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On k-Circulant Matrices with Arithmetic Sequence

Biljana Radicié?

*University of Belgrade, Serbia

Abstract. Let k be a nonzero complex number. In this paper we consider k-circulant matrices with
arithmetic sequence and investigate the eigenvalues, determinants and Euclidean norms of such matrices.
Also, for k = 1, the inverses of such (invertible) matrices are obtained (in a way different from the way
presented in [1]), and the Moore-Penrose inverses of such (singular) matrices are derived.

1. Introduction

By C"™" and C/™" we denote the set of all m X n complex matrices and the set of all m X n complex
matrices of rank 7, respectively. Similarly, R"*" denotes the set of all m X n real matrices and R7*" denotes
the set of all m X n real matrices of rank r. Let C € C"™". The eigenvalues, rank, determinant and the
Euclidean (or Frobenius) norm of C are denoted by Aj, j=0, n — 1, 7(C), |C| and ||C||g, respectively. Symbols
C*, Ci, and Cy; stand for the conjugate transpose of C, the i’ row of C and the j column of C, respectively.
O denotes the zero matrix of appropriate dimensions.

Let C be a complex matrix of order n such that (co, c1,ca, ..., cu-1) is its first row and k€ C\{0}. Then C is
called a k-circulant matrix if C satisfies the following conditions:

Cii i<j . .

J— i = — —
Cij= . i=2,n,j=1n
< {kcn+ji, otherwise ’ ( o, j=1,m)

i.e. C has the following form:

Co C1 C2 e Cn—2 Cn—1 |
ke,—1 o €1 ... Cp—3z Cp—p
kcn_z kCn_l co ... Cp—4 Cp-3
C= @
kCz kC3 kC4 . Co C1
kC1 kCz kCg e kCnfl Co

Let Cbe a k-circulant matrix and (co, ¢1, ¢3, . . ., ¢;—1) isits first row, then we shall write C = circ, {x(co, ¢1,¢2, - - -, Cu—1)}.
If the order of a matrix is known, then the designation for the order of a matrix can be omitted. Instead of
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"C is a 1-circulant matrix” we say ”C is a circulant matrix”. Instead of ”C is a —1-circulant matrix” we say "C is
an anti-circulant matrix” or ”C is a negacyclic matrix”.

In [9] R. E. Cline, R. ]. Plemmons and G. Worm considered k-circulant matrices. Namely, they proved
the following lemmas which yield necessary and sufficient conditions for a complex square matrix to be a
k-circulant matrix.

Lemma 1.1. (Lemma 2. [9]) Let ke C\ {0} and W =circ,{x(0,1,0,...,0)}. Then a complex matrix C of order n
is a k-circulant matrix if and only if it commutes with W. In this case C can be expressed as

n—-1

C= Z Wi )

i=0
where (cy, c1,¢2,...,cu-1) is the first row of C.

Lemma 1.2. (Lemma 3. [9]) Let ¢ be any n*" root of k and

1.0 0 0 0
0 ¢ 0 0 0
00 y? 0 0

W= : .

00 0 -~ y"2 0
o0 0 -~ 0 gyl

Then a matrix C is a k-circulant matrix if and only if
C=wQy! 3)
for some circulant matrix Q.

In this paper we shall investigate the eigenvalues of k-circulant matrices with arithmetic sequence,
among other things, and we need the following lemma.

Lemma 1.3. (Lemma 4. [9]) Let C be a k-circulant matrix. Then the eigenvalues of C are:

n-1

A=Y ey, j=0,n-1, @

i=0

where (co, c1,¢2, .. .,Cn-1) is the first row of C, ¢ is any n'" root of k and w is any primitive n'" root of unity.
Moreover, in this case

n—1
1 . N
.__Z (Voo N j= _
cz—njzo/\](t/)a) )y, i=0,n-1. (5)

In [9] the authors also investigated generalized inverses (see [2] and [11]) of k-circulant matrices. The
inverse C~! of (an invertible) k-circulant matrix C is always k-circulant, but the Moore-Penrose inverse C'
(i-e. the unique matrix which satisfies CC'C = C, C'CC' = Ct, (CC")* = CC" and (C'C)* = C'C) of (a singular)
k-circulant matrix C need not be k-circulant. Namely, they proved the following theorem.

Theorem 1.1. (Theorem 3. [9]) Let C be a singular k-circulant matrix. Then C" is k-circulant if and only if k
lies on the unit circle.

