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Abstract. This paper is concerned with the existence of Siegel disks of the Cremona map Fα(x, y) =
(x cosα− (y−x2) sinα, x sinα+ (y−x2) cosα) with the parameter α ∈ [0, 2π). This problem is reduced to the
existence of local invertible analytic solutions to a functional equation with small divisors λn +λ−n

−λ−λ−1.
The main aim of this paper is to investigate whether this equation with |λ| = 1 has such a solution under
the Brjuno condition.

1. Introduction

Polynomial maps are of interest from a mathematical and physical perspective. Much work has been
done on Cremona maps, which are polynomial maps with constant Jacobians [10]. If the Jacobian of a map is
equal to one, this map is area-preserving. Invariant manifolds of area-preserving maps play an important
role in the theory of dynamical systems. One can reduce a dynamical system to a lower dimensional case
by restricting the system to the invariant manifold.

The polynomial Pθ is said to be linearizable near the fixed point 0 if there exists a holomorphic
change of coordinates Φ in a neighborhood of 0, called a linearizing map, which conjugates Pθ to the rigid
rotation Rθ : z 7→ e2πiθz. In this case, the maximal linearization domain 4 around 0 is an open simply-
connected set called the Siegel disk of Pθ. Thus Pθ : 4 → 4 acts as an irrational rotation by the angle
θ. In 1990, Marmi [13] proved the existence of an invariant circle in both the modulated singular map
and the semistandard map under the Brjuno condition, moreover, for the semistandard map, the Brjuno
condition also necessary. And he also estimated the Siegel radius for the complex analytic polynomial maps
f (z) = e2πiωz+ (1/n)zn. However his discussion depends on f being entire and the existence of critical points
on its boundary. In recent decades, many efforts were made with invariant curves or circles of analytic
maps (cf. [2, 6, 7, 9, 14, 16]).).

In this paper, we investigate the existence of Siegel disks of the following Cremona map with one
parameter α ∈ [0, 2π)

Fα(x, y) =
(
x cosα − (y − x2) sinα, x sinα + (y − x2) cosα

)
, (1)

2010 Mathematics Subject Classification. Primary 39A10; Secondary 39B32, 34A25.
Keywords. Cremona map; Siegel disk; Small divisors problem; Brjuno condition.
Received: 4 April 2015; Accepted: 26 August 2016
Communicated by Miodrag Mateljević
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which is an area-preserving reversible map (cf. [8, 12, 18] and references therein). Let z = x + iy. The planar
map Fα can be written as a complex function

Fα(z) = λz −
iλ
4

(z + z)2, λ = eiα.

Siegel disks correspond to points where the dynamics of Fα : C → C is analytically conjugated to an
irrational rotation of the complex disk. For the Cremona map Fα, the existence of Siegel disks is reduced to
the existence of local invertible analytic solutions of the functional equation

Φ(λz) − (λ + λ−1)Φ(z) + Φ(λ−1z) =
i
2

(λ−1
− λ)(Φ(z))2, (2)

When λ is on the unit circle but not a root of unit, the main difficulty to the above problem is that one has
to deal with the problem of estimating terms of the form λn + λ−n

− λ − λ−1 (the so-called “small divisors
problem”).

The main aim of this paper is to investigate whether Eq.(2) with |λ| = 1 has a non-trivial analytic solution
under the Brjuno condition.

2. Preliminaries

In order to look for a Siegel disk of Fα, it suffices for Fα to be conjugate to the irrational rotation

Rα : z 7→ λz, λ = eiα.

This means that there exists a local invertible function H : C → C, which is written as H(z) = Φ(z) + iΨ(z),
analytic in the disk DR(α) such that

Fα ◦H = H ◦ Rα.

Together with (1), we have

Φ(z) cosα − (Ψ(z) − (Φ(z))2) sinα = Φ(λz),
Φ(z) sinα + (Ψ(z) − (Φ(z))2) cosα = Ψ(λz).

It follows that Ψ(λz) = (Φ(z) −Φ(λz) cosα) cscα. Thus Φ(z) must satisfy the functional equation

Φ(λz) − 2Φ(z)cosα + Φ(λ−1z) = (Φ(z))2 sinα,

which is just Eq.(2). Substituting this expansion Φ(z) = Σ+∞
n=1φnzn into Eq.(2), we get

+∞∑
n=1

Dnφnzn =

+∞∑
n=2

n−1∑
j=1

φ jφn− jzn sinα, (3)

where Dn = λn + λ−n
− λ − λ−1. By comparing coefficients of (3), one easily finds that

D1φ1 = 0, Dnφn =

n−1∑
j=1

φ jφn− j sinα, n ≥ 2.

