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Abstract. In this paper, we consider an initial - boundary value problem for a nonlinear wave equation
containing a nonlocal term. Using a high order iterative scheme, the existence of a unique weak solution is

proved. Furthermore, the sequence established here converges to a unique weak solution at a rate of order
N (N = 2).

1. Introduction

In this paper, we consider the following initial - boundary value problem for a nonlinear wave equation

g — e = f(x,t,u, u()I?), x€Q=(0,1), 0<t<T,

(1.1)
u(0,t) = u(1,t) =0, (1.2)
u(x, 0) = fip(x), ui(x,0) = iy (x), (1.3)

where (i, f, fly, #i; are given functions and the nonlinear term f (x, t,u, ||u(t)||2) contains a nonlocal term
1
lu()I* = f u?(x, H)dx.
0

Eq. (1.1) constitutes a case, relatively simpler, of a more general equation, namely

up = 3 (1ot |l Nl Pyaee) = £ b0, 0, |l |l P), x € Q=(0,1), 0<t<T, (14)

it has its origin in the nonlinear vibration of an elastic string (Kirchhoff [5]), for which the associated
equation is

En (*
phutt = (PO + Zj(;
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here u is the lateral deflection, p is the mass density, / is the cross section, L is the length, E is Young’s
modulus and P is the initial axial tension. In [2], Carrier also established a model of the type

L
Uy = (PO + P f Mz(y/ t)d]/) Uxx,
0

where Py and P; are constants.

In [11], Medeiros has studied Eq. (1.4) with f = f(u) = —bu?, where b is a given positive constant,
and Q is a bounded open set of R®. In [4], Hosoya and Yamada also have considered Eq. (1.4) with
f = f(u) = =0lul*u, where 6 > 0, @ > 0 are given constants.

In [3], Ficken and Fleishman established the unique global existence and stability of solutions for the
equation

Uyx — Uy — 20Uy — fU = eu’ +7y, e>0.
Rabinowitz [14] proved the existence of periodic solutions for
Uny = gy = 2000y = f(x, 1 Uy, ),

where ¢ is a small parameter and f is periodic in time.
In [8], Long and Diem have studied the linear recursive scheme associated with the nonlinear wave
equation

Uy — Uy = f(,E 1, 1u), 0<x <1, 0<t<T,
associated with (1.3) and the following mixed conditions
ux(0,t) — hou(0, t) = ux(1,t) + hyu(1,t) =0,

where hy > 0, by > 0 are given constants. Afterwards, this result has been extended in [9], [10] to the
nonlinear wave equation with the Kirchhoff - Carrier operator. In [10], the following equation

Uy — [J(t, “u”Z/ “”x“z)uxx = f(x/ t/ U, Uy, Ug, ||”||2r”ux||2)/ 0 <x< 1/ 0 <t< Tr

associated with the mixed homogeneous conditions was studied. By the linear recursive scheme and by a
standard argument, existence of a local solution was proved. On the other hand, an asymptotic expansion
was established.

In [12], [15], a high order iterative scheme was established in order to get a convergent sequence at a
rate of order N (N > 1) to a local unique weak solution of a nonlinear Kirchhoff — Carrier wave equation as
follows

d
uy — u(t, ||M(t)||2,||Mx(t)||2)$ (Auy) = f(x,t,u), 0<x <1, 0<t<T,

associated with the mixed homogeneous conditions.

Based on the above problems, we consider Prob. (1.1) — (1.3). With the assumption f € CN([0,1] X
R; X R X IR,) and some other conditions, we shall establish a high order iterative scheme in order to get a
convergent sequence at a rate of order N to a local unique weak solution of Prob. (1.1) — (1.3). By the fact
that, we associate with Eq. (1.1) a recurrent sequence {u,,} defined by

Pty Puw _ 1 i o/ 2 i 2 2\/
e —Hj;N_lngDif(x,t,quAmm,lu ) Gt = 1) (1l = tmal?)’

