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Abstract. A brief introduction to the fractional Fourier cosine transform as well as fractional Fourier sine
transform and their basic properties are given. Fractional Fourier cosine (fractional Fourier sine) transform
of tempered distributions is studied. Pseudo-differential operators involving these transformations are
investigated and discussed the continuity on certain spaces S, and S,.

1. Introduction

The fractional Fourier cosine (sine) transform is a generalization of ordinary Fourier cosine (sine)
transform with an angle 0, has many applications in the several areas including Physics, Signal Processing,
Mathematical Analysis and other fields ([3, 8]). Motivated by the above works, we have defined one
dimensional fractional Fourier cosine (fractional Fourier sine) transform for 6 (0 < 6 < 1) as follows:

Definition 1.1. The fractional Fourier cosine transform of a function f € L1(R+); R+ = (0, 00) is defined as
) = F2 (F@) () = fo Ko (v, 1) (), W

where

Co e0°+Y) 002 cog(xy csc @) O # nm,

Ky(x,y) = \/% cosxy, 0=1%, )
o(x —y) 6=nm,neZ,

where
Co = [2(1—;c0t9)' 3)
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The corresponding inverse fractional Fourier cosine transform is given by

(7)) =rw= [ Bmw Fod, @
0
where

Kce(x, y) — C_Q e—i(x2+y2)cot9/2 Cos(xy csc 6) — Kc_g(x/ y)/

C_gz /wzc_e' (5)

Similarly, we define fractional Fourier sine transform as:

and

Definition 1.2. If f € Li(R}), then its fractional Fourier sine transform is defined as

Fy) = F2 (F) (v) = fo K (x, ) f (), ©)

where

elO-TI2Cy ey c0t02 gin(xy csc O) O # n,

Ky(x,y) = \/g sinxy, 0=73, (7)
o(x—y) neZz.
The corresponding inverse fractional Fourier sine transform is given by
-1 o
(7))@ = = [ Retew iy, ®)
0
where

K (x, y) = K2 y(x, y),

and Cy is given in (3).

Definition 1.3. ([1, 4]) The space S, (S,) is the subset of all even (odd) functions in S (Schwartz space). Thus
¢ € S, (S,) function and it satisfies

V() = sup |xﬁ D;¢>(x)| <oo, VYB,ve N 9)

xeR;

If f is of polynomial growth and is locally integrable function on R, then it generates a distribution in &
as follows:

(f0)= fo f@pEx; ¢ SR.). (10)
Lemma 1.4. ([5]) A function ¢ € C*(R,) satisfies (9) if and only if

Tp(®) = sup (1 + )" Dip()| < oo, ¥ m,f € No. (1)
xelRy

The fractional Fourier cosine and fractional Fourier sine transforms are powerful tools in Mathematical
Analysis, Physics, Signal Processing etc. Many fundamental results of these transforms are already known,
but applications in Pure Mathematics are still missing. In this correspondence, the continuity of above said
transforms and the transforms of tempered distributions have been investigated. Moreover, we obtained
differential operators A, and A} and also defined the pseudo-differential operators. Then, we discussed the
continuity of pseudo-differential operators on spaces S, and S,.
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2. Properties of Fractional Fourier Cosine (Sine) Transform

Theorem 2.1. Let Ki(x, y) be the kernel of fractional Fourier cosine transform then
Ay = d—2 - 21’xcot(9i —x*cot? 0 —icotO
T dx? dx ’
and

AYKE (xr y) —(1/ csc G)ZK (.X y)

Proof: Since Kj,(x, y) = Coel@*+y) ot /2 cos(xy csc 9), then

% (Kg (x, y)) = Coel®+y)t02 [(jx cot 6) cos(xy csc 0) — sin(xy csc O)y csc O] .

Rearranging (14), we obtain
sin(xy csc ) = Clg iy )eot0/2(y csc ©)7! |ix cot O K¢ o(x,y) - d KC o, )|
Differentiating (14) with respect to x and using (15), we have
Cl—Kc(x y) = —x cotGKg(x y) +icot O Ky(x,y) — y?esc? 0 K¢ o(x, v)

+2ix cot Q%Kg (x,y) +2x* cot? 0 Ky (x, ).

Hence

2
[;7 — 2ix cot 6% — 2 cot? 0 — i cot 6] K(x, y) = —(y esc 0K (x, ).

Therefore,
AKG(x, y) = —(y csc 0K (x, ).

