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Abstract. Summation of a large class of the functional series, which terms contain factorials, is considered.
We first investigated finite partial sums for integer arguments. These sums have the same values in real
and all p-adic cases. The corresponding infinite functional series are divergent in the real case, but they
are convergent and have p-adic invariant sums in p-adic cases. We found polynomials which generate all
significant ingredients of these series and make connection between their real and p-adic properties. In
particular, we found connection of one of our integer sequences with the Bell numbers.

1. Introduction

The infinite series play an important role in mathematics, physics and many other applications. Usually
their numerical ingredients are rational numbers and therefore the series can be treated in any p-adic as well
as in real number field, because rational numbers are endowed by real and p-adic norms simultaneously.
Hence, for a real divergent series it may be useful investigation of its p-adic analog when p-adic sum is a
rational number for a rational argument.

Many series in string theory, quantum field theory, classical and quantum mechanics contain factorials.
Such series are usually divergent in the real case and convergent in p-adic ones. This was main motivation for
considering different p-adic aspects of the series with factorials in [1-11] and many summations performed in
rational points. Also, using p-adic number field invariant summation in rational points, rational summation
[5] and adelic summation [2] were introduced.

It is worth mentioning that p-adic numbers and p-adic analysis have been successfully applied in modern
mathematical physics (from strings to complex systems and the universe as a whole) and in some related
fields (in particular in bioinformation systems, see, e.g. [15]), see [12, 13] for an early review and [14] for
a recent one. Quantum models with p-adic valued wave functions, see, e.g. [16] for the recent review,
generated various p-adic series leading to nontrivial summation problems (see, e.g. [17-19]).
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In this paper we consider p-adic invariant summation of a wide class of finite and infinite functional
series which terms contain factorials, i.e. Y &"(n + v)!Py,(n; x)x*"*#, where ¢ = +1, and parameters v, €
Ny = NU{0}, k,a € N. Pg,(n; x) are polynomials in x of degree ke which coefficients are some polynomials
in n. We show that there exist polynomials Py,(n; x) for any degree ka, such that for any x € Z values of
the sums do not depend on p. Moreover, we have found recurrence relations to calculate such Py, (#; x) and
other relevant polynomials. The obtained results are generalization of recently obtained ones for the series
Y. n!Pr(n; x)x", see [21]. Some results are illustrated by simple examples.

All necessary general information on p-adic series can be found in standard books on p-adic analysis,
see, e.g. [20].

2. Some Functional Series with Factorials

We consider functional series of the form

+00
Sa(x) = Z & (n+ ) Pra(m;0) x™*F, e=+1, 1,eNo=NU{0}, a, ke N, 1)

n=0
where

Pia(1;%) = Cal(1) X + Cpprya(n) x5 + -+ + Co() x* + Co(n),
Cia(n) = Z cjni®, 0<i<k, cjeZ. )
j=0

Since rational numbers belong to real as well as to p-adic numbers, the series (1) can be considered as
real (x € R) as p-adic (x € Qp) ones. In the real case, (1) is evidently divergent. In the sequel we shall
investigate (1) p-adically.

2.1. Convergence of the p-Adic Series

Necessary and sufficient condition for the p-adic power series to be convergent [13, 20] coincides, i.e.

+00

S(X) = Zanxn/ a, €QC Qpr X e Qp/ |anxn|p —0asn— oo, (3)

n=1

where | - |, denotes p-adic absolute value (also called p-adic norm). To prove this assertion, note that p-
adic absolute value is ultrametric (non-Archimedean) one and satisfies inequality |x + y|, < max{|x|,, |y],}.
Now suppose that the series (3) is convergent for some arguments x and the corresponding sum is 5(x),
ie [S(x) = Sy(¥)l, = 0asn — oo, where 5, (x) = ap +a;x + ... + a,_1x""1. Then X"y = 1Sn41(x) = Sp(X)lp, =
1Sn+1(2) = S(x) +5(x) = Sy ()|, < max{|S(x)—Sy+1(X)|p,1S(xX) =S, (x)lp} — 0 as n — co. That |a,x"|, — 0 as n — oo
is sufficient condition follows from the Cauchy criterion. Namely, for enough large n and arbitrary m, due
to ultrametricity one can write |a,x"|, = |a,x" + A1 X 4o T lp -

