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Abstract. In this paper, we introduce two new binary operations, the one called g-sum and defined on the
set of all real numbers and the other called g-product and defined on a subset of real numbers, which have
potential importance in the study of g-numbers. The set of g-numbers of all real numbers, for example, is a
field when these operations are restricted to it. Also, we introduce new g-exponential and g-logarithm and

show some relations for them. Finally, we give some remarks on the well-known g-gamma, g-exponential,
and g-beta functions.

1. Introduction and Preliminaries

Throughout this paper, let ¢ denote a fixed real number with 0 < g < 1. We define a binary operation &,
called g-sum, on the set of real numbers R as follows: for real numbers x and y,

x®y=x+y+(g-1xy (1.1)

Then R equipped with the operation @ is a commutative monoid with 0 the identity. Note here that the
operation is associative, since

xOY®z=xO(Y®z)=x+y+z+(q-1)(xy +xz+y2) + (g - 1)*xyz.

It is easy to see by induction that, for x1,--- ,x, € R, we have

ne- @ =) -0 Y xex (1.2)
k=1

1<iy<--<ix<n

In particular, x®--- ®x = & x = Yi; ()(g - 1) xF = %
n—times

Let

1
Zq = {x € Rlx < m} (13)
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We define another binary operation ®, called g-product, on }., as follows: forx,y € .,

_ L,
X®y = q_l(q Yo -1), (1.4)
where
)y = log(1 + (g — 1)x) log(1 + (9 - 1)y)‘ (1.5)

(logq)

Then R equipped with the operation ® is a commutative monoid with 1 the identity. Note here that
{x, y}; is defined for x, y € Zq, X®Yy € Zq ifx,ye Zq, and that the operation is associative, since

log(1 + (9 — 1)x) log(1 + (g — 1)y) log(1 + (9 - 1)2)

x®vy,zl, ={x,y®z}, = 1.6
Yy q y q (log q)3 ( )
which we denote by {x, v, z}q.

In general, for x1,x3,-++ ,x, € Zq, by {x1,x2,-+ , xu}; we denote
IT!  log(1 + (g — 1)x;)
i=1
7 X2, s Xnjg = 7
{x1,x2 Xnlg Tog 7" (1.7)
Then
1
@R @, = (g~ 1), (18)
So, in particular, x® - - - ® x = x®" = q%l(q["'x""'x’q - 1), with
| —
n—times
. Jog(l+(g—1x)
{x,-- /x}q = Hi:l(T) ’ (1.9)

We now restrict the g-sum and g-product to sets of g-numbers. The g-number [x], of the real number x
is as usual defined as

7 -1

[x]; = -1 (1.10)
Then we see that lim,_,;_[x]; = x. For any subset X of IR, let [X], be the subset of R given by

[X]g = {[x]slx € R}, (1.11)

which may be called the g-numbers of X.

Now, it is easy to see that, for real numbers x and v,

[x]; ® [yl; = [x + v, (1.12)

[x]q ® [y]q = [xy]q~ (1.13)

Note here that [x], € )’ - for any real number x.
Thus we obtain the following proposition.

Proposition 1.1. Let A, R, F be respectively a subgroup of the additive group of R, a subring of R, and a subfield
of R. Then ([Aly, ®,0) is a group, ([R];, ®,®,0,1) is an integral domain and ([Fl,, ®,®,0,1) is a field, In particular,
([Z];,®,0) is a cyclic group generated by 1, and ([R],, ®,®,0,1) is a field.



T. Kim et al. / Filomat 31:6 (2017), 1611-1618 1613

In this paper, we introduce two new binary operations, the one called g-sum and defined on the set
of all real numbers and the other called g-product and defined on a subset of real numbers, which have
potential importance in the study of g-numbers. The set of g-numbers of all real numbers, for example, is a
field when these operations are restricted to it. Also, we introduce g-exponential and g-logarithm and show
some relations for them. Finally, we give some remarks on the well-known g-gamma, g-exponential, and
g-beta functions.

