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New Hybrid Conjugate Gradient Method as
a Convex Combination of LS and CD methods

SneZana S. Djordjevié®

?College for Textile, Vilema Pusmana 17, 16000 Leskovac, Serbia

Abstract. A new hybrid conjugate gradient algorithm is considered. The conjugate gradient parameter i
is computed as a convex combination of B° and pL°. The parameter 0y is computed in such a way that the
conjugacy condition is satisfied.

The strong Wolfe line search conditions are used.

Numerical comparisons show that the present hybrid conjugate gradient algorithm often behaves better
than some known algorithms.

1. Introduction

We consider the nonlinear unconstrained optimization problem
min{f(x) : x € R"}, (1.1)

where f : R" = Ris a continuously differentiable function, bounded from below.
There exist many different methods for solving the problem (1.1).

Here we are interested in conjugate gradient methods, which have low memory requirements and strong
local and global convergence properties [8].

To solve the problem (1.1), starting from an initial point xq € IR”, the conjugate gradient method generates
a sequence {x¢} C R" such that

X1 = Xk + ted, 1.2)
where t, > 0 is a step size, received from the line search, and the directions dj are given by [3], [4]

do = =90, k1 = —Grs1 + PrSk- (1.3)
In the last relation, S is the conjugate gradient parameter, sy = Xx41 — Xk, gk = Vf(x%).

Let the norm || - || be the Euclidean norm.
Now, we denote

Yk = Gk+1 — Jk- (1.4)
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An excellent survey of conjugate gradient methods is given by Hager and Zhang [14]. Different conjugate
gradient methods correspond to different values of the scalar parameter f.

A hybrid conjugate gradient method is a certain combination of different conjugate gradient methods;
it is made to improve the behavior of these methods and to avoid the jamming phenomenon.

In order to choose the parameter f; for the method in the present paper, we mention the following
choices of fi [2]:

2
Fletcher and Reeves: [12] ﬁiR = ”ﬁ;ﬁlzl ; (1.5)
k
2
Dai and Yuan: [7] kDY = M; (1.6)
Y Sk
. i CD _ I|gk+1||2
Conjugate Descent, proposed by Fletcher: [11] .~ = (1.7)

T .
_gksk

The conjugate gradient methods with the choice of i taken in (1.5), (1.6) and (1.7), have strong conver-
gence properties, but they may have the modest practical performance, due to jamming [2], [3].

From the other side, methods of Polak-Ribiére [19] and Polyak [20], Hestenes and Stiefel [15] and also
Liu and Storey [17] in general may not be convergent, but usually they have better computer performances
[3]. The choices of fi in these methods are, respectively [2]:

T
gL vk
PRP k+1
_ Ten Ve 18
© = P (18)
T
gL vk
HS = Sl (19)
Y Sk
T
P = gk+;yk~ (1.10)

One important difference between FR and CD is that with CD, the sufficient descent holds for a strong

Wolfe line search (the constraint ¢ < % that arose with FR, is not needed for CD) [14].

Moreover, for a line search that satisfies the generalized Wolfe conditions with 01 < 1 and 0, = 0, it can
be shown that CD method is globally convergent [14].

On the other hand, not much research has been done on the choice ‘Bis for the update parameter, except
for the paper [17], but we expect that the techniques developed for the analysis of the PRP method should
apply to the LS method [14].

2. Convex combination

The parameter f is chosen here such that it presents the convex combination of (1.7) and (1.10).

Now we define the next conjugate gradient parameter
hyb
= (160 B + 0 - BL°. @.1)
So, we can write

do = ~go, dir1 = —girt + B sk (22)
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The parameter 0y is a scalar parameter which we have to determine. We use here the strong Wolfe line
search, i.e., we are going to find a step length #;, such that:

flx + tidy) — f(xe) < Stegldy, (2.3)
and

|9(ai + tecdi) " del < —ag]dy. (2.4)

It is obvious that, if 8y = 0, then ﬁ:y b= 15, and if 6; = 1, then ﬁ:yb = BP.

