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Abstract. In the present paper, we prove the convolutions of generalized harmonic right half-plane
mappings with harmonic vertical strip mappings are univalent and convex in the horizontal direction.
Moreover, some examples of harmonic univalent mappings convex in the horizontal direction are also
constructed to illuminate the main results.

1. Introduction

Let H denote the class of all complex-valued harmonic mappings f = h + 1 in the open unit disk
U = {z ∈ C : |z| < 1} normalized by f (0) = 0 = fz(0) − 1, where h and 1 are analytic in U and have the
following power series representation

h(z) = z +

∞∑
n=2

anzn and 1(z) =

∞∑
n=1

bnzn.

A function f ∈ H is locally univalent and sense-preserving in U if and only if the dilatation function
defined by ω(z) = 1′(z)/h′(z), satisfies |ω(z)| < 1 for all z ∈ U. Denote by SH the class of all sense-preserving
harmonic univalent mappings f = h+1 ∈ H and byS0

H the subclass of mappings f ∈ SH such that fz(0) = 0.
Further, denote byKH (respectivelyK0

H) the subclass of SH (respectively S0
H) mapping the unit diskU onto

convex domain.
A domain Ω ⊂ C is said to be convex in the direction γ, 0 ≤ γ < π, if every line parallel to the line joining

0 and eiγ has a connected intersection with Ω. In particular, if γ = 0, we say that Ω is convex in horizontal
direction (CHD). The basic theorem of Clunie and Sheil-Small [4] is as follows.
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Theorem A. Let f = h + 1 be harmonic and locally univalent in the unit diskU. Then f is univalent and its range
is CHD if and only if h − 1 has the same properties.

For two harmonic mappings

f = h + 1 = z +

∞∑
n=2

anzn +

∞∑
n=1

bnzn

and

F = H + G = z +

∞∑
n=2

Anzn +

∞∑
n=1

Bnzn,

define the harmonic convolution as

f ∗ F = h ∗H + 1 ∗ G = z +

∞∑
n=2

anAnzn +

∞∑
n=1

bnBnzn.

The properties of the harmonic convolutions is not as nice as that of the analytic convolutions. For
example, unlike the case of analytic mappings, convolution of two convex harmonic mappings is not
necessarily a convex harmonic mappings. But still convolutions of harmonic mappings exhibit some
fascinating properties. In the recent years, there has been a considerable interest in the study of planar
harmonic convolutions. See, for example [3, 6, 7, 10, 11, 13, 14, 18, 19, 22, 23]. In [1, 5] and [9], explicit
descriptions are given for half-plane mappings and strip mappings. If f = h + 1 ∈ S0

H maps U onto the
right half-plane R = {ω : Re(ω) > −1/2}, they must satisfy the following condition

h(z) + 1(z) =
z

1 − z
(z ∈ U).

Let f0 = h0 + 10 be the canonical right half-plane mapping with the dilatation ω0 = 1′0/h
′

0 = −z, then

h0 =
z − 1

2 z2

(1 − z)2 and 10 =
−

1
2 z2

(1 − z)2 .

A more general class of harmonic univalent mappings, Lc = Hc + Gc was introduced by Muir [20]:

Lc(z) = Hc(z) + Gc(z)

=
1

1 + c

[
z

1 − z
+

cz
(1 − z)2

]
+

1
1 + c

[
z

1 − z
−

cz
(1 − z)2

]
, (z ∈ U; c > 0).

(1)

Clearly, L1(z) = f0(z), where f0 = h0 + 10 with

h0 =
z − 1

2 z2

(1 − z)2 and 10 =
−

1
2 z2

(1 − z)2 .

It has been proved in [20] that Lc(z) map the unit diskU onto the generalized right half-plane, GR = {ω :
Re(ω) > −1/(1 + c)} for each c > 0. Then if F is analytic inU and F(0) = 0, we have

Hc(z) ∗ F(z) =
1

1 + c
[F(z) + czF′(z)] ,

Gc(z) ∗ F(z) =
1

1 + c
[F(z) − czF′(z)] .