As the related works, one is referred to [2,5,6,7] in connection with g-analysis(especially g-series and
g-polynomials) and to [8,9] in connection with summation-integral operators.

2. Main Results

Theorem 2.1. Let f(x) be a real-valued function defined on [N], with f([1];) = f(1) = 1. Then we have

oL () =1+9) -2 Y T f(ify).
k=2

1=i1<ip<--<ix<n

Proof. We proceed the proof by induction on n. For n = 1, the claim is equivalent to f([1];) = 1 which holds.
Assume that the claim holds for n and let us prove it for n + 1.

&1 f([r]y) = @1, f([7) @ ([ +11,) @.1)
=(1+q) @-D2 Y, T i) e fln+1])
k=2

1=i1<ip<--<ix<n

=(+g) (@-D Y TR f(lil) + £ +11y)
k=2

1=i1<ip<-<ix<n

Fa-DA+gY G- Y T )+ 1]y)
k=2

1=i1<ip<-<ix<n

=(+q) @-102 ), T f@1) +af(n+11,)
k=2

1=i1<ip<--<ix<n

) @-D Y AL
k=2 1=i1<ip<---<ig<ipp1=n+1
n+1
=1+q) (=07 ) T A
k=2 1=i1<ip<--<ix<n+1
n+1
Y@= Y T £l + qf(n + 11,)
k=3 1=i <ip<--<ip=n+1
n+1
=1+9) (@-D2 Y T £(y)
k=2 1=iy<ip<-<ip<n+1
n+l
Y @-D Y T (il
k=2 1=i1<ip<--<ig=n+1
n+1

=1+gq Z(q —1)2 2 Hi}:lf([ij]fi)'
k=2

1=i1<-<ir<n+1
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Let us take f(x) = x. Then we obtain the following corollary.

Corollary 2.2. For n € IN, we have

[(1’1 ; 1)] = 69:’:1 [1’],1 =1+ qZ(q - 1)k_2 Z Hl;'zl[ij]q-
q k=2

1=i1<ip<--<ix<n
In the special case, f(x) = x?, we obtain the following corollary.

Corollary 2.3. For n € IN, we have

oL lE=1+q) -1 Y IR
k=2

1=i1<iz<-<ix<n

From (1.7) and (1.8), we have, for x, -+, x, € Y, (cf.(1.3)),
®;1:1Xi - qu (q (logg)" _ 1) ,

and, for any x1,--- ,x, € R,

®iq[xilg = [xaxa - x4l = [H?=1xi]q .

Thus, from (2.2) and (2.3), we have, for x € ) "

1 log(1+(g-1)x) \"*
x®n:x®...®x:_(q( logq ) _1)[
—_ g-1
n—times

and, for any x € R,

[x]g" = [x]; ® - ® [x]; = [x"];.
e ——
n—times

Provided that x + y € Zq, from (2.4) and (2.5) we have

M)” )
- s

(X + y)®" = q%] (q( logq
and, for any x, y € R,

(I, @ )" = [(x + )", -

Let us define a g-analogue of exponential function on R as follows:

e,(x) = lim(1® [f] e,
n—o0 nlg
Then, by (2.7) and (2.8), we get

00 = Jim [+ | =1

1614

2.2)

(2.3)

2.4)

2.5)

(2.6)

.7)

2.8)

2.9)
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From (1.13) and (2.9), we have

eq(x) ® eq(y) = [ex]q ® [ey]q

2.10
=[], = ei(x + ), (2.10)

and
e (x @ y) = ey(x + y + (g — Dxy) = [V D],
= [e¥*Yel D], =[], @ [T D],
= [ex]q ® [ey]q ® [e(q—l)xy]q
= eq(x) ® e4(y) ® e4((q — 1)xy).