0 <x<1,0<t<T, where u, satisfying (1.2), (1.3) for all m > 1 and the first term 1 = 0. This result is a
relative generalization of [8] - [10], [12], [13], [15].



Le Thi Phuong Ngoc et al. / Filomat 31:6 (2017), 1755-1767 1757
2. The High Order Iterative Method

First, we denote the usual function spaces used in this paper by the notations ¥ = L(0,1), H" =
H™(0,1). Let (-, -) be either the scalar product in L? or the dual pairing of a continuous linear functional and
an element of a function space. The notation ||-|| stands for the norm in L? and we denote by ||-||x the norm
in the Banach space X. We call X’ the dual space of X. We denote by LF(0, T; X), 1 < p < oo for the Banach
space of real functions u : (0, T) — X measurable, such that

T , AP
Il = (' IO dt) < +o0for 1 < p < oo,
and

[eellpo,7,x) = esssup [[u(t)llx for p = oco.
0<t<T

Let u(t), u'(t) = w(t) = u(t), u” () = uy(t) = ii(t), ux(t) = vu(t), un(t) = Au(t), denote u(x,t), %—?(x, 1),
Pu(x, 1), 2(x, 1), £4(x, 1), respectively. With f € C([0,1] x R, X RX R,), f = f(x,t,u,2), we put D, f = 2L,

Dyf =%, Dsf =%, Dif =L and D*f = DYDY f,a = (@i, ..., au) € Z2, 18] = a1 + ... + @y = k, DOOOOf = f,
We then have the following lemma, the proof of which can be found in [1].
Lemma 2.1. The imbedding H' — C°([0, 1]) is compact and

() Iollcogoy < V20l , forallv e HY,

(i) llollcogoy < llvxll, for all v € Hj.
Now, we make the following assumptions:
(Hy) g€ H?>N Hé and ii; € Hé,
(H2) feCN(0,1] x Ry x R x R,) with £(0,t,0,2) = f(1,t,0,z) =0, ¥t,z > 0.
Fix T* > 0. For each M > 0 given, we define two constants Ko(M, f), Ku(f) as follows
Ko(f, M) = sup{|f(x, t u,z)| :0<x<1,0<t<TJu <M, 0<z<M?,
Ku(f) = Liaen Ko(D* £, M).
Forevery T € (0,T*] and M > 0, we put
W(M,T) = {v e L0, T;Hy N H?) : vy € L*(0, T; H}) and vy € L*(Qr),

with [[0llps o rmamz) 10l 10l < M), (2.1)
Wi(M, T) = {v e WM, T) : vy € L0, T; L?)},
with Qr = (0,1) x (0, T). We shall choose as first term 19 = 0, suppose that
Up—1 € Wi (M, T), (2.2)
and associate with problem (1.1) — (1.3) the following variational problem:

Find u,, € Wi(M, T) (m > 1) so that

2.3)

(up (), 0) + (e (t), vx) = (Fu(t),v) Yo € Hy,
um(O) = ﬁO/ u;n(o) = ﬁl/
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where

En(et)= L Ds D, fltor 1t = st (1t OIF = lita OIF) 2.4)
+]<

here we use the following notations f[u] = f(x, tu, ||u(t)||2) , Diflu] = Dif (x, tu, ||u(t)||2) ,i=1,2,3,4.
Then, we have the following theorem.

Theorem 2.2. Let (H1), (Hy) hold. Then there exist a constant M > 0 depending on iy, iy and a constant T > 0
depending on ily, il1, f such that, for uy = 0, there exists a recurrent sequence {u,,} C W1(M, T) defined by (2.3), (2.4).

Proof. The proof consists of several steps.

Step 1: The Faedo - Galerkin approximation (introduced by Lions [7]).