On the other side, if 0 < 6; < 1, then ‘Bﬁy * is a proper convex combination of the parameters Bl and ;5.
Having in view the relations (1.7) and (1.10), the relation (2.1) becomes

T T
Jrs1 Yk Frr19k+1
= 1oy Bt Shadn )
g Sk g Sk
so the relation (2.2) becomes
T T
i1 Yk FTrs19k+1
do = —go, dist = —grr1 + (1= )= - 5 + Oy - k+1—T+ : (2.6)
—gk Sk —gk Sk
We shall find the value of the parameter 6 in such a way that the conjugacy condition
Yidii1 =0 2.7)
holds.
Firstly, we multiply both sides of the relation (2.6) by y; from the left:
T 2
Tri1Yk ||gk+1||
T = =y g1 + (1 — O == . yTs + 0 ylst.
Yiedks1 = =Y Jrs1 + ( k) “oTs Yy sk + Ok oS Vi Sk
Using (2.7), we get
_ —(g,gﬂyk)(g,gﬂsk)' .
(9,190 (Y, SK)
Finally, having in view the relation (2.8), we define:
—(g7 v, 50) o< RUBUAURC .
(9! 90T se) (g,legk)(y,f)?k)T |
- s
O, = 0, M <0 2.9)
(gwgk)(y&sw
~(Fes1 Y)(G) 1)
L T Ty L
(9,190 (Y, SK)

For some later considerations, we remind to the next lemma.

Lemma 2.1. [18] Let f € C(IR"). Let dy be a descent direction in the point xi, and suppose that the function f is
bounded from below along the direction {x; + tdi|t > 0}. Then if 0 < 0 < 0 < 1, there exist the intervals inside which
the step size satisfies Wolfe conditions and strong Wolfe conditions.
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3. Algorithm and the Sufficient Descent Condition

Algorithm LSCDCC

Input parameters: € > 0,x9,k:=0,0<6<0<1,<1,t =1
Step 1. If |lgkll < €, STOP.
Step 2. Determine the biggest ji, such that for t, = B it holds

FOo + tidi) — f(x) < Otgl i,

Ig,fﬂdkl < —ogzdk.

Set Xy = Xi + tdy.

Step 3. If (g, 9x)(y; 5x) = 0, then 6y = 0, else find O from (2.9).
Step 4.

T
Tr1Yk
W (1 - )

T
Jrs19k+1
T O - T °
_!]k Sk _gk Sk

Step 5. If
gL, 19k > allgall?,

hyb
then diy1 = —gier, else diyy = —Gier + B, - Sk

Step 6. k:==k+1, go to Step 1.

For further considerations we need the next assumptions.

Assumption 3.1. The level set S = {x € R" : f(x) < f(xo)} is bounded.

1816

(3.1)

(3.2)

Assumption 3.2. In aneighborhood N of S, the function f is continuously differentiable and its gradient is Lipschitz

continuous, i.e. there exists a constant L > 0, such that ||V f(x) = Vf(y)ll < Lllx — yll, forall x, y € N.

Under Assumption 3.1 and Assumption 3.2 on f, there exists a constant I' > 0, such that

IVf@)Il < T,

forall x € S [2].

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Let the constant a in the algorithm LSCDCC be such that

0<a<1—1.
o

Then algorithm LSCDCC is well defined and d, satisfies the sufficient descent condition for all k.

(3.3)

(3.4)
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Proof. From Lemma 2.1 we know that Step 2 of the algorithm LSCDCC is well defined if dy is a descent
direction. We shall show that dj satisfies the sufficient descent condition, and that will yield that d is a
descent direction.

For k = 0, it holds dy = —go, so gOTdo = —[|goll>, and we conclude that sufficient descent condition holds
fork =0.
Next it holds

hyb
des1 = —Gke1 + B Sk

i.e.
i1 = =G + (1= OB + OkBD)si.