(2)

As in the analytic case, results on convolution are useful in deriving properties of sections of harmonic
univalent mappings as demonstrated in the recent papers by Li and Ponnusamy [15–17] and also by Boyd
and Dorff [2] in which one can find new problems on harmonic convolution.
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Let fα = hα + 1α be the subclass of harmonic mappings obtained by shearing of analytic vertical strip
mapping

hα(z) + 1α(z) =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
, (

π
2
≤ α < π). (3)

In recent years, Dorff [6] and Dorff et al. [7] obtained the following results, respectively.

Theorem B. Let f1 = h1 +11 ∈ K
0
H be a right half-plane mapping and fα = hα+1α ∈ K

0
H be a vertical strip mapping

given by (3). If f1 ∗ fα is locally univalent and sense-preserving, then f1 ∗ fα ∈ S0
H and is convex in the horizonal

direction.

Theorem C. Let fα = hα + 1α ∈ K
0
H be given by (3) with the dilatation ω = 1′α/h′α = eiθzn. If n = 1, 2, then

f0 ∗ fα ∈ S0
H and is convex in the horizontal direction.

In this paper, we aim at proving the following results.

Theorem 1.1. Let Lc = Hc + Gc ∈ K
0
H be a mapping given by (1) and fα = hα +1α ∈ K

0
H be a harmonic vertical strip

mapping obtained from (3) with α ∈ [π2 , π) and dilatation ω(z) = eiθz, (θ ∈ R). Then Lc ∗ fα ∈ S0
H and is convex in

the horizontal direction for 0 < c ≤ 2.

Theorem 1.2. Let Lc = Hc + Gc ∈ K
0
H be a mapping given by (1) and fπ/2 = hπ/2 + 1π/2 be a harmonic vertical strip

mapping obtained from (3) with α = π/2 and dilatation ω(z) = 1′π/2/h
′

π/2 = eiθzn, (θ ∈ R,n ∈ N). Then Lc ∗ fπ/2 is
univalent and convex in the horizontal direction for 0 < c ≤ 2

n .

Kumar et al. [10] defined the harmonic mappings in the right half-plane Fa = Ha + Ga given by Ha(z) +
Ga(z) = z/(1− z) with dilatation ωa = (a− z)/(1− az), a ∈ (−1, 1). Then a calculation have the following form

Ha(z) =
1

1+a z − 1
2 z2

(1 − z)2 and Ga(z) =
a

1+a z − 1
2 z2

(1 − z)2 . (4)

In [11], Kumar et al. proved the following result.

Theorem D. Let Fa be given by (4) and fπ/2 = hπ/2 + 1π/2 be the map obtained from (3) with α = π/2 and dilatation
ω(z) = 1′π/2/h

′

π/2 = eiθzn, (θ ∈ R,n ∈N). Then Fa ∗ fπ/2 ∈ S0
H and convex in the horizontal direction for n−2

n+2 ≤ a < 1.

In [11], it is proved that Fa ∗ fπ/2 ∈ S0
H and is convex in the horizontal direction by using Cohn’s Rule and

Schur-Cohn’s algorithm [21]. Unfortunately, the calculation is very complicated and needs to be simplified
in some ways. In the present paper, we use Cohn’s Rule and combine with the inductive method to prove it,
which greatly simplifies the process of calculation.

2. Preliminaries

The following lemmas will be required in the proof of our main results.

Lemma 2.1. Let Lc = Hc + Gc ∈ K
0
H be a mapping given by (1) and fα = hα + 1α ∈ K

0
H be a harmonic vertical strip

mapping defined by (3) with dilatation ω = 1′α/ f ′α. Then the dilatation of Lc ∗ fα is given by

ω̃ =
[(1 + c)z2 + 2z cosα + (1 − c)]ω(1 + ω) − cz(z2 + 2z cosα + 1)ω′

[(1 + c) + 2z cosα + (1 − c)z2](1 + ω) − cz(z2 + 2z cosα + 1)ω′
. (5)
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Proof. Since

hα + 1α =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
and 1′α = ωh′α, we can solve for h′α and h′′α in terms of z and ω.

h′α =
1

(1 + ω)(1 + zeiα)(1 + ze−iα)
,

h′′α = −
ω′(1 + 2z cosα + z2) + 2(1 + ω)(cosα + z))

(1 + ω)2(1 + zeiα)2(1 + ze−iα)2
.