Let us consider a special basis of H, formed by the eigenfunctions w; of the operator —A = —2u

e
—-Aw; = /\?wj, w; € HY N H?, wj(x) = V2sin(jnx), A; = jm, j=1,2,3... (2.5)
Put
) (1) = Ty (b, 2.6)
where the coefficients c% satisfy the system of nonlinear differential equations
), wpy + (ulo ), wi) = EP @, wp, 1< j <k,
2.7)
m (O) = tlok, um (0) = itk
in which
T Z}j 1 oz( )w, — ilp strongly in Hy N H?,
(2.8)
il = Z’;zl ﬁ§ wj — il strongly in H},
g . 2 i
Fl@t = L D flunaluy) — i) (Hui’?(t)l) ~ i1 OF) 2.9)
i+j<N-1
with the notations D f = 1,1],D‘ D]f 1,1], = azz' i+j<N,DVf=f

Let us suppose that u,,—; satisfies (2.2). Then we have the following lemma.
Lemma 2.3. Let (H1), (Hy) hold. For fixed M > 0and T > 0, then, the system (2.7) - (2.9) has a unique solution
)(t) on an interval [0, T(k)] c [0, T].
Proof of Lemma 2.3. The system of Eqs. (2.7) - (2.9) is rewritten in the form
) + 2200 = (F (1), w;), 1< j <k,

jmi

(2.10)
(k)(o) — (X(k (k)(o) ﬁ(k)'
and it is equivalent to the system of integral equations
. to
cf’;}(t) = a;k) cos(Ajt) + %55’0 sin(Ajt) + 1 Jy sin(Aj(t - ) <p5,’;>(s), wj>ds, (2.11)

for 1 < j < k. Omitting the indexs m, k, it is written as follows

c=Llc], (2.12)
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where L[c] = (L1[c], ..., Lelc]) , ¢ = (c1, ..., ck),

Lilel(®) = q;(6) + Nlcl(®),

q]'(t) = q; COS(A]'t) + /\%ﬁ] Sil’l(/\jt),

N[l = = [ sin(d(¢ - ) (FIcl(s), wj)ds, 1< j <k,

FIl) = % D flutna u(t) = tuct) (1P ~ tna)IP)

i+j<N-1

u(t) = ¥ cj(bw;.

For every T® € (0, T] and p > 0 that will be chosen later, we put X = C° ([0, Tf,’f)];]Rk) ,S={ceX |y <

p}, where ||cllx = sup [c(t)l;, lc()l; = Z’;Zl |cj(t) , for each ¢ = (cy, ..., cx) € Y. Clearly S is a closed nonempty
0<t<T®

subset in X and we have the operator L : X — X. In what follows, we shall choose p > 0 and T® > 0 such

that L : S — S is contractive.
(i) First we note that, for all ¢ = (¢y,...,cx) € S,

@Il < le(®)h < llellx < p, u@®lleom) < V2le®l < V2p, (213)

SO

k[
NI < - [ IFGs
1.Jo
On the other hand, by

FIelCe Ol < Ku(f) T g lu(t) - il eI = s (DIP]
1+]<N-

<Kulh) % (e + M) (@l + -1 O

. ilj
i+j<N-1

<Ku(f) T (V2p +M)i (p +M)”

i+j<N-1

we have

i+2j
INLellly < £TWKu() L 2 (V2p+M) .
i+j<N-1

Hence, we obtain
1 Hs
IL[clllx < lak + i g, + T%'D," (o, M). (2.14)

where

—() i+2j
Dy (p,M) = £Ku(f) T 1i}7(\/§p+M) g (2.15)
1+]<N-

(ii) We now prove that

ILLNE) - LId®lx < £TIDS (p, M) llc - dlix, Ye,d €S, (2.16)
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where

D (M) =Ku(p T (V2p+ M) (V2iM + 20 + jlp). 217)

1<i+j<N-1

Proof of (2.16) is as follows.
Letc,d € S, put u(t) = L, ¢j(hwj, u(t) = T, ¢j(tw;.
Forallt € [0, Tgf)], we have