We can write
dis1 = —(Okgks1 + (1 = O)gis) + (1 — O)BE + kB )si.

It follows that
it = Ok(=grs1 + BPsk) + (1 — O)(=gra1 + BE0sk),

wherefrom
i1 = 0,dD + (1 - O)diS . (3.5)
Multiplying (3.5) by g/, from the left, we get

9I€+1dk+1 = Gkglzﬂd}g}l +(1- 9k)gf+1d§f1- (3.6)

Firstly, let O = 0. Then diy1 = défl. Remind that
dléfl =gkt ﬁ,ﬁssk

(T V)G ,156)

@r )L, 50)
T

—gTsy
Consider the absolute value of the expression

= g4 < —llgeall® + (3.7)

k+1 —

We shall prove that < pllgkll>, where 0 < p < 1.

- L y)@L, se)
=

So,

T
gk+1sk

T

(g5 v, 50

IT| =
_gZSk

<

|91 Yil-

From the second strong Wolfe line search condition, it holds

T
gk+1sk

T

Now it holds

IT| < alg},, vil- (3.8)

If (3.2) holds, then di11 = —gk+1, SO gg+ldk+1 =—| gk+1||2, and so it is proved that dy,; satisfies the sufficient
descent condition.
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If the relation (3.2) doesn’t hold, then it holds
190, 19¢| < allgall®. (3.9)

Because of yx = gi+1 — gk, from (3.8) we get

IT| < olg},, il (3.10)
= 01941 Gke1 — 95| (3.11)
< ollginlP + olg}, g« (3.12)

wherefrom, applying the relation (3.9), we get
IT| < allgksil + oallgisll,
and having in view the relation (3.4), we can write
|T| < yllgk+1||2, where 0 < p=0(l+a)<1.
Now, using the relation (3.7), we get

T 4IS 2 2
Ty < —Ngeell” + pllgeeall®,

and
g{+1dl€fl <-(1- M)||9k+1||2-

Let’s denote K; = (1 — p); then we can write
Iradi < —KillgeallP. (3.13)

Now let O = 1. Then dq = dCD.
Further, we are going to prove that the sufficient decent condition holds for CD method in the presence
of the strong Wolfe conditions, and this fact is mentioned in [14].
For k = 0 the proof is trivial one, having in view that d5P = —go and so gl dS” = —|lgol*.

Having in view that

Al = —ge + BPsk, (3.14)

TdCD_

multiplying the relation (3.14) by g/, from the left and using the expression (1.7), we get g/ d°D =

19k+111?
—l\ gkl ® + Ty 9;.,5¢), wherefrom

k

T T T
Sk —4, 5k — 9,15k
T D 204 _ Tk 2 9k [
14D = ~llgenlP(1 - —_;Ts ) = —llgi P -

koK kK
Using the strong Wolfe line search, now it holds

_ggsk - gljc:rlsk S (O - 1)g11;5k _

> =1-0>0.
—g sk —g1 sk

Now we have
Ten D) < —(1 = 0)llgiel.

Let's denote1 — o = K, > 0.
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So,
Trden < —Kallgeall®. (3.15)

k+1 —

Now suppose that 0 < 6 < 1,ie.,0<a; <O <ap <1.
From the relation (3.6), now we conclude

Teadint < mgpadis + (- a2)gi, 4, (3.16)
Denote K = 21K + (1 — a2)K;; then we finally get

Tp et < —KllgeallP. (3.17)

4. Convergence Analysis

Let Assumptions 3.1 and 3.2 hold.