The functional series (1) contains (1 + v)!, hence to investigate its convergence one has to know p-adic
norm of (n + v)!. First, one has to know a power M(n) by which prime p is contained in #! (see, e.g. [13] or
[21]). Letn = no+nip+... + n,p" and s, = ng + 1 + ... + 1, denotes the sum of digits in expansion of a natural
number # in base p. Then, one has

n=sn _I=sn
mprt, pim, |nll,=p T,
_nv=spty

(m+W!,=p 77 . 4)

n! = mpM =

Theorem 2.1. p-Adic series (1) is convergent for every x € Z, and any p.
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Proof. Consider p-adic norm of the general term in (1) when x € Z,,, i.e.

n+v=sp4y

le" (n + v)! Pro(11; x) x‘””ﬁlp Slm+v)ll,=p 77 —0asn— oo, (5)

where |Py,(1; %), < 1 and |xan+h |, < 1. Hence, the power series }.,2 " (1 + v)! Pra(1; x) x4 is convergent
inZ,ie x|, <1. O

Since (), Z, = Z, it means that the infinite series Y-, " (11 + v)! Py (1; x) x*"*# is simultaneously conver-
p P n=0 y
gent for all integers and all p-adic norms.

3. Summation at Integer Points

Mainly we are interested for which polynomials Px.(7; x) we have that if x € Z then the sum of the series
(1) is Ska(x) € Z, i.e. Skq(x) is also an integer which is the same in all p-adic cases. Since polynomials Py, (1; x)
are determined by polynomials C;,(1), 0 < i < k (2), it means that one has to find these Ci, (1), 0 < i < k. Our
task is to find connection between polynomial Py, (#; x) and sum of infinite series Si,(x), which becomes
also a polynomial.

We are interested now in determination of the polynomials Py, (1; x) and the corresponding sums Si,(x) =
Qra(x) of the infinite series (1), where

Qa(®) = Gra ¥ + qre1)a X% + -+ 2, X% + qo (6)

are also some polynomials related to P (1; x), so that Py (1;x) and Qg (x) do not depend on concrete
p-adic consideration and that they are valid for all x € Z.
A very simple and illustrative example [20] of p-adic invariant summation of the infinite series (1) is

Zn!n=1!1+2!2+3!3+...=—1 7)
n>0
which obtains taking x = 1, P11(n;1) = n and gives Q1(1) = —1. To prove (7), one can use any one of the

following two properties:

z

-1
n!'n=-1+Nt!, nn=m+1)!—n!. (8)

Il
—_

In the sequel we shall develop and apply approach of partial sums which generalize the first one in (8).

3.1. The Partial Sums

Having in mind our goal on rational summation of the functional series (1), let us consider the partial
sums of its simplified version. Namely,

N-1 N-1

Sk(N; x) = Z e (n+ V) (n + v)F xF = p1k o 4 Z " (n +v)! (n + v)k x+P
n=0 n=1

N-1

= vk P+ ex® "+ ) (n+v+ D) 1P — N (N + 1) (N + v)f xoNHE
n=0
N-1 k+l

=P +ex® Y € (n+v)! Z ( ) (1 + )L x B — N (N + )N + v)k x NP
n=0 =\ L

k+1 +1
= VIV + e x* So(N; x) + € x° Z( y ) Se(N;x) — €N (N + V)L (N + v)f x?N+E | )

=1
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where So(N;x) = ij;ol " (n + v)!x®*F. Obtained recurrence relation (9) gives possibility to find sums
Sk(N;x), k € N, with respect to So(N; x). Performing operations for k = 0 and k = 1 in (9), one obtains

S1(N;x) =(ex™* = 1) So(N; x) — e vIxP ™ + "1 (N + )l x N (10)
So(N;x) =((ex™ = 2)(ex™@ = 1) = 1) So(N; x) + e VI ¥4 (2 — e x™% —v)
F (XY =2+ N +v) " H(N + v)! x? N (11)

Equations (10) and (11) can be rewritten in equivalent and more suitable form, respectively:

z

1
"+ V)X (1 +v) + 2% — ] x P = —e vl 4 NN 4 v) N (12)

o

n=

N,
Z "+ V) (n+v)? — (2 = 3ex + 1] 2% = v [(2 - v)x® — e]xP

_

n=

0
+[(N+v—=2)x%+ e] eNTH(N + v)! xN*F (13)

Theorem 3.1. The recurrence relation (9) has solution in the form

z

-1
" (n+ V) [(n + V)Y + U ()] 2P = Vie_1)a (0) + Ag—1ya(N; x) NN +v)1 2N (14)