ILLl(®) ~ LBl = IN[E)®) ~ NIAIOl < £ [ IFlel(s) - FIA)(s) ds. (2.18)
On the other hand

Flel(x, ) ~ Fld](x, )

= L DUl d(ut) ~ st (I ~ ltr (OIF)

1<i+j<N-1

- ij _ i 2 2\/
KH]ZSN_lfo[um-l](v(t) tna) (@I = it (DIF) 019

= T D flueal () = tte) = @) = )] (IO ~ s DIF)

1<i+j<N-1

T Dl )0 = i) | (OIE = T OF) = (IR = 2 O |

1<i+j<N-1

We also note thata' — b’ = (a —b) Y\ a'b1~ foralla,b € R, i = 1,2, ..., we deduce from (2.13) that

1§(u(t) — 1) (0(t) = um_l)i—l—v

v=0

|(u(t) - um—l)i - (U(t) - um—l)i| = |M(f) - Z)(i’)|
< 1) = 9O T, 1(8) = s o) = e[
0 (2.20)
< \/EHC — d”X li_::(\/ip + M)V ( \/E‘O n M)i—l—v
= \/Ei(\/ip + M)i_1 llc —dlly -
Similarly

(1O = e 0IF) (||v(t>||2 ~ bt P |

= [P - ||v(t)||2| (||u O =t OR) (IR = ltnaOF)
<[l = l®IP| ZO I = ta O] [T = et BIF] (2.21)

j-1 )
< 2p ”C _ d”X ;O (p + M)ZV (p + M)z(]—l—v)

=2jp(p + My 2|lc—dlly .
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It implies that
IFlc](x, ) = Fld](x, 1)
SKu(f) L g @ = wnr) = @) = )| [l = layior (1P|

1<i+j<N-1

WKu(f) N o) = el (@I = N1 1) = (oI =t 0P|

1<i+j<N-1

<Ku(f) X

1<i+j<N-1

+Ku(f) X

1<i+j<N-1

<Ku(f) T VE(VZp+ M)l - dl

1<i+j<N-1

Kl T (V2o + M) 2jp e - dil

1<i+j<N-1

L V2i (V2p+ M) lle = dll (p + M)

ikl

i (‘/_P + M) 2jp (p + M) |lc - dllx

<Ku(Hlle-dlx T #H(V2p + M) (V2IM + 2+ p)

1<i+j<N-1

=@
= Dp (P/M) “C - d”X!
where 5;2) (p, M) defined as in (2.17).
It follows from (2.18), (2.22), that (2.16) holds.
Choosing p > |al; + 1 ||, and T € (0, T] such that

—(1) —=(2)
0<TWD, (p,M) < p—lal; - + |p], and £TD,” (o, M) < 1.

1761

(2.22)

(2.23)

Therefore, it follows from (2.14), (2.16) and (2.23) that L : S — S is contractlve We deduce that L has a
unique fixed point in S, i.e., the system (2.7) — (2.9) has a unique solution u (t) on an interval [0, T(k)] The

proof of Lemma 2.3 is complete. O

The following estimates allow one to take T =T independent of m and k.
Step 2: A priori estimates. Put

9@ = pt) + 9w + [ )| ds,

) = [ ol + e !

7

a0 = o]+ [laul

Then, it follows from (2.7) and (2.24) that
St = SW(O) +2 [ (FD(s), 1)) ds +2 [ (F.(5), uli(s)) ds
LT 2
+ ) )| ds = Sy + £, ;-

We shall estimate step by step all the terms [;, >, J3 and S(k)(O)
The term J;. Using the inequalities (a + b)Y < 2P~}(a? + IF), for alla,b > 0,p > 1 and

s1<1+sP,¥s>0, Vg€ (0,p],

(2.24)

(2.25)

(2.26)