Then from (2), we obtain

ω̃ =
(Gc ∗ 1α)′

(Hc ∗ hα)′
=

(1α − cz1′α)′

(hα + czh′α)′

=
(1 − c)1′α − cz1′′α
(1 + c)h′α + czh′′α

=
(1 − c)ωh′α − cz(ω′h′α + ωh′′α )

(1 + c)h′α + czh′′α

=
[(1 + c)z2 + 2z cosα + (1 − c)]ω(1 + ω) − cz(z2 + 2z cosα + 1)ω′

[(1 + c) + 2z cosα + (1 − c)z2](1 + ω) − cz(z2 + 2z cosα + 1)ω′
.

This completes the proof.

By using a similar argument as in the proof of Theorem 7 in [6], we can derive the following result.

Lemma 2.2. Let Lc be given by (1) and fα = hα + 1α ∈ K
0
H be given by (3). If Lc ∗ fα is locally univalent and

sense-preserving, then Lc ∗ fα ∈ S0
H and is convex in the horizontal direction.

Lemma 2.3. ([21, Cohn’s Rule]) Given a polynomial

p(z) = p0(z) = an,0zn + an−1,0zn−1 + · · · + a1,0z + a0,0 (an,0 , 0)

of degree n, let

p∗(z) = p∗0(z) = znp(1/z) = an,0 + an−1,0z + · · · + a1,0zn−1 + a0,0zn.

Denote by r and s the number of zeros of p(z) inside the unit circle and on it, respectively. If |a0,0| < |an,0|, then

p1(z) =
an,0p(z) − a0,0p∗(z)

z
(6)

is of degree n − 1 with r1 = r − 1 and s1 = s the number of zeros of p1(z) inside the unit circle and on it, respectively.

Lemma 2.4. ([11, Lemma 2.3]) Let fα = hα + 1α ∈ K
0
H be a vertical strip mapping defined by (3) with dilatation

ω = 1′α/h′α and Fa = Ha + Ga be a mapping in the right half-plane defined by (4). Then ω∗, the dilatation of Fa ∗ fα is
given by

ω∗ =
2[a + (a + 1)z cosα + z2]ω(1 + ω) − (1 − a)(1 + 2z cosα + z2)zω′

2[1 + (a + 1)z cosα + az2](1 + ω) − (1 − a)(1 + 2z cosα + z2)zω′
. (7)

3. Proof of Theorems

In this section, we give proofs of our main results.

Proof of Theorem 1.1. By Lemma 2.2 and by Lewy’s Theorem, we just need to show that |ω̃| < 1,∀z ∈ U.
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Substituting ω = eiθz in (5) yields

ω̃ = ze2iθ z3 + 2 cosα+e−iθ

1+c z2 +
(1−c)(1+2e−iθ cosα)

1+c z − 2c−1
1+c e−iθ

1 + 2 cosα+eiθ

1+c z +
(1−c)(1+2eiθ cosα)

1+c z2 − 2c−1
1+c eiθz3

= ze2iθ p(z)
q(z)

= ze2iθ (z + A)(z + B)(z + C)

(1 + Az)(1 + Bz)(1 + Cz)
,

(8)

where

p(z) = z3 +
(2 cosα + e−iθ)

1 + c
z2 +

(1 − c)(1 + 2e−iθ cosα)
1 + c

z −
(2c − 1)

1 + c
e−iθ,

and

q(z) = z3p (1/z) = 1 +
(2 cosα + eiθ)

1 + c
z +

(1 − c)(1 + 2eiθ cosα)
1 + c

z2
−

(2c − 1)
1 + c

eiθz3.