In order to obtain a non-trivial analytic solution, put φ1 , 0.
One can easily obtian the following.
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Lemma 2.1. Eq.(2) with Φ(0) = 0 and Φ′(0) , 0 has a formal solution of the form

Φ(z) =

+∞∑
n=1

φnzn,

where φ1 is any nonzero constant, and

φn =
λ − λ−1

2i
·

1
λn + λ−n − λ − λ−1

n−1∑
j=1

φ jφn− j, n ≥ 2.

Here we first introduce the Gauss’s continued fraction expansion of an irrational number and define the
Brjuno condition. Let [a0, a1, ...] be the continued fraction expansion of ω ∈ R\Q, recursively determined
by a j = b1/ω jc and ω j = 1/ω j−1 − b1/ω j−1c for all j ≥ 1, where b c denotes the integer part, ω0 = ω − bωc and
a0 = bωc. The partial fractions pk/qk = [a0, ..., ak] are given by

pk = akqk−1 + pk−2, qk = akqk−1 + qk−2

for all k ≥ 0, with initial data q−2 = p−1 = 1, q−1 = p−2 = 0. As in [5, 11], the sequence (pk/qk)k≥1 has the
following important properties:

(2qk+1)−1 < (qk + qk+1)−1 < |qkω − pk| < q−1
k+1, ∀k ≥ 1 (4)

qk ≥
1
2

( √
5 + 1
2

)k−1

, k ≥ 1 (5)

∑
k≥0

1
qk
≤

√
5 + 5
2

. (6)

As in [20], an irrational number ω ∈ R\Q is said to satisfy the Brjuno condition (or ω is a Brjuno Number)
if the sequence of denominators (pk/qk)k≥0 of the convergents of ω satisfies

B(ω) :=
+∞∑
k=0

log qk+1

qk
< +∞. (7)

An irrational number ω ∈ R\Q is said to satisfy the Diophantine condition (or ω is diophantine) if there
exist constants c > 0 and µ > 2 such that

|ω −
p
q
| ≥

c
qµ

for all p ∈ Z, q ∈ Z+. Another equivalent condition [19] is as follows: there exist constants c > 0 and β ≥ 0
such that pk/qk the k-th convergent of ω satisfies

qk+1 ≤ cq1+β
k , ∀k ≥ 0. (8)

We call an irrational number ω ∈ R\Q to satisfy the strong Brjuno condition if the sequence of denomina-
tors (pk/qk)k≥0 of the convergents of ω satisfies

B̄(ω) :=
+∞∑
k=0

log qk+2

qk
< +∞. (9)

This condition is obviously not weaker than the Brjuno condition since qk+1 < qk+2 for k ∈ Z+.

Lemma 2.2. Let ω ∈ R\Q be diophantine and pk/qk the k-th convergent of ω. Then

B̄(ω) :=
+∞∑
k=0

log qk+2

qk
< +∞.
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Proof. By the diophantine condition, there exist constants c > 0 and µ > 2 such that

|ω −
p
q
| ≥

c
qµ

for all p ∈ Z, q ∈ Z+. By (4), |ω − pk
qk
| < 1

qkqk+1
for all k. Then qk+1 ≤ c−1qµ−1

k . Thus

qk+2 ≤ c−1qµ−1
k+1 ≤ c−1(c−1qµ−1

k )µ−1
≤ c−µq(µ−1)2

k .

Therefore
log qk+2

qk
<

log c−µ

qk
+ (µ − 1)2 log qk

qk
.

It follows from (5) that
+∞∑
k=0

log qk+2

qk
< +∞. �

Now we construct an irrational number which satisfies the strong Brjuno condition, but is not diophan-
tine. Let the denominators of the convergents of ω ∈ R\Q satisfy qk+2 = be

√
qkc for all k ≥ 0 and then by

(5)

q−1
k log qk+2 ≤

1
√

qk
≤

√

2
( √

5 − 1
2

) k−1
2

.

Consequently
+∞∑
k=0

log qk+2

qk
< +∞. However this number does not satisfy (8). In fact, assume this number

satisfy (8). Then qk+2 ≤ c2+βq(1+β)2

k . On the other hand, there exists a fixed small ε > 0 such that qk+2 > eqεk .
For big enough k, we have

eqεk > c2+βq(1+β)2

k .