They did not solve the problem of characterizing C' for an arbitrary k-circulant matrix C. That problem
was solved by E. Boman in [3].

In [7] the author investigated the eigenvalues, determinants, Euclidean norms and spectral norms
of circulant matrices with geometric sequence and their inverses. The eigenvalues and determinants of
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circulant matrices with binomial coefficients were determined in [13], and the spectral norms and Euclidean
norms of such matrices were derived in [12]. In [15] ([4]) the authors investigated the determinants and
inverses of circulant matrices with Fibonacci and Lucas numbers (with Jacobsthal and Jacobsthal-Lucas
numbers) while the eigenvalues and Euclidean norms of circulant matrices with Fibonacci sequence were
obtained by Bueno in [8] and the Euclidean norms of circulant and anti-circulant matrices with Jacobsthal
and Jacobsthal-Lucas sequence were obtained in [10]. In [10] the author also investigated the eigenvalues,
determinants, Euclidean norms and spectral norms of circulant and anti-circulant matrices with modified
Pell numbers, while the determinants and inverses of circulant matrices with Pell and Pell-Lucas numbers
were derived in [6]. The paper [5] is devoted to obtaining the determinants and inverses of k-circulant
matrices associated with a number sequence. Circulant matrices with arithmetic sequence were considered
in [1]. In this paper we consider k-circulant matrices with arithmetic sequence. The main aim of this paper is
to obtain the formulae for the eigenvalues, determinants and Euclidean norms of k-circulant matrices with
arithmetic sequence. Also, we shall obtain the inverse of (an invertible) circulant matrix with arithmetic
sequence (the result of Theorem 2.6 [1]) using the new method (for obtaining the inverse of an invertible
k-circulant matrix) which was illustrated in [14].

Lemma 1.4. (Lemma 2.2. [14]) Let C=circ{x(co, c1,c2, . .., cn-1)} be an invertible matrix with complex entries.
Then C™! =circ{i(cgy, ¢7, ¢, - -+, 1)}, where (g, ¢}, ¢}, ..., ¢, _,) is the unique solution of the following system
of linear equations:

X0 1
kxn_l 0

cl . =|.| (6)
kX1 0

Using the full-rank factorization of matrices, the Moore-Penrose inverse C' (i.e. the unique matrix which
satisfies CCTC = C, C'CC' = C', (CC")* = CC' and (C'C)* = C'C) of (a singular) circulant matrix C with
arithmetic sequence will be derived. Namely,

Lemma 1.5. (Lemma 5. [2], p. 22) Let CeC/™", r>0. Then there exist matrices M € C/*" and N € C/*" such
that

C=MN. (7)
A factorization (7) with the properties stated in Lemma 1.5 is called a full-rank factorization of C.

Let us mention two ways to obtain a full-rank factorization of C.

i) Choose the columns of M as any maximal linearly independent set of columns of C, and then N is uniquely
determined by (7);

if) Choose the rows of N as any maximal linearly independent set of rows of C, and then M is uniquely
determined by (7).

Theorem 1.2. (Theorem 5. [2], p. 23) (MacDuffee) If CeC}™", r>0, has the full-rank factorization (7), then
Ct = N‘(M"MNN*)"'M". (8)

Before we present our main results, let us recall that an arithmetic sequence is a sequence having the
following form:

ag=a,ay=a+d, ax=a+2d,a3=a+3d, ... )

where 1 € R and d e R\ {0}. As we can see the difference between the consecutive terms of an arithmetic
sequence is constant. For example, the sequence

3

NI N
NI \©

, 4, =,5, ...
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is an arithmetic sequence (2 =3, d=1). The sum of the first n terms of an arithmetic sequence is given by
the following formula:

n-1
4= 50 +a,-0), (10)
i=0
i.e.
n-1
Y o= g [2a0 + (1 — 1)d] . 11)
i=0

Our main results will be presented in the next section.

2. Main Results

Throughout this section, ¢ is any n root of k€ C\{0} and w is any primitive n' root of unity i.e. w = e
First, we investigate the eigenvalues of
circfe(@aa+d,...,a+ n—1)d)}, (12)
where a€R and d € R\ {0}.

Theorem 2.1. Let A be a matrix of the form (12). Then the eigenvalues of A are given by the following
formulae:

1) If w7 =1, then

A= g [2a + (n — 1)d], (13)
2) If Y/ #1, then
k-1 Yo I(1 + nk — k) — nk
Aj=a e + 0= ga ) (14)

Proof.