We apply Cohn’s Rule to p(z), note that |a0,0| = | −
(2c−1)

1+c e−iθ
| = | 2c−1

1+c | < 1 = |a3,0| for 0 < c < 2, thus we have

p1(z) =
a3,0p(z) − a0,0q(z)

z

=
3c(2 − c)
(1 + c)2

[
z2 +

2(2 cosα + e−iθ)
3

z +
1 + 2e−iθ cosα

3

]
=

3c(2 − c)
(1 + c)2 q1(z),

where q1(z) = z2 +
2(2 cosα+e−iθ)

3 z + 1+2e−iθ cosα
3 . Since | 1+2e−iθ cosα

3 | ≤
1
3 + 2

3 | cosα| < 1 (note that α , π), then we
use Cohn’s Rule on q1(z) again, we get

p2(z) =
2
9

[
(4 − 2 cos2 α − 2 cosα cosθ)z + (2 cosα − 4e−iθ cos2 α − eiθ + 3e−iθ)

]
.

Clearly p2(z) has one zero at

z0 =
2 cosα − 4e−iθ cos2 α − eiθ + 3e−iθ

4 − 2 cos2 α − 2 cosα cosθ
=

1
2 cosα − e−iθ cos2 α − 1

4 eiθ + 3
4 e−iθ

1 − 1
2 cos2 α − 1

2 cosα cosθ
.

We show that |z0| ≤ 1, or equivalently,∣∣∣∣∣12 cosα − e−iθ cos2 α −
1
4

eiθ +
3
4

e−iθ
∣∣∣∣∣2 ≤ ∣∣∣∣∣1 − 1

2
cos2 α −

1
2

cosα cosθ
∣∣∣∣∣2 .

Then ∣∣∣∣∣1 − 1
2

cos2 α −
1
2

cosα cosθ
∣∣∣∣∣2 − ∣∣∣∣∣12 cosα − e−iθ cos2 α −

1
4

eiθ +
3
4

e−iθ
∣∣∣∣∣2

=
(1

4
cos4 α +

1
2

cosθ cos3 α − cos2 α +
1
4

cos2 θ cos2 α − cosθ cosα + 1
)

−

(
cos4 α − cosθ cos3 α −

7
4

cos2 α + cos2 θ cos2 α +
1
2

cosθ cosα −
3
4

cos2 θ + 1
)

= −
3
4

cos4 α+
3
2

cosθ cos3 α+
3
4

cos2 α−
3
4

cos2 θ cos2 α−
3
2

cosθ cosα +
3
4

cos2 θ

= −
3
4

(cos2 α − 1)(cosα − cosθ)2
≥ 0.
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If c = 2, then by (8), we have

ω̃ = ze2iθ z3 + 2 cosα+e−iθ

3 z2
−

(1+2e−iθ cosα)
3 z − e−iθ

1 + 2 cosα+eiθ

3 z − (1+2eiθ cosα)
3 z2 − eiθz3

= −zeiθ.

Hence, |ω̃(z)| < 1.
Therefore, by Cohn’s Rule, p(z) has all its three zeros in U, that is A,B,C ∈ U and so |ω̃(z)| < 1 for all

z ∈ U. The proof is now completed. �
If we take α = π/2 in (3), we prove that Lc ∗ fπ/2 ∈ S0

H and is convex in the horizontal direction for
0 < c ≤ 2/n and for all n ∈N.
Proof of Theorem 1.2. By Lemma 2.2, it suffices to show that the dilatation of Lc ∗ fπ/2 satisfies |ω̃1| < 1 for
all z ∈ U. Substituting α = π/2 into the equation (5), we have

ω̃1 =
[(1 + c)z2 + (1 − c)]ω(1 + ω) − cz(z2 + 1)ω′

[(1 + c) + (1 − c)z2](1 + ω) − cz(z2 + 1)ω′
. (9)

Setting ω = eiθzn in (9), we get

ω̃1 = e2iθzn zn+2 + 1−c
1+c zn +

1+(1−n)c
1+c e−iθz2 +

1−(1+n)c
1+c e−iθ

1 + 1−c
1+c z2 +

1+(1−n)c
1+c eiθzn +

1−(1+n)c
1+c eiθzn+2

= e2iθzn p(z)
p∗(z)

,

(10)

where

p(z) = zn+2 +
1 − c
1 + c

zn +
1 + (1 − n)c

1 + c
e−iθz2 +

1 − (1 + n)c
1 + c

e−iθ (11)

and

p∗(z) = zn+2p(1/z) = 1 +
1 − c
1 + c

z2 +
1 + (1 − n)c

1 + c
eiθzn +

1 − (1 + n)c
1 + c

eiθzn+2.