Le Thi Phuong Ngoc et al. / Filomat 31:6 (2017), 17551767

we get from (2.9) that

[F®(x, 1)] < Ku(f) T 1%].!|u£j?—um_1|imu£’?(t>|)2—||um_1(t)||2|]
1+]<N-
<K T (] el (0] + hsan)”
1+]<N-
i 2j
< Ku(f) i+j§\]—1 L] ( VS® ) + M) (\/Sﬁ,’?(t) + M)
i+2j
<Ku(f) L ( VS0 + M)

i+2f
<Ku(f) X 1 oit2j-1 [( Sf,’?(t)) + Mi+2]]

i
i+j<N-1

Cn N-2
<Ku(f) X 2 [1+(s§j?(t)) Z+1+M2N‘3]
i+j<N-

<KD (1+MY2) 5 g2 [ (sn) .
i+j<N-

Hence

”Fg?(t)“ < Km(f) (1 +M2N—3) y L2 [1 + (Sg?(t))N%]

injt
i+j<N-1

= son[1+(s80) ],

where
- 1 i
E1(M) = Ku(f) (1 + M2V 3) Z WZ +2j.
i+j<N-1
Using the inequality

s7<1+sN, ¥s >0, ¥g € (0,No], No = max{N,2N - 3}, N > 2,
we get from (2.28), (2.30) that
Ji =2 [ (ER), @) ds < 2 [ [FR6)]| 45 (s)] ds

<25 [ |1+ (s;’?(s))N_%] S¥(s)ds

=2&(M) fot \/% + (Sg?(s))N—l]dS

<as [|1+ (si’,?(s))N”] ds

<& f) 1+ (s0e) " |as

where & (M) = 4&(M).

1762

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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The term J,. By (2.9), we have

Ot = D f[um 11+ D3 flttn1 Vit

+ [D1DY flut11+ DsDY Lty 11Vt | (1) = 1ty1)’
1<1+]<N 1

(Ilu(’”(t)IIZ - ||um_1<t)||2)]

g . - "
+ Z Dl]f[”mfl]l(”in) - umfl)l 1(”5;13( - Vum,l)
1<i+j<N-1

% ([ O = -1 HE)

Hence

i+2]
[ES®|| < Kn(A(L + M) + Ka(f)(1 + M) o (M + SVt )

<z+]<N—

+Ku(f) ¥ l,],z(M+ \/W) ( \/T()(M+\/W)2j

1<i+j<N-1

i+2j
<Ku(HA+M) +Ku(HA+M) ¥ & (M + St ))

1<i+j<N-1

i+2j
+Ku(f) ¥ #i(Mﬂ/sg’?(t))

1<i+j<N-1

< Ku(f)(A+M) + Ku(H(1+M) ¥,
1<i+j<N-1

i+2j
+N=-DKu(f) L = 2 1[Ml+2f+(\/5£’?<t>) ]

1<i+j<N-1

i+2j
<Ku(HA+M) ¥ o2 1[Mf+2f+(\/55,’?<t>) }

i+j<N-1

i+2j
+(N = DK (f)(1 + M) iﬂgZN 1 2 [M”Zl + (,/s£§>(t)) ]

i+2]
=N(1+MEKu(f) T 724" 1[M’+2]+( sf,’?(t)) ]
i+j<N-1

SNA+MEKu() T 2% 1+ M2 14 (s000) |
i+j<N-1

<NQ+MKu(H(1+MN2) T 214 (sPo) |
i+j<N-1

= |1+ (s0m)" |,

where

£(M) = N(1 + M)Ky(f) (1 + MN2) Z 1 iaj

ilq!
i+j<N-1 J

i+2j
1‘1]121+2] 1 [Ml+2] +( Sg;)(t)) }

1763

(2.32)

(2.33)

(2.34)
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Using the inequality (2.30) we get from (2.33) that
= ZfO <Ff,]25 (s), u(k) (s)>ds < Zfot”F (s)” ||u (s)”ds