The above theorem can be generalized as follows:

Remark 2.2. Let r € INg and Ki(x, y) be the kernel of fractional Fourier cosine transform, then

ALK (x, y) = (~(y csc 9)2) K (x, ).
Theorem 2.3. Forall ¢ € S.(R.), we have

(MK ), 0()) = (Ko y), Alp),
where A} is conjugate complex of A,.

Proof: Using integration by parts, we have

(K5, 000) = [ AKi(a,0) g

—cot? 6 foo Ky(x, v) (ngb(x)) dx—icot6 f‘” Ky (x, y)p(x)dx
0 0

fo K6, ) AL
(K5(x, ), ML)

The above theorem can be generalized as follows:

“( d? “(d .
jo‘ (d 5Ky (x, y)) qb(x)dx—fo (EKg(x, y)) 2ix cot 0 p(x)dx

oo P2
f K (x, y)( + 2ix cot O % —x?cot? 6 + i cot 6) P(x)dx
0

1793

(12)

(13)

(14)

(15)

(16)

(17)
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Remark 24. If ¢ € S,, then
(ALK, 1), () = (K5, ), (AF) 6(x)), (18)
where r € Ng and A, is given by (12) and A} is conjugate complex of Ay .
Remark 2.5. Similar results of above Theorems and Remarks of this Section can be found for kernel K (x, y).
Theorem 2.6. Let ¢ € S,(R,), then
FO((A2) o) ) = (~(y csc 0)) (F2) (). (19)

Proof: By (1), we have

(@ o)) = [ Kot ) o
(K, ), (M%) p(x))
(A K5, ), 6(x))
= (- (yesc0)’) (Kg(x, 1), 6()
(~(yesc0?) (F0) (v).
Theorem 2.7. If ¢ € S.(R,), then
&, (F20) () = 7 [(~ (wesc 0F) 9(x)] (. (20)

Proof: Using Remark 2.2, we have

X)W = & [ K i

[ kit o

fom (— (x csc 9)2)7 Ky (x, y)p(x)dx
7|~ wese0F) o09] .

Definition 2.8. The test function space Sg is defined as follows: an infinitely differential complex valued function ¢
on R, belongs to S if and only if for every choice of p and v of non-negative integers, it satisfies

T (¢) = sup [P AL ()| < oo, (21)

xeR;

where A, is given in (12).
Theorem 2.9. The mapping FC : So(R+) — So(IRy) is linear and continuous.

Proof: Linearity of 77 is obvious. Let , v be any two non-negative integers and
{Pulnen € Se(Ry). Using (20), we have

sup |y 4 (72@n)()] = sup [#7 (- wese @) ) )]
yeR, yeER,

Since ¢, € S.(R+), ((—x csc 9)2)V ¢n € S(Ry) = Tf) ((— (x csc 9)2)V d)n) € S.(R,).
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Hence

sup |yﬁ (A§ﬁ9(¢n)(y))| — 0ifp, > 0in Spasn — oo,
yeR,

which implies the continuity of F2.

Similar results can be found of above Theorems 2.6-2.9 for fractional Fourier sine transform as follows:

Theorem 2.10. Let ¢ € S,(R,), then

(i) 7 ((A;)r qb(x)) (y) = (— (y csc 9)2)’ (ﬁeqb(x)) (), ¥ r €Ny,

(i) & (F29) () = FE[(- (xesc0)?) o@)] ), ¥ r e Ny,
(iii) The mapping F? : S,(R+) = So(R,) is linear and continuous.

Theorem 2.11. Let ¢ be a measurable function defined on R.. For any fixed a > 0, we define the function
(To09) (@) = x +a) ™7, 22)
then

(i) 7 (Tao®) () + 7 (T-00) (4) = 27474 cos(ay esc 0) (F09) »),
(i) 7 (Too0) () + 7 (T-o09) (v) = 26747 47 cos(ay csc 0) (79 (v).

Proof: Proof of this theorem is straight forward and thus avoided.

3. Fractional Fourier Cosine (Sine) Transform of Tempered Distribution
Theorem 3.1. The fractional Fourier cosine transform is a continuous linear map of S.(R.) onto itself.

Proof: Let ¢ € S,(R;) € L1(R,), then

o) = [ K oo

= Co f IO Ot0/2 c5(xy ese ) (x)dx
0

= (gl coto/2 f e 0012 cos(xy csc ) P(x)dx
0

— Ceeiyz cot 9/27:6 [eixz cot 9/2¢(x)] (y cse 9)’

— Ceeiyz cot /2 Do(y),

where ®y(y) = F, [eixz C"te/ng(x)] (ycsc O).