1l
o

n

where polynomials Uy, (x), V—1)a(x) and Ag—1)o(N; x) satisfy the following recurrence relations:

k+1 k+1
Z( ‘ ) x &N () = € Upe(x) = 2%V =0, Upp(x) =2 —¢, k=1,2,.., (15)
=1

k+1

k+1
Z( p ) DY () — & Ve () + e vV R =0, Vo) = —eviaf, k=1,2,.., (16)
=1
k+1

k+1 (k=t+1)a k Jka
Y PE A-1aN;X) = € AgenyaN; ) = (N + ) =0, AyN;x) =1, k=1,2,... (17)
=1

Proof. Formula (14) can be rewritten as
Sk(N; %) = =X Uy (¥)So(N; ) + X Vo190 (%) + Age1)a (N; 0)x K NTHN + )12V, (18)

Now one can replace S¢(N; x) in recurrence relation (9) by this one in (18). Compiling the terms separately
with Sy(1; s), then with x*N*F and finally all the rest terms, we obtain respectively recurrence relations for
Uka(x), Ag-1)a(N; x) and Vg_1y,(x). O

Note that factor ¥ does not play an important role in (14), because V_1),(x) also contains x* and it can
be excluded from this formula by redefinition of Vx_1),(x).

Theorem 3.2. Polynomials Uga(x) and Vx_1)a(x) are related to polynomial A_1y.(N; x) in the form

Ura(®) = v+ Dx*Agnya(1;%) = €Ag-1a(0;%) = V%, keN, (19)
V(k_l)a(x) =—evlxf A(k_l)a(o; X), k € IN. (20)

Proof. We use equation (14). Note that U,(x) and Vx_1).(x) do not depend on the upper limit of summation
in (14). Hence, subtracting equations in (14) with ¥ ""' and ¥"°7, we obtain relation

(N +v = 1 + Upa(x) = (N + 1) 2* Age1)a(N; X) = € Ag-1ya(N = 1; %) (21)
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which does not contain V(_1),(x). Taking N = 1 in (21), one obtains expression (19) for Uy, (x). Now using
(14) when N =1 gives

VIVE R U () P 0! = Voo () + Agenya(Lx) (v + 1)1 x4, (22)
Combining (21) and (22), it follows (20). O

Recurrent formulas (15)—(17) enable to calculate polynomials Uk (x), Vik-1)a(x) and Ag-1)o(N; x) for any
k € N, knowing initial expressions: U;(x) = x* —¢, Vo(x) = —e v! ¥ and Ag(N; x) = 1. For the first five values
of degree k, we have obtained the following explicit expressions.

e k=1

ula(x) =x" — g,

Vo(x) = — eviaf,

Ao(n; x) =1. (23)
[ ) k = 2
Upa(x) = = x** +3ex® — 1,
Via(x) = — evidP[(v = 2)x* + €],
A x) =(n+v —2)x* + ¢. (24)
e k=3
Usa(x) =x3% — 7ex® + 6x% — ¢,
Vou(x) = — evIXP[(V? = 3v + 3)x** + (v = 5)ex® + 1],
Aoa(m;x) =[(n +v)*> = 3(n +v) + 3]x** + (n + v — 5)ex® + 1. (25)
[ ] k = 4

U (x) == xM + [1P¥(1 = &) =421 — &) + 6v(1 — &) + 11 + 4e]x>®
+ V21 —e)=7v(1 —¢) — 8 — 17¢]x* + 10ex* — 1,
Vaa(x) = — evIdP[(v2 — 402 + 6V — D)3 + (V2 = 7v + 17)ex® + (v = Ox* + €],
Asa(;%) =[(n +v)> = 4(n +v)* + 6(n +v) — 4] + [(n + v)* = 7(n +v) + 17]ex*®
+(m+v—-9)x" +e. (26)

Usa(x) =x2% — (V2 + 31)ex® + 90x>* — 65ex>* + 15x% — ¢,
Via(x) = — evIdP[(v* = 50 + 1017 — 10v + 5)x% + (1 — 9v? + 31v — 49)ex™®
+ (VP =12+ 52)x% + (v — 14)ex® + 1],
Asa(m;x) =[(n +v)* = 5(n +v)® + 10(n + v)> = 10(n + v) + 5]x*®
+[(n+v)® =9 +v)? + 31(n + v) — 49]ex>®