In [7] it is proved that for any conjugate gradient method with the strong Wolfe line search, it holds:

Lemma 4.1. [7] Let Assumptions 3.1 and 3.2 hold. Consider the method (1.2), (1.3), where dy is a descent direction,
and ty is received from the strong Wolfe line search. If

1
= o0, (4.1)
; I
then
likm inf||gll = 0. (4.2)

Theorem 4.1. Consider the iterative method, defined by algorithm LSCDCC. Let all conditions of Theorem 3.1 hold.
Then either g = 0, for some k, or

lim inf lg¢/| = 0. (4.3)

Proof. Suppose that g # 0, for all k. Then we have to prove (4.3).
Suppose, on the contrary, that (4.3) doesn’t hold. Then there exists a constant ¢ > 0, such that

llgill > c. (4.4)

Let D be the diameter of the level set S.
From (3.1), we get

IB1II < 1BL] + IBSPI. (4.5)

It holds T
g k+1 Yk

T
—!]kSk

S||!7k+1||]!|]/k||s Fllyjzflll
|=g,sdl 1= g, sl

871 =
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where we have used (3.3). Applying the Lipschitz assumption, we get

PEPRULTY
| - gk5k|
Because of ||s¢|| < D, it yields that
I'LD
BL| < —.
| - 9k5k|

Using Theorem 3.1, we know that for LS method the sufficient descent condition holds, so it is possible
to satisfy strong Wolfe conditions.

Now we are going to prove that there exists t. > 0, such that t; > ¢, > 0, for all k.

Suppose, on the contrary, that there doesn’t exist any t., such that ¢, > t. > 0. Then there exists an infinite
subsequence t; = p*, k € K; such that

lim# = 0. (4.6)
keKy
Then
lim g =
kle%}ﬁ 0,

ie.
}{g}g (Jk = 1) = co.

But, now we get

flxe+ Bied) = f(xi) < 0B grdy, (4.7)
fla+ Brdy) = foa) > 0" gl dy. (4.8)
Remind that 6 < 1. From (4.8), we have
Fx + B tdr) — fxi)
pi

But, using the relation (4.6), from (4.9), we conclude that

> &g, di. 4.9)

gidi = dg{dy. (4.10)

But, LS method satisfies the sufficient descent condition, so ggdk < 0. Also, 6 < 1. So, the relation (4.10) is
correct only if gde = 0. Then, from the second strong Wolfe condition, we get that glfﬂdk =0, and then itis
the exact line search. So, we have a contradiction.

Now we can write

| = giskl = | = tgldel > .| — gl dil.
So, from the sufficient descent condition we can get
Ir'LD
B < ———, K’ > 0. 411
Pl = Rillgeal? @10
Now we use (4.4) and we get
T'LD
LS
1Bl < e (4.12)
Using the relation (4.12), we get
Ir'LD?

TLD
5,1l < llgksall + =D < T +

. 4.13
+ Kez2™ ~ K’¢c? (4.13)
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On the other side,
D 1l < llgisall + BEP Nlsill < T + 1BSPID. (4.14)
It also holds that

lgeal? _ T
| =glsil ~ 1= glsil

BP| = (4.15)

The sufficient descent condition holds for CD method too, so, analogically, we can get

r2 r2
Bl s < T
K"||gell> — K¢

44

K" >0,

SO

I?D
B <T + T (4.16)
Applying (3.5), we find that

TLD? 2D
d <I't — +T+ —,
Ml ST+ o + T+ 2o

wherefrom

1
= oo, 417
2 lde =~ *17)

so, applying Lemma 4.1, we conclude that

likm inf [|ggll = 0.

This is a contradiction with (4.4), so we have proved (4.3). O

5. Numerical Experiments

In this section we present the computational performance of a Mathematica implementation of LSCDCC
algorithm on a set of unconstrained optimization test problems from [5]. Each problem is tested for anumber
of variables: n =50, n =70, n = 80,n =90, n = 110, n = 120. The criterion used here is CPU time.