Since ¢ € Se(Ry), Do(y) = T [t 02(x)] (y csc ) € Su(R,).
Therefore,

Dy (F29) (v)

CGD; [eiyZ cot0/2 CD@ (y)]

4

CHZ(;)DZ (27<0172) Dy @o(y)

n=0

\4

Co Y ey, cot012) ;" at)
n=0
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where P, (y,icot 6/2) is a polynomial of maximum degree 1, and using the technique [7, 9]. Thus

Dy (o)) = Co Z (;) el o0z [Z]l as(cot O)y’

n=0 s=0

Dy, "®o(y),

therefore

0y (720) ) < 1col Y (n) Z las(cot O)] [y,

n=0

hence,

%,3[(7" cp (y) < ICelz( )Zlas(cot 0)| sup|yﬁ+st Dy y)|
s=0
< o (23)

because Dg(y) € Se(R,). Thus (FI¢) (y) € Se(R.).
Also from (1) and (4), we observe that for all ¢ € S.(R.),

(7)) 7)o =0 = (72 (7))o
It follows that F? is an 1-1 function of S.(IR;) onto itself. Clearly, ¥? is also a linear map of S,(R.) onto

itself. Also for every sequence {¢,},eny Which converges to zero asn — o0 in S.(IR;) then by (23), {ﬁeqbn} -0
in S(R;) as n — oo, which implies the continuity of fractional Fourier cosine transform.

Theorem 3.2. The fractional Fourier sine transform is a continuous linear map of So(R.) onto itself.

Theorem 3.3. (Parseval identity of fractional Fourier cosine transform) Let ¢, € S.(R.), then the following
equalities hold

i (F20) () (FO¥) (n)dy = 600 P, (24)
0 0

CEtowfay= [ o[ 25)
0 0

Proof: Since ¢, € S.(R,), hence using (2), we have

6 * * i(x2+y?) cot 0/2 6
CLLﬁe me%MM@M@@

[ o) 7wy

foo (p(x)[@ foo =i+ cot0/2 cog(xy csc 6) (Tf’t,b) (y)dy]dx,
0 0

as an application of inverse fractional Fourier-cosine transform, we obtain

. L
[ 72e) (7w ity = [ o0 0o

If ¢ = ¢ in the last expression, we obtain

f F00) dy = f o dx.
0 0
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Theorem 3.4. (Parseval identity of fractional Fourier sine transform) Let p, € S,(IR.), then the following equalities
hold

[ o) F)wan= [ ow yai, (26)
and

[ ol a= [ lowlax @)
Definition 3.5. The generalized fractional Fourier cosine transform (F2f) of f € SL(R.) is defined by

(Ff0) = (£ F09), (28)

where ¢ € S.(Ry).

By Theorem 3.1, (F2¢)) € So(R+) ¥ ¢ € Se(R,), so RH.S. of (28) is well defined.

-1 g . .
Definition 3.6. The inverse fractional Fourier cosine transform ((Tf) f ) of f € S,(R.) is defined as

(79) " £.0) = (£.(72) " 0)i 0 e SR, 9)

Similarly, we define the generalized fractional Fourier sine transform and and its inverse for S,(R;) as
follows:

Definition 3.7. The generalized fractional Fourier sine transform (7—"59 f) of f € S,(R,) is defined by

(F2f.0) = (£, F9). (30)
where ¢ € So(R+).

-1 / . 3
Definition 3.8. The inverse fractional Fourier cosine transform ((7‘“59) f ) of f € S,(Ry) is defined as

() £0)= (£ 0): 0 e Sumo a1)

Theorem 3.9. The generalized fractional Fourier cosine transform F2 is a continuous linear map of S,(R.) onto
itself.

Proof: Let f € S;(]R+) and if the sequence {¢}en converges to zero in S.(R.), then by continuity of
fractional Fourier cosine transform {chpn} — Q0 asn — oo. Hence

(PO, bn) = {f, Fbu) = Oasn — .
Therefore, (TCG) is continuous on S,(IR;).
Also for f,g € S;(]R+), we have
(FOf+a10) = (F+9.779)
= (£709)+(9.70)
= (72£.0)+(70.9).
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Hence, ¥ is linear on S,(IR,.).