Firstly, we will show that |ω̃1| < 1 for c = 2/n. In this case, substituting c = 2/n into the equation (10),
yields

ω̃1 = e2iθzn
zn+2 +

1− 2
n

1+ 2
n

zn +
1+(1−n) 2

n

1+ 2
n

e−iθz2 +
1−(1+n) 2

n

1+ 2
n

e−iθ

1 +
1− 2

n

1+ 2
n

z2 +
1+(1−n) 2

n

1+ 2
n

eiθzn +
1−(1+n) 2

n

1+ 2
n

eiθzn+2

= e2iθzn zn+2 + n−2
n+2 zn

−
n−2
n+2 e−iθz2

− e−iθ

1 + n−2
n+2 z2 − n−2

n+2 eiθzn − eiθzn+2

= −eiθzn.

Hence, |ω̃1| < 1.
Next, we will show that |ω̃1| < 1 for 0 < c < 2/n. Obviously, if z0 is a zero of p(z), then 1/z0 is a zero of

p∗(z). Then we can write

ω̃1 = e2iθzn (z + A1)(z + A2) · · · (z + An+2)

(1 + A1z)(1 + A2z) · · · (1 + An+2z)
.
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By Cohn’s Rule, we need to show that all the zeros of (11) lie inU = {z ∈ C : |z| ≤ 1} for 0 < c < 2/n. Since

|a0,0| = |
1 − (1 + n)c

1 + c
e−iθ
| = |

1 − (1 + n)c
1 + c

| < |an+2,0| = 1

for 0 < c < 2/n, we have

p1(z) =
an+2,0p(z) − a0,0p∗(z)

z

=
(n + 2)(2 − nc)cz

(1 + c)2

(
zn +

n
n + 2

zn−2 +
2

n + 2
e−iθ

)
.

Since 0 < c < 2/n, we have (n + 2)(2 − nc)c/(1 + c)2 > 0. Let

q1(z) = zn +
n

n + 2
zn−2 +

2
n + 2

e−iθ, (12)

since

|a0,1| = |
2

n + 2
e−iθ
| < 1 = |an,1|,

by using (6) on q1(z) again, we obtain

p2(z) =
an,1q1(z) − a0,1q∗1(z)

z

=
n(n + 4)z
(n + 2)2

(
zn−2 +

n + 2
n + 4

zn−4
−

2
n + 4

e−iθ
)
.

Let q2(z) = zn−2 + n+2
n+4 zn−4

−
2

n+4 e−iθ. Then |a0,2| = |
2

n+4 e−iθ
| < 1 = |an−2,2| and we have

p3(z) =
an−2,2q2(z) − a0,2q∗2(z)

z

=
(n + 2)(n + 6)z

(n + 4)2

(
zn−4 +

n + 4
n + 6

zn−6 +
2

n + 6
e−iθ

)
.

By means of the mathematical induction, we claim that

pk(z) =
[n + 2(k − 2)](n + 2k)z

[n + 2(k − 1)]2

(
zn−2(k−1) +

n + 2(k − 1)
n + 2k

zn−2k +
2(−1)k+1

n + 2k
e−iθ

)
.

If we take n = 2k, then

pk(z) =
4k(4k − 4)z
(4k − 2)2

(
z2 +

2k − 1 + (−1)k+1e−iθ

2k

)
=

4k(k − 1)z
(2k − 1)2

(
z2 +

2k − 1 − ei(kπ−θ)

2k

)
.

Obviously, | 2k−1−ei(kπ−θ)

2k | ≤ 1, so the two zeros of z2 + 2k−1−ei(kπ−θ)

2k lie in U. Then by Cohn’s Rule, we know that
all zeros of (11) lie inU.