We present comparisons with CCOMB from [2], HYBRID from [3], LSCD from [23], the algorithm from
[13], which we call GN here, the algorithm from [16], which we call HuS here, the algorithm from [22],
which we call TAS here, using the performance profiles of Dolan and Moré [10]. The stopping criterion
of all algorithms is € < 107°. From the pictures below, we can conclude that LSCDCC algorithm behaves
similar to or better than CCOMB, LSCD, GN, HuS, HYBRID and TAS.
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Further, these methods are compared for n = 1000, n = 5000 and n = 10000 where the criterion is CPU
time again, and the corresponding results (the average CPU times of these methods) are given in the next

table.

Table 1.

n

1000 5000 10000

LSCDCC [ 42-10° [ 109,1-10° || 438,1-10°

LSCD

5.2-10% || 139.9-10° || 564.7-10°

HSDY 5.10° 128.7-10° || 516.4-10°

CCOMB | 49-10° || 124.2-10° || 498.2-10°

HuS 5-10° 129.2-10° || 518.3-10°
TAS 49-10° || 126,7-10° || 508.4-10°
GN 5-10° 127.2-10° || 510,4-103

From Table 1, we see that our method LSCDCC is comparable with the mentioned methods.

References

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]

[9]
[10]
(11]
[12]
(13]

(14]
[15]

[16]
[17]
(18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]
(26]

N. Andrei, 40 Conjugate Gradient Algorithms for unconstrained optimization, A survey on their definition, ICI Technical Report,
13/08, 2008.

N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization, Encyclopedia of Optimization, 2560-2571,
2009.

N. Andrei, A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and
Dai-Yuan, Studies in Informatics and Control, 17, 1 (2008), 55-70.

N. Andrei, Another hybrid conjugate gradient algorithm for unconstrained optimization, Numerical Algorithms, 47, 2 (2008),
143-156.

N. Andrei, An unconstrained optimization test functions, Advanced Modeling and Optimization. An Electronic International
Journal, 10 (2008), 147-161.

Y.H. Dai, Y.Yuan, Convergence properties of the Fletcher-Reeves method, IMA J. Numer. Anal., 16 (1996), 155-164.

Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999),
177-182.

Y.H.Dai, Han ]J.Y., Liu G.H., Sun D.F, Yin X., Yuan Y., Convergence properties of nonlinear conjugate gradient methods, SIAM
Journal on Optimization, 10 (1999), 348-358.

S. S. Dordevi¢, New hybrid conjugate gradient method as a convex combination of FR and PRP methods, Filomat, in press.

E. D. Dolan, J. . Moré, Benchmarking optimization software with performance profiles, Math. Programming, 91 (2002), 201-213.
R. Fletcher, Practical methods of optimization vol. 1: Unconstrained Optimization, John Wiley and Sons, New York, 1987.

R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154.

J. C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal of Optimiza-
tion, 2 (1992), 21-42.

W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific journal of Optimization, 2 (2006), 35-58.
M. R. Hestenes, E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952),
409-436.

Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods, J. Optim. Theory Appl., 71 (1991), 399-405.

Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, JOTA, 69 (1991), 129-137.

J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999.

E. Polak, G. Ribiére, Note sur la convergence de méthodes de directions conjugués, Revue Francaise d'Informatique et de Recherche
Opérationnelle, 16 (1969), 35-43.

B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), 94-112.

M. ]. D. Powell, Restart procedures of the conjugate gradient method, Mathematical Programming, 2 (1977), 241-254.

Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Vol. 1066, Springer-Verlag, Berlin, 1984, 122-141.

D. Touati-Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64 (1990), 379-397.

X. Yang, Z. Luo, X. Dai, A Global Convergence of LS-CD Hybrid Conjugate Gradient Method, Advances in Numerical Analysis,
2013 (2013), Article ID 517452, 5 pages.

P. Wolfe, Convergence conditions for ascent methods, SIAM Review, 11 (1969), 226-235.

P. Wolfe, Convergence conditions for ascent methods. 1I: Some corrections, SIAM Review, 11 (1969), 226-235.

G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming, J. Abadie, ed., North-
Holland, Amsterdam, (1970), 37-86.