1) Suppose that ™/ =1. Then, using Lemma 1.3, we obtain

n-1

Y aigay
=0
-1

- Y

Aj

=

0
[2a+ (n - 1)d],

N =

2) Suppose that Y~/ #1 and let x:=¢w~/. Then, using Lemma 1.3, we obtain
n-1

Aj ai(pw™l)

Il
1
=
+
§;:
RN



B. Radicié / Filomat 31:8 (2017), 2517-2525 2521

n

= ai__l +dx(1+2x+3x% + ...+ (n—1)x"72)
k-1 x—x"y

B ax—1+dx(1—x)

k-1 (1-nx"H(1 —x)+x—x"

T (1-07

B ak—1+dxl—x—nx”‘1+nk+x—k

o x-1 (1-x)?

B ak—1+dx—nk+xnk—xk

o x-1 (1 -x)?

k-1 x(1 + nk — k) — nk

a ax—1+d (1-x)?

_ . kfl +d¢a)‘j(1+nk—4k)—nk.
Yo /=1 (1= yYaw)?

Remark 2.1. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.1 [1]).
Now, we obtain the determinant of the matrix in (12).

Theorem 2.2. Let A be a matrix of the form (12). Then the determinant of A is:

n-1

|A| - aqn—l + (_1)n—1kd2 [Z(_l)i—lirn—(i+l)qi—l

i=1

, (15)

where g:=(1 —k)a —nkd and r:=(k—1)a + [1 + (n — 1)k] d.
Proof. Applying the properties of the determinant to the determinant of A we obtain the following equalities:

a a+d a+2d - a+n-2d a+m-1)d
kla+ (n—-1)d] a a+d a+n-3d a+m-2)d
kla+(n—-2)d] kla+ (n-1)d] a a+(n—4)d a+m-3)d

|A|= . . . . ) )
k[aJ.er] k[ﬂ-;—?)d] k[ﬂ-;—4d] é ﬂ-;-d
kla+d] kla + 2d] kla+3d] --- kla+(n-1)d] a
a d 2d -+ (m-2d (mn-1)d
0 g r - 0 0
0o 0 g - 0 0
000 g r
kd 0 0 --- 0 q

where g:=(1 — k)a —nkd and r:=(k — 1)a + [1 + (n — 1)k] d.

Therefore,

Al = ag"" + (<1 [ = 20+ 3R L+ (<) 2 = 1)

n-1
aqn—l + (_l)n—lde {Z(—l)i_li?‘n_(ﬂl)qi_ﬂ o

i=1
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Remark 2.2. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.4 [1]).

In order to obtain the Euclidean norm of the matrix in (12) we shall use the following formulae:

Z 2 w (16)
i=1
and ; R
= [”(”; 1)] . (17)
i=1

1
- 2
Recall that the Euclidean norm of C= [Ci,j] eC™" is ||IC|lg= [ Z | cij IZ] .
ij=1
Theorem 2.3. Let A be a matrix of the form (12). Then the Euclidean norm of A is:

2
Al = ) 1 P Dad] L 2 D A ) g
Proof.
WAle? = ) laiP
ij=1
= na®+[(n—1)+ k| [a+d +... [LMn DIKP] [a + (n = 1)d]’
n n—1 n—-1 n—-1
= aZ[ZinFZi}rzad[Zz(n 1)+|k|2 }erz[ 2(n 1)+|k|2213
i=1 i=1 i=1 i=1
[ n—1 n-1 n— n-1 n-1 n-1
= a Zz+|k|221 +2ad[n i— Zi2+|k|2 1zl+d2 [n 2 - 2+ |k? z3l
li=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1
_ P2 n(n+1)+|k|2(n—1)n 2ad (n=1)n(n+1) |k|2(n—1)n(2n—1) N
2 2 6 6
,[(=1)n?(m+1) | ,(n—1)*n?
d » 1 + k] 1
_n, 2 B n+1 22;1—1] (n—1)n? 2[n+1 2 ]
= Sl 14K 1ﬂ+@z]ym4 ke | B R | e - )
Therefore,

