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A New Form of the Quintuple Product Identity and its Application
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Abstract. We give a new form of the quintuple product identity. As a direct application of this new form
a simple proof of known identities of Ramanujan and also new identities for other well known continued
fractions are given. We also give and prove a general identity for (§°"; 7).

1. Introduction

While working on the integral representation for a continued fraction of Ramanujan [20] which is
analogous to the famous Rogers-Ramanujan continued fraction R(g), I had the quintuple product identity
in an interesting new form. Later I found that this identity is very useful, as it unifies many identities of
Ramanujan and also gives new identities and, I think, they are not in the literature. I will give the proof of
this new form via Rogers-Fine identity. The well known identities of Ramanujan come as direct application
of this identity and I also give a new identity for (4°";4%").. Writing a paper on the quintuple product
identity must have a brief history of the identity.

Brief History

The quintuple product identity has a long history and, as Berndt [7, p.83] points out, it is difficult
to assign priority to it. Since the early 90s several authors gave different new proofs of the quintuple
product identity [8,9,10,12]. In the earlier work of Weierstrass on elliptic functions the quintuple product
identity was written implicitly in terms of sigma functions, see Schwarz’s book [18, p.47]. In Fricke’s book
[13, pp.432-433] the quintuple product identity is written in terms of theta functions. Watson [21] while
proving identities related to the Rogers-Ramanujan continued fraction and again while proving that p(n),
the number of partitions of 7, satisfies certain congruences modulo powers of 5 and 7, proved the quintuple
product identity. Bailey [6], who was conversant with Watson’s work, gave a simple proof of the identity.
Sears [19] in 1952 showed that the quintuple product identity follows from his earlier work. While proving
the conjecture of Dyson on p(n), Atkin and Swinnerton-Dyer [5] gave another proof of the identity. Andrews
[2] using s summation formula of Bailey gave another proof. Bhargava et al. [9] using Ramanujan’s 1y
summation formula gave yet another proof.
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Hirschhorn [15] gave a generalization of the quintuple product identity. Very recently, Kongsiriwong
and Liu [16] gave a proof using the cube root of unity. Detailed history was given by Berndt [7, p.83],

Hirschhorn [15] and very recently a comprehensive study by Cooper [11].
To start the work I need some notation :
If g and x are complex numbers with |g| < 1 and 7 an integer, let

)
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I state some of continued fractions for which the identities will be derived :
Celebrated Rogers-Ramanujan continued fraction [3,(1.1), p.186]
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Continued fraction of Ramanujan which is analogous to R(q) [20]:

R(g)
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C(q)

Cubic Continued Fraction of Ramanujan [4,(6.2.37), p.154]
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2. A New Form of the Quintuple Product Identity

I write the quintuple product identity in its new avtar as a theorem:

Theorem

) (_1)nqn(n—l)/2x2n ~ i (_1)nq(n2+3n+2)/2x—2n—2 _ (x2/. q)m(q/xz; q)oc(q/ q)oo
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Proof

The well known quintuple product identity [1, Th. 3.9] is as follows. For |q| <landx#0

Y (1R 4 ) = (<)oo (=/0)e0 @)oo (@3 PN (0/5% oo (2.2)

The five infinite product on the right-hand side of (2.2) justify the name.
The first step is very simple. From the definition of j(x, q) it can be easily shown that the right-hand side
of (2.2) equals
i(x2 o2
i(—x, q)](‘i ],q )
2
and by [14, eq.(1.14), p. 642]

I i3, 9)
j(x,q)
()0 (@50 ()0
(oo (g/X)c0

, (2.3)
which is the right-hand side of (2.1).