If we take n = 2k + 1, then

pk(z) =
(4k − 3)(4k + 1)z

(4k − 1)2

(
z3 +

4k − 1
4k + 1

z −
2ei(kπ−θ)

4k + 1

)
.
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Let qk(z) = z3 + 4k−1
4k+1 z − 2ei(kπ−θ)

4k+1 . Then |a0,k| = |
2ei(kπ−θ)

4k+1 | < 1 = |a3,k|, by using Cohn’s Rule again, we have

pk+1(z) =
a3,kqk(z) − a0,kq∗k(z)

z

=
(4k + 3)(4k − 1)

(4k + 1)2

(
z2 +

2ei(kπ−θ)

4k + 3
z +

4k + 1
4k + 3

)
.

Let qk+1(z) = z2 + 2ei(kπ−θ)

4k+3 z + 4k+1
4k+3 , then |a0,k+1| =

4k+1
4k+3 < 1 = |a2,k+1| and we have

pk+2(z) =
a2,k+1qk+1(z) − a0,k+1q∗k+1(z)

z

=
8(2k + 1)
(4k + 3)2

(
z +

(4k + 3)ei(kπ−θ)
− (4k + 1)e−i(kπ−θ)

4(2k + 1)

)
.

Then z0 = −
(4k+3)ei(kπ−θ)

−(4k+1)e−i(kπ−θ)

4(2k+1) is a zero of pk+2(z), and

|z0| =

∣∣∣∣∣∣ (4k + 3)ei(kπ−θ)
− (4k + 1)e−i(kπ−θ)

4(2k + 1)

∣∣∣∣∣∣ ≤ (4k + 3) + (4k + 1)
4(2k + 1)

= 1.

So z0 lies inside or on the unit disk |z| = 1, by Cohn’s Rule, we know that all zeros of (11) lie inU. The proof
is completed. �

Proof of Theorem D. By Theorem B, it suffices to show that the dilatation of Fa ∗ f satisfies |ω1| < 1 for all
z ∈ U. Substituting α = π/2 in (7), we derive

ω1 =
2(a + z2)ω(1 + ω) − (1 − a)(1 + z2)zω′

2(1 + az2)(1 + ω) − (1 − a)(1 + z2)zω′
(13)

Setting ω = eiθzn into eq. (13), yield

ω1 =
2ω(1 + ω)(a + z2) − zω′(1 − a)(1 + z2)
2(1 + az2)(1 + ω) − zω′(1 − a)(1 + z2)

= e2iθzn zn+2 + azn +
2−n(1−a)

2 e−iθz2 +
2a−n(1−a)

2 e−iθ

1 + az2 +
2−n(1−a)

2 eiθzn +
2a−n(1−a)

2 eiθzn+2

= e2iθzn p(z)
p∗(z)

,

(14)

where

p(z) = zn+2 + azn +
2 − n(1 − a)

2
e−iθz2 +

2a − n(1 − a)
2

e−iθ (15)

and

p∗(z) = zn+2p(1/z) = 1 + az2 +
2 − n(1 − a)

2
eiθzn +

2a − n(1 − a)
2

eiθzn+2.

Now, consider the case in which a = n−2
n+2 . Then eq. (14) yields

ω1 = e2iθzn zn+2 + n−2
n+2 zn

−
n−2
n+2 e−iθz2

− e−iθ

1 + n−2
n+2 z2 − n−2

n+2 eiθzn − eiθzn+2

= −eiθzn.
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Hence |ω1| < 1.
Next, consider the case in which n−2

n+2 < a < 1. Note that p∗(z) = zn+2p(1/z), if z0 is a zero of p(z), then 1/z0
is a zero of p∗(z). Hence

ω1 = e2iθzn (z + A1)(z + A2) · · · (z + An+2)

(1 + A1z)(1 + A2z) · · · (1 + An+2z)
.

By Lemma 2.3, it suffices to show that all zeros of (15) lie inside or on the closed unit disk. Since
|a − n(1−a)

2 | = |a0,0| < |an+2,0| = 1 for n−2
n+2 < a < 1, using Cohn’s Rule, we have

p1(z) =
an+2,0p(z) − a0,p∗(z)

z

=
(1 − a)(n + 2)[(2 + n)a − (n − 2)]z

4

(
zn +

n
n + 2

zn−2 +
2

n + 2
e−iθ

)
.