+{(n+v)? = 12(n +v) +52]x** + (n + v — 14)ex® + 1. (27)
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It is worth emphasizing that all the above equalities, in particular (9) and (14), are valid in real and all
p-adic cases. The central role in (14) plays polynomial Ax,(N; x), which is solution of the recurrence relation
(17), because polynomials Uy, (x) and V_1y(x) are simply connected to Ax,(N; x) by formulas (19) and (20),
respectively. When N — oo in (14), the term with polynomial Ag_1).(N; x) p-adically vanishes giving the
sum of the following p-adic infinite functional series:

Z "+ V) (1 +v)* X+ Uga (0] 2P = V(). (28)
n=0

This equality has the same form for any k € IN, and polynomials Uk,(x) and Vi_1).(x) separately have
the same values in all p-adic cases for any x € Z. In other words, nothing depends on particular p-adic
properties in (28) when x € Z, i.e. this is p-adic invariant result. This result gives us the possibility to
present a general solution of the problem posed on p-adic invariant summation of the series (1).

Theorem 3.3. The functional series (1) has p-adic invariant sum

Sta®) = Y € (14 V)! Pro(; %) X = Qua() (29)
n=0
if
k o k
Pra(;2) = ) Bil(n+ )6 + Ujp@)]  and  Qual®) = Y B; Uja(), (30)
= =1

where Bj, x € Z.

Note that A, (11; x) as well as Uy, (x) and Vx_1),(x) can be written in the compact form

k k k
Ara(;x) = ZA(ka)f(” + )2, Up(x) = Z Ugaye ¥, Via(x) = Z Vikaye X4, (31)
=0 =0 =0

where A)e(n + v) is a polynomial in 7 + v of degree ¢ with (1 + v)’ as the term of the highest degree.
Putting x = 0 in (15)—(17), the following properties hold:

b Aka(n; O) = €A(k_1)a(n; O) = Sk/ k = 1/ 2/
o Ugi1)a(0) = elpa(0) = =M1, k=1,2,...
o Via(0) = eVi1)a(0) = —vIxPed!, k=1,2,...

As an illustration of summation formula (28), we present five simple (k =1, ...,5) examples.

[ ) k = ]_
Ze" m+n+v+1x*—e]x™ =—-¢ev!, xeZ. (32)
n=0

[ ] k = 2
Z "M+ +v)? = 1% + 3ex® — 1} x* = eV [Q-v)x* —¢], x€Z. (33)

n=0
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o k=3
Z "+ v)H{[(n +v)® + 1% — Zex®® + 6x% — e} x"
n=0

=—eV[(v"=-3rv+3)x*+(v-5ex*+1], xeZ.
I[(v* = 3v +3)x* + (v — 5)ex* + 1] zZ (34)

e k=14
Z "+ ) +v) = 1% + [P (1 — &) =421 — &) + 6v(1 — &) + 11 + 4e]x™
n=0

+ V21 —¢) = 7v(1 — €) — 8 — 17¢]x* + 10ex® — 1} x*"

= V[P -4+ 6v -+ (V- Tv+17)ex® + (v = +¢], x€Z. (35)

e k=5
Z "+ [(n +v)° + 1] — (V¥ + 31)ex + 90x°% — 65ex** + 15x* — ¢ } x"
n=0

= —e V! [(V* = 5V% + 1002 = 10V + 5)x* + (v — 92 + 31v — 49)ex®®

+ (P —120+ 52 + (v —14)ex* +1], xeZ. (36)

4. Discussion and Concluding Remarks

The main results presented in this paper are summation formula (9) and theorems (3.1)—(3.3). These
results are generalizations of some earlier results, see [9-11, 21].

Finite series (9) with their sums (14) are valid for real and p-adic numbers. When n — oo the corre-
sponding infinite series are divergent in real case, but are convergent and have the same sums in all p-adic
cases. This fact can be used to extend these sums to the real case. Namely, the sum of a divergent series
depends on the way of its summation and here it can be used its integer sum valid in all p-adic number
fields. This way of summation of real divergent series was introduced for the first time in [2] and called
adelic summability. An importance of this adelic summability depends on its potential future use in some
concrete examples.

The simplest infinite series with n! is }’ n!. It is convergent in all Z,, but has not p-adic invariant sum.
Even it is not known so far does it has a rational sum in any Z,. Rationality of this series and ), n!n*x" was
discussed in [9]. The series ) n! is also related to Kurepa hypothesis which states (In,n!) =2, 2<n €N,
where In = 27:_01 j!. Validity of this hypothesis is still an open problem in number theory. There are many
equivalent statements to the Kurepa hypothesis, see [10] and references therein. From p-adic point of view,
the Kurepa hypothesis reads: }.72, j! = no + mp + nop® + -+, where digit n # 0 for all primes p # 2.

