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Quasi-Uniformities and Quotients of Paratopological Groups

Ivdn Sanchez?, Manuel Sanchis?

Institut de Matematiques i Aplicacions de Castellé (IMAC), Universitat Jaume I, Spain

Abstract. For a subgroup H of a paratopological group G we prove that the quotient topology of the coset
space G/H is induced by a rotund quasi-uniformity and the quotient topology of the semiregularization
(G/H)s of G/H is induced by a normal quasi-uniformity. In particular, (G/H)s, is a Tychonoff space provided
that G/H is Hausdorff. The previous results are applied in order to show that every Hausdorff Lindelof
paratopological group is w-admissible. We also show that, if G is an w-admissible paratopological group,
then so are the reflections T;(G) (i=0,1,2,3), Reg(G) and Tych(G).

1. Introduction

For a function f: X — Y defined on a quasi-uniform space (X, U) with values in a set Y the quotient quasi-
uniformity on Y is the largest quasi-uniformity making the map f quasi-uniformly continuous. In general,
the quotient quasi-uniformity does not induce the quotient topology (see [7, 8]) and even a uniform quotient
of a metrizable space can fail to be metrizable (see, for instance, [10]). These facts serve to illustrate the
delicate nature of (quasi)-uniformities on quotient spaces and the intrinsic interest of their study.

The aim of this paper is to study quasi-uniformities on coset spaces G/H where H is a subgroup
of a paratopological group G. Among other things, in the first section we show that the coset space
G/H has a natural rotund uniformity which induces the quotient topology. The same is proved for the
semiregularization (G/H)s, of G/H by means of a normal quasi-uniformity. As a consequence of this result,
we show that (G/H)s, is a Tychonoff space provided that G/H is Hausdorff. In the second section, we apply
these results in order to show that every Hausdorff Lindelof paratopological group is w-admissible. We
also show that, if G is an w-admissible paratopological group, then so are the reflections T;(G) (i=0,1,2,3),
Reg(G) and Tych(G).

Now we introduce the basic notions used in this paper.

A paratopological (semitopological) group is a group with a topology such that multiplication on the group
is jointly (separately) continuous. If G is a semitopological group with identity e, the symbol N(e) denotes
the family of open neighborhoods of ¢ in G.

Let X be a space with topology 7. Then the family

{IntU:U e 1)

2010 Mathematics Subject Classification. Primary 54H11; Secondary 22A30, 54D10, 54D15, 54E15

Keywords. Axioms of separation, paratopological groups, quasi-uniformity, quotient topology, semiregularization

Received: 29 March 2015; Revised: 09 October 2015; Accepted: 10 October 2015

Communicated by Ljubisa D.R. Ko¢inac

The first author is supported by CONACyT of Mexico (Grant number 232464). The second author is supported by the Spanish
Ministry of Science and Education (Grant MTM2011-23118) and by Universitat Jaume I, Spain (Grant P1-1B2014-35)

Email addresses: isr.uami@gmail.com (Ivan Sdnchez), sanchis@nmat.uji.es (Manuel Sanchis)



I. Sinchez, M. Sanchis / Filomat 31:6 (2017), 1721-1728 1722

constitutes a base for a coarser topology ¢ on X. The space X;, = (X, 0) is called the semireqularization of X.

Given two subsets U and V of X X X, the symbol U o V stands for the set {(x, z) | there exists y € X such
that (x, y) € U and (y,z) € V}. A quasi-uniformity on a set X is a family U of subsets of X X X which satisfies
the following conditions:

i) A={(x,x):xe€ X} CUforevery Uel;
i) UNV e U, foreach U,V € U;
iii) if UeUand U C V, then V e I;
iv) for every U € U, there exists V € U such that Vo V C U

If in addition we have that V! = {(y,x) | (x,y) € V} belongs to U for all V € U, then the quasi-uniformity
is called a uniformity.

A family B c U is called a base for the quasi-uniformity U if for every V € U, there exists W € B such
that W € V. A base B of a quasi-uniformity U is multiplicative if for every U,V € B, we have U o V € B.

Suppose that U is a quasi-uniformity on a set X. Then for each x € X and U € U, we put B(x, U) = {y €
X:(x,y)eU). IfAC Xand U € U, then B(A, U) = U,es B(x, U).

A quasi-uniformity U induces a topology 71 on X as follows: the family {B(x, U) : U € U} is a neighbor-
hood base at each point x € X.

A quasi-uniformity is rotund if U has a multiplicative base B such that B(A, W) C B(A, UW) for each
A C X and U W € B (see [4]). For topological notions not defined here the reader can consult [5] and for
paratopological groups [1].

2. Quasi-Uniformities and Quotients of Paratopological Groups

In this section we study quasi-uniformities on the coset space G/H, where H is a subgroup of a paratopo-
logical group G. We start with a lemma which is straightforward.

Lemma 2.1. Let H be a subgroup of a paratopological group G and p the quotient function from G onto the quotient
space given by the right cosets G/H (respectively, by the left cosets). Then p(U) = p(HU) for each open subset of G
(respectively, p(U) = p(UH)) for each open subset U of G.