Since n−2
n+2 < a < 1, we have 1

4 (1 − a)(n + 2)[(2 + n)a − (n − 2)] > 0. Let

q1(z) = zn +
n

n + 2
zn−2 +

2
n + 2

e−iθ,

we can use Cohn’s Rule on q1(z) again, then the same as proof of Lemma 1.2 eq. (12), we know that all zeros
of q1(z) lie in the closed unit disk. By Cohn’s Rule, p(z) has all its n + 2 zeros in the closed unit disk, and so
|ω1| < 1 for all z ∈ U. �

4. Some Examples

In this section, three examples are provided to illustrate the obtained results.

Example 4.1. In Theorem 1.1, if we take c = 2, then by (1), we have

L2(z) = H2 + G2

=
1
3

[
z

1 − z
+

2z
(1 − z)2

]
+

1
3

[
z

1 − z
−

2z
(1 − z)2

]
= Re

{2
3

z
1 − z

}
+ i Im

{
4
3

z
(1 − z)2

}
.

Let f1 = h1 + 11, where h1 + 11 = 1
2i sinα log

(
1+zeiα

1+ze−iα

)
with ω1 = 1′1/h

′

1 = z and α = 2π
3 . By shearing we get

h′1 + 1′1 =
1

(1 + ze
2π
3 i)(1 + ze−

2π
3 i)
, and

h1 =
1
3

log(1 + z) −
1
6

log(1 − z + z2) −
i

2
√

3
log

(
1 + ze

2π
3 i

1 + ze−
2π
3 i

)
,

11 = −
1
3

log(1 + z) +
1
6

log(1 − z + z2) −
i

2
√

3
log

(
1 + ze

2π
3 i

1 + ze−
2π
3 i

)
.

Hence

f1 = Re
{

1
√

3i
log

(
1 + ze

2π
3 i

1 + ze−
2π
3 i

)}
+ i Im

{2
3

log(1 + z) −
1
3

log(1 − z + z2)
}
.
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By (2), we have

L2 ∗ f1 = H2 ∗ h1 + G2 ∗ 11

=
1
3

[
h1 + 2zh′1

]
+

1
3

[
11 − 2z1′1

]
=

1
3

Re
{

1
√

3i
log

(
1 + ze

2π
3 i

1 + ze−
2π
3 i

)
+

2z(1 − z)
(1 − z + z2)(1 + z)

}
+

i
3

Im
{2

3
log(1 + z) −

1
3

log(1 − z + z2) +
2z

1 − z + z2

}
.

By Theorem 1.1, we know that L2 ∗ f1 is univalent and convex in the horizontal direction. The image ofU under
L2, f1 and L2 ∗ f1 are shown in Figure 1, Figure 2 and Figure 3, respectively.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1: Image of L2(z).
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-1.0

-0.5

0.5

1.0

Figure 2: Image of f1(z).
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-1.0

-0.5

0.5

1.0

Figure 3: Image of L2(z) ∗ f1(z).

Example 4.2. Let c = 2/3 in Theorem 1.2. Then by (2), we have

L2/3(z) = H2/3 + G2/3

=
3
5

[
z

1 − z
+

2
3

z
(1 − z)2

]
+

3
5

[
z

1 − z
−

2
3

z
(1 − z)2

]
= Re

{6
5

z
1 − z

}
+ i Im

{
4
5

z
(1 − z)2

}
.
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Let f2 = h2 + 12 be the harmonic mapping with ω2 = 1′2/h
′

2 = −z3, where h2 + 12 = 1
2i log

(
1+iz
1−iz

)
. By shearing, we

get

h2 = −
i
4

log
(1 + iz

1 − iz

)
−

1
6

log(1 − z) −
1
4

log(1 + z2) +
1
3

log(1 + z + z2),

12 = −
i
4

log
(1 + iz

1 − iz

)
+

1
6

log(1 − z) +
1
4

log(1 + z2) −
1
3

log(1 + z + z2).

Then

f2 = Re
{ 1

2i
log

(1 + iz
1 − iz

)}
+ i Im

{
−

1
3

log(1 − z) −
1
2

log(1 + z2) +
2
3

log(1 + z + z2)
}
.