Also,
(ro) = (F2A(7) o)
= (r(7e(72))o).
so that
(N TEN
Similarly,

-1
(7o () )£ =7
Therefore, ¥ and (ﬂg)_l are 1-1 map of S,(IR;) onto itself.

Example 3.10. Ifx € Ry, a > 0, then
(i) FEI6(x —a)] = K(a, y),
(ii) FE[6(x —a)] = K (a, ).

Proof: (i) Let ¢ € S.(R;), then
(FOb-a)l,¢) = (5x-a),(F %))
= (F'¢)@
Co f‘” P+ Ot012 co5(ay cse 0) P(y)dy
0
<Ceei(“2+yz)“0t6/2 cos(ay csc 0), (p(y))
(K5(@,1),0W),

hence, 79 [6(x — a)] = Ki(a, ).
(ii) Similarly if ¢ € S,(R) and proceeding as in (i), we obtain (ii).

Example 3.11. Ifx € R,, then
(i) F[0(x)] = Cg &V <072,
(i) FO[6(x)] = 0.

Proof: Put a = 0 in Example 3.10, we get the desired results.

4. Pseudo-Differential Operators (P.D.O.’s)

A linear partial differential operator A(x, A}) on R, is given by

m

Al A = Y a () (A)),

r=0

1798

(32)

where the coefficient a,(x) are functions defined on IR, and A} is conjugate complex of A,, given in (12). If

we replace A} by monomial (— (y csc 9)2) in R, then we obtain the so called symbol

m

A, y) = Y a,(0) (= (yesc0)’) .
r=0

(33)
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In order to get another representation of the operator A(x, A7), let us take any function ¢ € S,, then we have

A A9 = Y a((7) 72) @) 6w (4
r=0

= Y a@ () ((-wesc0)?) (726) ) (35)
r=0

- [ R wan (729) i, (36)

where Ki(x, y) is as in (2). If we replace the symbol A(x, y) by more general symbol a(x, y), which is no

longer a polynomial in y necessarily , we get the pseudo-differential operator A¢ , defined below. For p.d.o.,

involving Fourier transform, Hankel transform, fractional Fourier transform, Féurier—]acobi transform and
a singular differential operator, we may refer respectively [11, 13], [6], [7, 9], [10, 12] and [2].

Definition 4.1. Let m € R, then we define the symbol class S™ to be the set of all functions a(x, y) € C*(R+ X R;)
such that for u,v € Ny, there exists a positive constant C,,, depending upon u and v only, such that

DX Dax, y)| < Cup L+ )" (37)

Definition 4.2. Let a be a symbol satisfying (37), then the pseudo-differential operator (p.d.o.) involving fractional
Fourier cosine transform, A¢ , is defined by

(A% 0) () = fo i K5, y) a(x, y) (FE9) (n)dy; Y € Se(R,). (38)

Similarly, we can define p.d.o. involving fractional Fourier sine transform as follows:

Definition 4.3. Let a be a symbol satisfying (37), then the p.d.o. involving fractional Fourier sine transform, A3 , is
defined by

(400)0 = [ Komat ) (70) Wi V6 € SR (39)
0
Theorem 4.4. Let a be a symbol belonging to the symbol class S", m < —(B + v + 1), then A¢ | maps S,(R.) into
itself.

Proof: Let ¢ € S.(R+) and ,v € Ny. In order to prove that A° , maps S.(RR+) into itself we need to prove
that ’

sup |xﬁ Dy (A;/qu(x))| < oo,

x€R,

Using (38), we have

xPDY (Aglgqb) (%) xP fo ) D} (Kg (x, y) a(x, y)) (?'Cecp) (y)dy

:c_gxﬁfo Z

(V)DZ (g_i(xz+y2)C°t 02 og (xy csc 9)) D;*’Ia(x’ y)
n=0

n
x (F29) () dy

n

—_ v b n=&+1 00 i i) co
-G zo(n)z(g)uﬂ [t coreyp) e
7‘]:

&=0

X Alxycsc0) (yesc0)™ Dy (a(x, ) (FEo) () dy,
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where P; (x,1cot 6/2) is a polynomial and A(xy csc ) = cos(xy csc 0) or sin(xy csc 6) depending upon (n - &)
is even or odd. Thus

xPDY (Aceqb)(x) = Cy x’gZ( )Z( )( 1 ]f ( a,(cot@)x]
n=0 =0 r=0
x ¢ ICOR Ay cse) (yesc0) Dy (ax, y) (FE9) v) dy

é 00
Zay(COt 0) f e—i(x2+y2)cote/z
0

r=0

—E4Br2 v 1
- ar ()Ll

n=0 &=0
X D{;” (A(xycsc0)) ¥4 csc" =P DL (a(x, v)) (ﬁe(p) (y) dy.