This is a contradiction.
The next example [19] is given to construct an irrational number which satisfies the Brjuno condition, but

not the strong Brjuno condition. Let the denominators of the convergents of ω ∈ R\Q satisfy qk+1 = be
√

qkc

for all k ≥ 0 and then by (5)

q−1
k log qk+1 ≤

1
√

qk
≤

√

2
( √

5 − 1
2

) k−1
2

.

Consequently
+∞∑
k=0

log qk+1

qk
< +∞. There exists a fixed small ε > 0 such that qk+1 > eqεk . For big enough k, we

have
q−1

k log qk+2 ≥ q−1
k

(
eqεk

)ε
≥ q−1

k (eε)qεk ≥ qk,

Consequently
+∞∑
k=0

log qk+2

qk
= +∞.

3. The Siegel Disk

Theorem 3.1. If B̄(α/(2π)) < +∞, then Fα has a Siegel disk in the neighborhood of the origin.

Proof. In order to prove the convergency of the formal power series Φ(z) in Lemma 2.1, it suffices to show
that

sup
n

1
|n|

log |φn| < ∞. (10)

Let || · || denote the distance from the nearest integer, i.e., ||y|| := minp∈Z |y + p|. For n ≥ 1, let

εn := min{|λn+1
− 1|2, |λn−1

− 1|2} ≤ |(λn+1
− 1)(λn−1

− 1)| = |Dn|.
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Put ω = α/(2π), then

εn = min{4| sinπ(n + 1)ω|2, 4| sinπ(n − 1)ω|2}.

Since 2x ≤ sin(πx) ≤ 1 for all x ∈ [0, 1/2], one immediately has

min{16||(n + 1)ω||2, 16||(n − 1)ω||2} ≤ εn ≤ 4.

According to Siegel’s ideas (1942) [17], define inductively

σ1 = |c1|, σn =

n−1∑
l=1

σlσn−l, n ≥ 2,

and

δ1 = 1, δn =
1
εn

max
1≤ j≤n−1

δ jδn− j, n ≥ 2. (11)

By induction, we see that

|φn| ≤
| sinα|
|Dn|

n−1∑
j=1

|φ j||φn− j| ≤
1
εn

n−1∑
l=1

σlσn−lδlδn−l ≤

( 1
εn

max
1≤l≤n−1

δlδn−l

) n−1∑
l=1

σlσn−l


= σnδn.

Then

φn ≤ σnδn, ∀n ≥ 2. (12)

Therefore, to establish (10) it suffices to prove analogous estimates for σn and δn. To estimate σn, let
f (z) =

∑+∞
n=1 σnzn, we find that f satisfies the functional equation

f (z) = |c1|z + ( f (z))2.

This equation has a unique analytic solution vanishing at zero

f (z) =
1 −
√

1 − 4|c1|z
2

, |z| ≤
1

4|c1|
.

By Cauchy’s estimate

σn ≤ (4|c1|)n max
|z|≤1/(4|c1 |)

| f (z)| ≤ (4|c1|)n
·

1 +
√

2
2

≤
(4|c1|)n(1 +

√
2)

2
. (13)

Hence

sup
n

1
n

log σn < ∞.

We now consider δn. Here we essentially repeat Brjuno’s arguments (Brjuno 1971 and 1972 [3, 4]); also
refer to Abate 2010[1], Jöschel 1986 [15] for some very readable expositions and for applications of Brjuno’s
method to the Siegel theorem.

In (11) the maximum is attained for some decomposition

δ1 = 1, δn =
1
εn
δ jnδn− jn , where 1 ≤ jn ≤ n − 1. (14)
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Decomposing δ jn , δn− jn in the same manner, and proceeding like this we will finally obtain some well
defined decomposition

δn =

l(n)∏
k=1

ε−1
ik
, where εi1 = εn, 2 ≤ i2 ≤ · · · ≤ il(n) ≤ n − 1. (15)

We claim that l(n) = n− 1. In fact, as δ1 = 1, δ2 = 1/ε2, one has l(1) = 0, l(2) = 1. By induction, for n ≥ 2 from
(14) one has l(n) = 1 + l( jn) + l(n − jn) = 1 + jn − 1 + n − jn − 1 = n − 1.

It is natural to introduce the function Ωλ :N \ {1} → R+ defined as follows:

Ωλ(m) := min
1≤ j≤m−1

ε j.