<260 [y [1+(s0@)" | Y es

=26,M) [/ —\/Sff?(s) + (Sf,’?(s))N_;]ds (2.35)
<460 f) 1+ (59 (s))N°] ds
= &0 f)[1+(s0e) " |as

where & (M) = 4&,(M).
The term J3. Equation (2.7); can be rewritten as follows

(1), wp) — (A (), w;) = FR (1), w)), 1< j <k. (2.36)
Hence, it follows after replacing w; with iiff?(t) and integrating that
3= ||u(k)(s)|| ds <2 [} 1Auf(s)|Pds + 2 [ 1IFS (s)|Pds
<2 [ 8B (s)ds +262(M) fot 1+(s¥)) N_f] ds

<2 [ s¥(s)ds + 422(M) fo +(s9) _S]ds
(2.37)

<2 sis - aion [ [+ () s
<201+ 2530) [y [1+ (s0)" | s
=50 ) [1 + (Sii{)(S))NU] ds,

with &(M) = 2(1 + 2E3(M)).
Now, we need an estimate on the term Sg? (0). We have

SU0) = [l + N1kl 2 + liTorel 2 + N1 Ao |- (2.38)

By means of the convergences in (2.8), we can deduce the existence of a constant M > 0 independent of
k and m such that

s®0) < M?)2. (2.39)
Finally, it follows from (2.25), (2.31), (2.35), (2.37), (2.39) that
SOt < 2+ TEM) + EM) [} (SV(s)) " ds, for0 <t < TV < T, (2.40)
where
EM) = E1(M) + E(M) + E3(M).

Then, by solving a nonlinear Volterra integral inequality (2.40) (based on the methods in [6]), the
following lemma is proved.
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Lemma 2.4. There exists a constant T > 0 independent of k and m such that
sOm < M2vtelo,T], for all k and m. (2.41)
By Lemma 2.4, we can take constant Tg:) = T forall k and m. Therefore, we have
u® e WM, T), forall k and m. (2.42)
(k)

Step 3: Convergence. From (2.42), we can extract from {u,,’} a subsequence {uf,}f)} such that

ufﬁi) —u, in L%0,T; Hé NH?) weak*,

) > u, in L0, T; HY) weak*, (2.43)
i* - in L2(Qr) weak,
Uy € WM, T). (2.44)

We can easily check from (2.7), (2.8), (2.43), (2.44) that u,, satisfies (2.3), (2.4) in L%(0, T), weak.

On the other hand, it follows from (2.3); and u,, € W(M, T) that v, = Au,, + F,, € L°(0,T;L?), hence
Uy, € Wi(M, T) and the proof of Theorem 2.2 is complete. O

Next, we put

Wi(T) = {v € L*(0, T; Hy) : v' € L*(0, T; L?)},
then Wi (T) is a Banach space with respect to the norm (see [7]):
0llw, () = 10llo, 71y + 110012

Then, we have the following theorem.
Theorem 2.5. Let (Hy), (H,) hold. Then, there exist constants M > 0 and T > 0 such that
(1) Prob. (1.1) — (1.3) has a unique weak solution u € Wy1(M, T).
(i) The recurrent sequence {u,,} defined by (2.3), (2.4) converges at a rate of order N to the solution u strongly
in the space W1(T) in the sense

et — ullwyry < Clltty-1 — M||%](T), (2.45)

forall m > 1, where C is a suitable constant.
Furthermore, we have the estimation

et — ullw,(ry < CrBY", (2.46)

forall m > 1, where Cr and 0 < § < 1 are positive constants depending only on T.
Proof.
Put v, = w41 — Uy, it is clear that vy, satisfies the variational problem