|k|22n 1] (n— 1)n2dz[n+1

Al = \/— a2[n+1+kP2(n-1)]+(n- 1)nad[n +1

|M%n—1ﬂ. o

Remark 2.3. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.3 [1]).
Remark 2.4. It follows from Theorem 2.4 [1] (or Theorem 2.2, for k = 1) that

circf(a,a+d,a+2d,...,a+ n—-1)d)}, (19)

where 2€R and 4 €IR\{0}, is an invertible matrix if and only if

a+5%1d¢0. (20)
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The inverse of the matrix in (19) was obtained in [1] (see Theorem 2.6 [1]), but in this paper we obtain
the inverse of the matrix in (19) using Lemma 1.4.
Theorem 2.4. Let A be an invertible matrix of the form (19). Then the inverse of A is:
2_p-2 2_p42
na+"===d na+ =5+ d
d ’ d

1
L L R— circ,{(—

Cn2(a+ )

1D (21)

Proof. Let Al= circ{(ag,ay, a5, ..., a,_,)}. Based on Lemma 1.4 (a4}, a;,...,a),_,) is the unique solution of the
following system of linear equations:

X0 1
Xn—-1 0

Al =] (22)
X1 0

Applying elementary row operations to the augmented matrix, we get:

a a+d a+2d ... a+(n-2)d a+m-1)d 1]
a+((n-1)d a a+d ... a+(m-3)d a+(n-2)d 0
_ la+(n-2)d a+n-1)d a . a+(n—-4)d a+m-3)d 0
A= . ) . . . . .
a+2d a+3d a+4d ... a a+d 0
a+d a+2d a+3d ... a+(n-1d a 0]
a a+d a+2d ... a+(n-3)d a+m-2)d a+mn-1)d 1]
—-n-1d d d d d d 1
—nd nd 0 e 0 0 0 1
~ 0 —nd nd ... 0 0 0 0]-
| 0 0 0 . —nd nd 0 0]
Therefore, the linear system (22) is equivalent to the following system:
n-1
[a +id]x,—i = 1 — ax,
i=1
n—1
dx; =1+ (n—1)dxo, (23)
i=1
_ 1
Xn-1 — X0 = hd’
Xi=Xip1, 1=2,n—2.
The solution of the system (23) is:
_ na+@d
X0 = =G
na+ 22 4 24
xl = Wi%ld)’ ( )
vi=—Ll  i=2n=1.

n2(a+%2 d) 7

Since the system (22) is equivalent to the system (23), it follows that (24) is also the solution of the system
(22). O
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If a+ ”T_l d=0 (e d= 12_—“n), then the matrix in (19) is a singular matrix (i.e. its inverse does not exist).

But, the Moore-Penrose inverse of such matrix exists and will be given by the following theorem. Since

ai:(%) a,i=0,n — 1, we shall assume that a€IR\{0}.

Theorem 2.5. Let n be an arbitrary natural number greater than 1, a€R\{0} and
A = circ{(ag, a1, . ..,0,-1)}, (25)
where a;= (1_1+;2i) a,i=0,n— 1. Then the Moore-Penrose inverse of A is:
at=n1 circ,{(1,-1,0,...,0)}. (26)
2na
Proof. Notice that r(A)=n—-1and A};#0, j = 1,7n. Let A = [A1]Az], where A; e R™D and A, e R™!. Since

Ayj, j = 1,n -1, are linearly independent columns of A, it follows that 7(A;) =n — 1. Therefore, A has the
full-rank factorization (Lemma 1.5) as

A = AN,
where
1 0 0 0 0 -1
o10 --- 0 0 -1
oo0o1 .- 00 -1 1
N={. . . . . . . e]Rff_‘l ",
0 0 0 1 0 -1
0 0 0 01 -1

Based on Theorem 1.2 it follows that

A" = N'(A;AINNY) A}

n-1 n-1

2na’ 2na "

n-—1
= o circy{(1,-1,0,...,0)}. O

circu{( .., 0)}

3. Conclusion

In this paper we determined the eigenvalues, determinants and Euclidean norms of k-circulant matrices
with a non-constant arithmetic sequence, where k€ C\ {0}, and we extended some results presented in [1].
Also, for k = 1, we obtained the inverses of such (invertible) matrices using the method for obtaining the
inverse of an invertible k-circulant matrix which was described in [14] and the explicit expression for the
Moore-Penrose inverses of such (singular) matrices using the full-rank factorization of matrices.

Acknowledgment. We would like to thank the anonymous reviewers for their suggestions and comments.
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