(2.11)

Therefore, by (2.10) and (2.11), we obtain the following proposition.
Proposition 2.4. For x,y € R, we have
e(x @ y) = eq(x) ® ¢4(y) ® ¢4((q — 1)),
and
e7(x) ® eq(y) = eg(x + y).

Let us define a g-logarithm on Y7 = ¥, "R* = {x € R|0 < x < 117‘1} as follows:

log(1 +(q - 1>x>) | o)

log g
Then, by (2.12), we get

log, x = log(

logq[x]q =logx (x > 0), logq(eq(x)) =x(x € R). (2.13)

It is easy to show that, for x,y € Z;,

log (x®y) = log, x +log,_ y. (2.14)

Note here that x® y € Z;, if x,y € Z;. Therefore, by (2.13) and (2.14), we obtain the following
proposition.

Proposition 2.5. We have the following identities:

logq(eq(x)) =x (x € R), logq(x ®y) = logqx + logq y (x,ye Z;).

3. Further Remarks
In this section, we use the following notations:
(a+Db); = IT7_o(a + gb), ifneZ, (3.1)

(1 +a)
(1+a), = ﬁ if teC, (see[l,4]), (3.2)
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where g is a fixed real number with 0 < g < 1.
The g-integral is defined as

j; F(Bdt = (1-g)x 2 F(dx)g, (see[3,4]). (3.3)
k=0
The g-gamma function is defined as

L) = fl_q X' Eg(—gx)dyx, (t>0), (3.4)
0

where E;(x) is one of the g-analogues of exponential fucntion which is defined by

70
[k,

Eyx) = (1+ (1= gy = Y o, (3.5)

=0
where[k],! = [k];[k — 1], - - - [2],[1],.

As is well known, another g-exponential function is defined by
1
1 =1 =gx)7

Thomae and Jackson have shown the g-beta function as follows:

IMGIWE)
[y(t+9)

The g-integral representation, which is a g-analogue of Euler’s formula, is given by

€ (x) =

(o] xn
- ZO TIRL (see[1,4]). (3.6)

B,(t,s) = , (t,s > 0). (3.7)

1
B,(t,s) = f XA - ) (3.8)
0
From (3.4), we note that
l"t—(l_q);_l f.T() = T (t + 1 3,4 3.9
q()—ml[]q()_ 4(t +1), (see[3,4]). (3.9)

From (3.4), we have

1 =
l"q(z):j(; x"2E;(—qx)dyx
s ; qn —% qn+1
Lo (i5) =[5
,;; I-¢ I-¢
= V1=q) q?1—q""
n=0

0o n

0 q2
= y1-q(1-q) Z(l——"

n=0

(3.10)

[

Y e I LN S RN
- JT-q1 q)qzmq!( )

n=0

) mEq( il)eq(lq—q]'

q
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Therefore, by (3.10), we obtain the following proposition.

Proposition 3.1. For 0 < g < 1, we have

1 3
I(5) = Vl—’iEq(q_Ll)eq( d ]

1-9q

Note that
i q 7 )_
im V1 -gE; q_l ey = Vm.
-1~ -

We note that

(a-2;=) [Z] (-1fq0,
q

k=0

and

1 n
(1—x)" :kZO

!
where [Z]q = #]’_k]q, (see [1,3,4]).

!
q:

q

From (3.12), we have

1
(I-x); k=0

v DHk=9) o Tyk+d)
Lo e

It is not difficult to show that

_1 371 ...|1 1!
[k = 31qlk = 3y 3], !
[kl (GG
I y(@k+1)
T (Tl DR pF

Thus, by (3.12) and (3.14), we get

1617

(3.11)

(3.12)

(3.13)

(3.14)
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1 © Fq 1(2k+1)
2 k
— = . (3.15)
(-} = EkrDPE >
Therefore, by (3.13) and (3.15), we obtain the following proposition.
Proposition 3.2. For k > 0, we have

1 (Tylk+ 1))2([2]q% )%
[KlqBq(k, 5) = T i@+
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