For the left-hand side we use the Rogers-Fine identity [1, p.564]:

— - t/b),b"t"g" (1 — atg™
Zb Zﬂ)n(a/ : q (1 - atg ) (2.4)
=0 ( )n+1 =0 ( )n+1(t)n+1
Writing x for b and x?/b for t in (2.4) and then taking limit as 2 — oo, we have
Z( 1 q(n n)/2 2n B i (_1)nq(3n n)/Z(x) xSn(l x2 Zn)
()41 - ()41
= ) DR, (1 + xg), (25)

=0

=

Writing q/x for b and q2 Jax* for t in (2.4) and then taking limit as 2 — oo, we have

Z ( 1)n (n2+3n)/2.,.—2n ~ i (_1)nq(3n2+5n)/2(q/x)”(1 _ q2n+2/x2)x73n
Q/x)nﬂ B (Q/x)nﬂ

Z(_l)nq(3n2+5n)/2(1 + qn+1 /x)x*3”
n=0
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(n +3n+2)/2 —2n-2

(-1)"q — 2 g
=y —1)" (Bn*+5n+2)/2 1+ n+1 X)x 3n 3' 26
Z T Zé( )'q (1+4"/x) (2.6)

The left-hand side of (2.2) is

Z(_l)nqn(Sn—l)/ZxSn(l + qnx) + Z(_l)nqn(Sn—l)/ZxSn(l + qnx) (27)
n=0 n=-1
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where we have written —n for 7 and then n + 1 for # in the second summation.
Invoking (2.5) and (2.6) in (2.8), we have

o n(n—1)/2,.2n q(n2+3n+2)/2 —2n-2

-1)"q x = (—1)" x
n n(3n— 1)/2 3n —
Z = 1) (1+ ( 9= Z ()n+1 nZ=O‘ (Q/x)nﬂ ' 29)

n=—oo

Now (2.3)and (2.9) prove the Theorem.

3. Applications of the Theorem

The quintuple product identity in its new form, stated as a Theorem in (2.1), unifies known identities of
Ramanujan for his celebrated Rogers-Ramanujan continued fraction R(g), which were proved by Andrews
[3] and also gives new identities for his cubic continued fraction G(q) and for the analogous continued
fraction C(g), also of Ramanujan.

(a) Identities for R(q)
(i) Making g — ¢° and taking x = g in (2.1), we have
© (_1)nq(5n2—n)/2 o (_1)nq(5n2+11n+6)/2

5. P R(q) = _ _ , 3.1
(T507)R(@) Z (3 3°)ne1 Z (@*% 3°)ns1 6D

n=0 n=0

which was proved by Andrews [3,(3.19),p 198].
(ii) Making ¢ — ¢° and taking x = 4% in (2.1), we have

1)nq(5n +3n)/ i 1)nq(5n +7n+2)/2

@ 9°)e0 (-
R() Z . Z G (32)

n=

which was proved by Andrews [3, (3.18), p. 198].
(b) Identity for Cubic Continued Fraction of Ramanujan [4, Cor.6.2.37, p.154]

(i) Making g — ¢° and taking x = g in (2.1), we have

(qZ; qZ)m(q6; q6)§o 1 ( 1)11 3n%—n Z ( 1 n Sn +7n+4 (3 3)
@GP Gla) & 4 @GO = (@ q6)n+1 ' '
As far as I know this is a new identity for the cubic continued fraction G(g).
(c) Identities for C(g), analogous to Rogers-Ramanujan Continued Fraction R(g)
(i) Making g — ¢* and taking x = g in (2.1), we have
) 2n 1 ;2n% +4n+2
4. 4 (_ (_1) q
oo —_— 34
(4% 7)Clg) = 2 T W D v (3.4)
As far as I know this is a new identity for C(g).
(d) A General Identity
(i) Taking x = g and making g4 — ¢° in (2.1), we have
o (_1)n (Bn2+n)/2 o (_1)n (3n2+5n)/2
@)= Y e = q Y (3.5)
(9 4°)ns1 pry (4% 9°)nn1

n=0
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(ii) Taking x = ¢ and making g — g° in (2.1), we have

— (—1)”q3”2+” °° (_1)nq3n2+5n
=) e ) e 3.6
(q q ) n=0 (qzl q6)71+1 q prr (q4, q6)n+1 ( )

(iii) We now give a general result.
Taking x = g™ and making g — ¢°" in (2.1), we have

o (_1)nq(3mn2+mn)/2 . o (_1)nq(3mnz+5mn)/2

(qu;qu)oo — Z — —q Z . (37)
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