supported outside any finite subgraph).
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