It is worth emphasizing that polynomials Ag,(n; x) contain all information about properties of series
(14). For various combinations of x = 0,+1,+2,..., n =0,1,2,... and parameters k, @, € IN one can obtain
integer sequences, and some of them are already known. Note that parameter v in polynomials A,(#; x)
appears in the form n + v and it is enough to consider how Ag,(1; x) depends on n. Hence we will consider
Aka(n; x) with parameter v = 0. Here are some simple sequences derived from Ay, (1; x).

e o = any even natural number :
Ara(0;£1): 1, 6-2,4-5¢, —13 + 18¢, 58 — 63¢, ... keNg, e=+1,
A1) 1, —1+¢,2—4¢, -9+ 12¢, 43 - 39, ... keNy, e==1.

e a = any odd natural number :

A(0;1): 1, e—2,4-5¢, —13+18¢, 58 —63¢, ... keNp, e==1,
A1) : 1, —1+¢ 2—4e, —9+12¢, 43 -39, ... k€N, &==1.
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e o = any odd natural number :

A0, -1): 1, 2+¢, 4+5¢, 13 +18¢, 58 + 63¢, ... kelNy, e=+=1,
A(;=-1): 1, 1+¢, 4¢e, 94+ 12¢, 43+ 39¢, ... keNg, e==1.
Below are also some simple integer sequences derived from Vi, (x) and Uk,(x).
ex=1 a€elN, =0 v=0:
Vie@): —¢e, =1+2¢, 5—4¢e, =18 +13¢, 63 —58¢, ... kelNy, e=4+1,
Upe(1): 1-—¢, =2+3¢, 7—-8¢, 1 -3¢, 106 —87¢, ... kelN, e=4+1.
ex=1 aelN, =0 v=1:
Vie@): —¢e, =1+2¢, 5—4¢, =18 +13¢, 63 —58¢, ... kelNg, e=4+1,
Ue(1): 1-—¢, -2+3¢, 7—8¢, =14+ 3¢, -2, ... kelN, &e==<1.
Whenx =+1, e =a =1, f=v =0, then (28) becomes
Y i+l =0 if x=1, Y ORI r a] =0 if x =1, (37)
n=0 n=0
where w; = U (1), vx = Vgop(1) and il = —Up(=1), 9 = —V(—1y1(~1) are some integers. First equality

in (37) was introduced in [5], and properties of u; and vy are investigated in series of papers by Dragovich
(see references [8-11]). In [22] some relationships of u; with the Stirling numbers of the second kind
are established, and p-adic irrationality of Y., n'n* was discussed (see [23-25]). Note that the following
sequences are related to some real (combinatorial) cases, compare with [26]:

0k = —Age1(0;1) = Vgon(1) : =1,1,1,-5,5,21,-105,141, ... see A014619 (38)
g = Age1(1;1) = Age1(0;1) = U (1) = 0,1,-1,-2,9,-9,-50,267,... see A000587 (39)
iy = Agoan(1;=1) + Agein (0;=1) = —Uga (1) : 2,5,15,52,203,877,4140,21147, ... see A000110 (40)
O = Ag11(0;-1) = =V (=1) : 1,3,9,31,121,523,2469,12611, ... see A040027. (41)

It is worth pointing out integer series (40) and (41), which are directly calculated from the following
recurrence relations:

k
k+1
Tke1 = Z( ‘ ) (=1 + m + (-1, =2, k=1,23,.., (42)
=1
K k+1
el = Z( , ) D) +3, =1, k=1,23... (43)
=1

In particular, the series of integers 7, (k=1,2,3,...) coincides with the Bell numbers B, (k=0,1,2,...) by
equality Byi1 = 7y for k > 1 (at least for the first 8 terms directly calculated). Recall that the Bell numbers By
are equal to the number of partitions of a set of k elements. They satisfy the recurrence relation

k
k
Bk+1=2(€)Be, By=1.

=0

It follows that the number of partitions of sets with more than one element can be obtained also from the
recurrence relation for 7 given by (42).

Various aspects of the polynomials Ak(1;x), (k = 0,1,2,..., a = 1,2,3,...) deserve to be further ana-
lyzed.
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