Now, using integration by parts, we have

v n £
py _— Vv T] . N-EHpHr+2 +ﬁ+r+2
¥ (A 40) () = Co ;‘(n)Z(é)Za,(cote) e I N
n= &=0 r=0
0 & B+r
X fo A(xycsc G)Z( ; ){D; (e—l(x ) cot6/2 phng y))

x DY (v (FE9) (y))

V

n
= ( )Z(n) ar(COt 9) CsCﬂ E—r— ﬁ( 1)77— E+Br+2
o\

ﬁ+r
x (/3+r) (;) ()a;(cote) [Tacyescary

it +y2)cot6/ Dt j DV ’la(x y)) Dﬁ” f(yr] & (7_-6(;[)) (y)

Hence,

‘xﬁ _ (x)' o v (;)i( )Z la,(cot )] |csc™*"F | Z (ﬁ +r)
n=0 &=0
()]/) |a, (cot O)| f

0 (0 (F09) )] dy
1

I v v ) 0 . (ﬁ+7’)
L. (W)Z()Zla(cot )| | csc IZ

: t i m— +y

Z (]) ()]/) |a, (cot O) Cy—yp s ]f 1+y) (t=j)+y

j=0 7 =0
y | D;;H t(yq—é (7'}8 <P) (y)>' dy,

since y17¢ (?—”fqb) (v) € Se(R;), so the last integral is convergent. Hence

IA

D! ]DV Ta(x, y)’

X
) ~~
[ !
——
. e
N —

X
<
A
g

IA
IS
=21

X

sup |x’3 Dy AC £o?) )| < oo.
x€R;
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Theorem 4.5. Let a be a symbol belonging to the symbol class S™, m < —(B +v + 1), then A} ; maps So(R+) into
itself.

Proof: Proof of this theorem is similar to that of Theorem 4.4 and thus avoided.

References

(1
[2]

[3

[4]
[5]
(6]
[7]

(8]
9]

[10]

[11]
[12]

[13]

P. K. Banerji, S. K. Al-Omari, L. Debnath, Tempered distributional sine (cosine) transform, Integral Transforms Spec. Funct. 17,
11 (2006), 759-768.

A. Dachraoui, K. Triméche, Pseudo-differential operators associated with a singular differential operator in ]0, +oo[, Indian J. Pure
Appl. Math. 30, 6 (1999), 525-543.

S. Igbal, S. M. Raza, L. R. Kamal, F. Sarwar, Fractional Fourier integral theorem and fractional Fourier sine and Fourier cosine
transform, Sci. Int. (Lahore) 24, 3 (2012), 233-238.

E. O. Milton, Fourier transforms of odd and even tempered distributions, Pacific. ]. Math 50, 2 (1974), 563-572.

R.S. Pathak, A Course in Distribution Theory and Applications, Narosa Publication House, New Delhi, 2009.

R. S. Pathak, P. K. Pandey, A class of pseudo-differential operators associated with Bessel operator, J. Math. Anal. Appl. 196, 2
(1995), 736-747.

R. S. Pathak, A. Prasad, M. Kumar, Fractional Fourier transform of tempered distributions and generalized pseudo-differential
operator, ]. Pseudo-Differ. Oper. Appl. 3, 2 (2012), 239254 .

S. C. Pei, J. J. Ding, Fractional cosine, sine and Hertley transforms, IEEE Trans. Signal Process 50, 7 (2002), 1661-1680.

A. Prasad, M. Kumar, Product of two generalized pseudo-differential operators involving fractional Fourier transform, J. Pseudo-
Differ. Oper. Appl. 2, 3 (2011), 355-365.

A. Prasad, Manoj K. Singh, Pseudo-differential operators associated with the Jacobi differential operator and Fourier-cosine
wavelet transform, 8, 1 (2015), Article ID: 1550010 (16 pp.).

L Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993.

N. B. Salem, A. Dachraoui, Pseudo-differential operators associated with the Jacobi differential operator, J. Math. Anal. Appl.
220, 1 (1998), 365-381.

M. W. Wong, An Introduction to Pseudo-Differential Operators, (3@ Edition) World Scientific, Singapore, 2014.