{ (O (), 0) + (O (t), 0x) = (Frus1(t) = Fu(t), v) Vv € H},
(2.47)
0u(0) = ©,(0) = 0,
where
FaCt) = L DIl )it = tta) (Im(®IP = ltma DIP) (2.48)

i+j<N-1

Taking v = v}, in (2.47), after integrating in t we get

On(t) = 2 [} (Fuusa (6) = Fun(9), 03 (5)) s, (2.49)
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with
I (t) = oy, (I + o (DI (2.50)
On the other hand, by using Taylor’s expansion for the function f (x, t, Uy, ||um(t)||2) around the point
(x, t, U1, ||um_1(t)||2) up to order N, we obtain

Flttm] = Flttmoal = £ (3, 10, Tt OIP) = £ (2t i, i ()P

_ ij i 2 2\/
= 1S,HZSN_l D flum 10,y (1t = - (B)I?) 251

+ L D flnlol,, (lun O - s (P

i+j=
where
(] = (2t thws + 00, Ollitn (DI + (1 = O) ltra (DIF), 0< 0 < 1.
Hence, it follows from (2.4), (2.51) that

Fuet®=Fn® = L D fluloh, (litner I = P

1<i+j<N-1
; (2.52)
+ ¥ DIl (Itn®IF = ltna IF) .
i+j=N
Then we deduce, from (2.52), that
IFms1(t) = Fn(®)
<Ku() L g lom®I At O+ et Y Witiar (1] = it (DI P
1<i+j<N-1
+Kulf) L 17 I0m=lw, y Uit (DI + =1 DI et ) = it ()] 1
i+j=
<Ku(H) L gy low®I™ @MY
1<i+j<N-1
) i . ‘ (2.53)
+ KM(f) ) Z ﬁ ||Um—1||w1(T) (ZM)] ||vm—1(t)||]
i+j=N
<SKu(f) L lom®I @MY opa®ll+ Ku() L @MY llowally o,
1<i+j=N-1 " i+j=N "’ !
<Ku(H) L m2M @l + Ku() Y 7 @MY on-lly, o
1<i+j<N-1 i+j=N
=T [0 (DI + VT ||Um—1||11>]\/1(]") ’
where
yr=Ku(f) L FHIMY, pr=Ku(f) ¥ &@m). (2.54)
1<i+j<N-1 i+j=N
Then we deduce, from (2.49), (2.50) and (2.53), that
() = 2 [ (Funs1 () = Fu(s), 0()) ds < 2 [} [Fsr(s) = Eu()l [ 0},(5)]] ds
t _ N
<2 [ (yr lome®N + 71 lom-llly, ) [0 )| ds
L ( 1% (T)) ” “ (2.55)

<297 iy 0w 09| ds + 271 ) omally, o [[o5()]] ds

<T7yr ”Um—lnal\f(]“) + (VT + 77T) fot Om(s)ds.



Le Thi Phuong Ngoc et al. / Filomat 31:6 (2017), 1755-1767 1767

By using Gronwall’s lemma, we obtain from (2.55) that

omllwyry < 2N TP1e™ O™ [0l o1y = pr 0wl o (2.56)

where pr is the constant given by

pr = 24 TyreT0r71), (2.57)

Hence, we obtain from (2.56) that

1ty — tspllwscry < (1= B~ (ur) ™1 pN", (2.58)

for all m and p.

We take T > 0 small enough, such that § = (yT)ﬁ M < 1. It follows that {u,,} is a Cauchy sequence in
Wi (T). Then there exists u € W1(T) such that u,, — u strongly in Wy(T).

It is similar to argument used in the proof of Theorem 2.2, we obtain that u € W1(M, T) is a unique weak
solution of Prob. (1.1) — (1.3). Passing to the limit as p — +oco for m fixed, we get the estimate (2.46) from
(2.58). This completes the proof of Theorem 2.5. O

Remark. In order to construct a N—order iterative scheme, we need the condition f € CN([0,1] x R, x
R XxIR,). Then, we get a convergent sequence at a rate of order N to a local unique weak solution of problem
and the existence follows. This condition of f can be relaxed if we only consider the existence of solution,
it is not necessary that f € C'([0,1] x R; x R x R;), see [10].
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