Clearly Ωλ is non-increasing and, since ω ∈ R\Q, limm→+∞Ωλ(m) = 0. From (4) one has

Ω(qk) ≥ min
1≤ j≤qk−1

min{16||( j + 1)ω||2, 16||( j − 1)ω||2} ≥ 16|qkω − pk|
2
≥

4
q2

k+1

. (16)

Let Nm(n) denote the number of factor ε−1
ik

in the expression (15) satisfying

εik <
1
4

Ωλ(m).

The next lemma contains the key estimate.

Theorem 3.2. For m ≥ 2, we have

Nm(n) = 0 if n ≤ m,

Nm(n) ≤
2n
m
− 1 if n > m.

Proof of Lemma 3.2. We argue by induction on n. If ik ≤ n ≤ m we have εik ≥ Ωλ(m), and hence
Nm(n) = 0.

Assume now n > m. Write δn as in (15), we have a few cases to consider.
Case 1: εn ≥

1
4 Ωλ(m). Then by (14)

Nm(n) = Nm(n1) + Nm(n2), n1 + n2 = n,

and applying the induction hypothesis to each term we get Nm(n) ≤ 2n/m − 1.
Case 2: εn < 1

4 Ωλ(m). Then

Nm(n) = 1 + Nm(n1) + Nm(n2), n1 + n2 = n, n1 ≥ n2,

and there are three subcases.
Case 2.1: n1 ≤ m. Then

Nm(n) = 1.

Case 2.2: n1 ≥ n2 ≥ m. Then by induction

Nm(n) = 1 + Nm(n1) + Nm(n2) ≤ 1 +
2n
m
− 2 =

2n
m
− 1.

Case 2.3: n1 ≥ m > n2. Then

Nm(n) = 1 + Nm(n1),

and we have two different subsubcases.
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Case 2.3.1: n1 ≤ n −m + 1. Then by induction

Nm(n) ≤ 1 + 2
n −m + 1

m
− 1 ≤

2n
m
− 1,

and we are done in this case too.
Case 2.3.2: n1 > n − m + 1. The crucial remark here is that ε−1

n1
gives no contribute to Nm(n1). Indeed,

assume by contradiction that εn1 <
1
4 Ωλ(m). Then

1
2

Ωλ(m) > εn + εn1 ≥ min{|λn−n1+2
− 1|2, |λn−n1 − 1|2, |λn−n1−2

− 1|2}

≥ Ωλ(n − n1 + 2) ≥ Ωλ(m).

This is a contradiction.
Therefore case 1 applies to δn1 and we have

Nm(n1) = 1 + Nm(kl1 ) + Nm(n1 − kl1 ).

We can repeat the argument for this decomposition, and we finish unless we run into case 2.3.2 again.
However, this loop cannot happen more than m + 1 times, and we eventually have to land into a different
case. The proof is completed. �

We can now complete the proof of the theorem. Define the sequences of index set

I(0) := {k = 1, ..., l(n) in (15) |
1
4

Ωλ(q1) ≤ εik ≤ 4},

I(v) := {k = 1, ..., l(n) in (15) |
1
4

Ωλ(qv+1) ≤ εik <
1
4

Ωλ(qv)},

where the sequence (qv)+∞
v=1 is the sequence of the denominators of the partial fractions of ω. By l(n) = n− 1,

we see that card I(0) ≤ n − 1, and if v ≥ 1 card I(v) ≤ 2n
qv
− 1. Thus by (15), (16), (5) and (6)

1
n

log δn =

l(n)∑
k=1

1
n

log ε−1
ik
≤

+∞∑
v=0

1
n

cardI(v) log
4

Ωλ(qv+1)
≤

+∞∑
v=0

1
n
·

2n
qv

log q2
v+2

= 4
+∞∑
v=0

log qv+2

qv
.

Together with (12) and (13), we have

sup
n≥1

1
n

log |φn| ≤ sup
n≥1

1
n

(
log σn + log δn

)
≤ log |4c1| + log

1 +
√

2
2

+ 4
+∞∑
v=0

log qv+2

qv

< +∞,

which implies that power series Φ(z) = Σ+∞
n=1φnzn converges in a neighborhood of the origin. The theorem

is proved. �

4. Numerical Evidences

In this section, some numerical experiments will be presented under different parameter values.
Figs.1-3 present some orbits of the Cremona map for three values of α/(2π) near rational number 1/3,

and show that a family of invariant curves at a neighborhood of the origin exist when α = 2π/3 − 1/1000,
disappear when α = 2π/3, and appear again when α = 2π/3 + 1/1000.
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Figure 1: α = π
2 −

1
1000 Figure 2: α = π

2 Figure 3: α = π
2 + 1

1000
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