By (2), we derive

L2/3 ∗ f2 = H2/3 ∗ h2 + G2/3 ∗ 12

=
3
5

[
h2 +

2
3

zh′2
]

+
3
5

[
12 −

2
3

z1′2

]
=

3
5

Re
{

1
2i

log
(1 + iz

1 − iz

)
+

2
3

z(1 + z3)
(1 + z2)(1 − z3)

}
+

3i
5

Im
{
−

1
3

log(1 − z) −
1
2

log(1 + z2) +
2
3

log(1 + z + z2) +
2
3

z
1 + z2

}
.

In view of Theorem 1.2, we know that L2/3 ∗ f2 is univalent and convex in the horizontal direction. The image of
U under L2/3, f2 and L2/3 ∗ f2 are shown in Figure 4, Figure 5 and Figure 6, respectively.

-1.0 -0.5 0.5 1.0

-1.0
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0.5

1.0

Figure 4: Image of L2/3(z).
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Figure 5: Image of f2(z).
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Figure 6: Image of L2/3 ∗ f2(z).

Example 4.3. Let c = 1/2. Then by (2), we have

L1/2(z) = H1/2 + G1/2

=
2
3

[
z

1 − z
+

1
2

z
(1 − z)2

]
+

2
3

[
z

1 − z
−

1
2

z
(1 − z)2

]
= Re

{4
3

z
1 − z

}
+ i Im

{
2
3

z
(1 − z)2

}
.

Let f3 = h3 + 13, where h3 + 13 = 1
2i sinα log

(
1+zeiα

1+ze−iα

)
with ω3 = 1′3/h

′

3 = −z4 and α = 3π
4 . We get

h′3 + 1′3 =
1

(1 + ze
3π
4 i)(1 + ze−

3π
4 i)

=
1

1 −
√

2z + z2
,

and then

h3 =
1

2
√

2i
log

(
1 + ze

3π
4 i

1 + ze−
3π
4 i

)
−

2 +
√

2
8

log(1 − z) +
2 −
√

2
8

log(1 + z) +

√
2

8
log(1 + z2),

13 =
1

2
√

2i
log

(
1 + ze

3π
4 i

1 + ze−
3π
4 i

)
+

2 +
√

2
8

log(1 − z) −
2 −
√

2
8

log(1 + z) −

√
2

8
log(1 + z2).

So

f3 = h3 + 13

= Re
{

1
√

2i
log

(
1 + ze

3π
4 i

1 + ze−
3π
4 i

)}
+ i Im

{
−

2 +
√

2
4

log(1 − z) +
2 −
√

2
4

log(1 + z) +

√
2

4
log(1 + z2)

}
.

By (2), we have

L1/2 ∗ f3 = H1/2 ∗ h3 + G1/2 ∗ 13

=
2
3

[
h3 +

1
2

zh′3
]

+
2
3

[
13 −

1
2

z1′3

]
=

2
3

Re
 1
√

2i
log

(
1 + ze

3π
4 i

1 + ze−
3π
4 i

)
+

1
2

z(1 + z4)

(1 − z4)(1 −
√

2z + z2)


+

2i
3

Im
{
−

2 +
√

2
4

log(1 − z) +
2 −
√

2
4

log(1 + z) +

√
2

4
log(1 + z2) +

1
2

z

1 −
√

2z + z2

}
.
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The image ofU under L1/2, f3 and L1/2 ∗ f3 are shown in Figure 7, Figure 8 and Figure 9, respectively. As seen in
Figure 9, L1/2 ∗ f3 is univalent and convex in the horizontal direction.
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Figure 7: Image of L1/2(z).
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Figure 8: Image of f3(z).
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Figure 9: Image of L1/2 ∗ f3(z).

Combining Theorem 1.1, Theorem 1.2 and Example 4.3, we propose the following problem.

Problem 4.4. Let Lc = Hc + Gc ∈ K
0
H be a mapping given by (1). If fα = hα + 1α ∈ K

0
H with hα + 1α =

1
2i sinα log

(
1+zeiα

1+ze−iα

)
(π2 ≤ α < π) and ω(z) = 1′α/h′α = eiθzn(θ ∈ R,n ∈ N). Then Lc ∗ fα ∈ S0

H and is convex in the
horizontal direction for 0 < c ≤ 2

n .
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