The following theorem tells us how to generate the quotient topology of G/H by means of a rotund
quasi-uniformity.

Theorem 2.2. Let H be a subgroup of a paratopological group G and G/H the quotient space given by the right
cosets. Then the topology of G/H is induced by a rotund quasi-uniformity.

Proof. Let p: G — G/H be the quotient function. Take U € N(e¢) and put
eu = {(p(x), p(y)) € G/H X G/H : y € xU}.

We claim that the family B = {e;; : N(e)} is a multiplicative base of a quasi-uniformity U on G/H. In fact,
it is apparent that the diagonal of G/H is contained in ¢;; for each U € N(e) and that eyny € ey N ey for
every U, V € N(e).

Let us now show that ¢y 0 ¢y = ey for each U, V € N(e). Take (a,c) € ey o ¢y. Thus, there exists b € G/H
such that (a,b) € ey and (b, c) € ey. Therefore, we can find (w, x), (y,z) € G X G such that p(w) = a, p(x) = b,
p(y) = b, p(z) =c, x € wl and z € yV. It follow that hx = y for some h € H. Also, z € yV = hxV C hwlUV.
Since p(hw) = p(w) = a, p(z) = c and z € hwlV, we have that (4,c) € eyy.

Now, take (a,¢) € eyy. Then, there exists (w,z) € G X G such that p(w) = g, p(z) = c and z € wlUV. So
z = wuv withu € Uand v € V. Put x = zo! and b = p(x). We conclude that x = zo™! = wu € wlU and
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z € zv"'V = xV. It follows that (a,b) € ey and (b,c) € ¢y. We have thus proved that (a,c) € €y o ey. This
proves the claim.

Now fix A € G/H and U € N(e). Put C = p~}(A). We claim that p(CU) = B(A, 1;). Indeed, take ¢ € C and
u € U. Puta = p(c) and b = p(cu). Hence (a,b) € ey. So p(cu) € B(a, i) € B(A, ey). For the other inclusion,
choose b € B(A, eyy). Hence b € B(a, €yy) for some a € A. So (a,b) € ¢y. It follows that there exist x,y € G
such that p(x) = a, p(y) = b and y € xU. We conclude that b € p(xU) C p(CU). We have thus proved that
p(CU) = B(A, eu). In particular, ifa € G/H, then B(a, £;) = p(xU) for each x € G such that p(x) = a. Therefore,
U induces the quotient topology on G/H.

Let us show that U is rotund. Take A € G/H and U,W € N(e). Put C = p~'(A). Since p is open and

continuous, p~1(A) = p~1(A) = C.
We have that B(4, e) = p(EU) c p(@) = p(CU) € p(CWU) = B(A, ewey). This finishes the proof. [J

Corollary 2.3. If H is a subgroup of a paratopological group G such that G/H is regular, then G/H is Tychonoff.

Proof. It follows from Theorem 2.2 and [2]. O

A quasi-uniformity U on a set X is normal if A C IntB(A, U) for any subset A C X and any entourage
U € U. Here the interior and the closure are taken in 7y. It is known that a uniformity is always normal
(see [2]).

In the following result, if B is a subset of the paratopological group G, we put B = B

Theorem 2.4. Let H be a subgroup of a paratopological group G. Then the topology of the semiregularization (G/H)s,
of the quotient space G/H is induced by a normal quasi-uniformity.

Proof. Let p: G — G/H be the quotient function, X = G/H and Y = (G/H),,. Take U € N(e) and put

eu = ((p(), p(y) € Y X Y 2 ply) € Int pGelD) ).

Let us show that the family {ey; : U € N(e)} is a base for some quasi-uniformity U on Y. Clearly, the
diagonal Ay C ¢ for each U € N(e).

Let us show that ¢y o ¢y C eyy for each U,V € N(e). Take (a,¢) € €y o ¢y. Thus, there exists b € G/H
such that (a,0) € ¢y and (b,c) € ey. Therefore, we can find w,x,y,z € G such that p(w) = a, p(x) = b,
py) = b, p(z) = ¢, p(x) € Intp(wU)X and p(z) € Intp(yV)X. We know that hx = y for some h € H. So
p(z) € Intp(yV)X = Intp(th)X = Intp(xV)X. By Lemma 2.1, p(x) € p(wll)x = p(HwU). Then x € HHwU. By

the continuity of the multiplication in G and the fact that H is subgroup, x € HHwU C HwU. Therefore,
X

- — X

p(2) € Intp(xV) . C Int p(HWUV) € Intp(HWUV) = Int p@UV) . Hence (a,c) € euy.
Fixa € X and U € N(e). Choose x € G such that p(x) = a. We claim that B(a, i) = Int p(xU)X. Indeed,
if (a,b) € €y, then there exist y,z € G such that p(y) = a, p(z) = b and p(z) € Intp(yU)X. Since p(x) = p(y),
X

we can find h € H satisfying hx = y. Therefore, p(z) € Int p(hxll)X and b = p(z) € Int p(th)X = Intp(xU) .

Hence B(a, ¢yy) C Int p(xU)X.

Conversely, b € Intp(xU)X. Take y € G such that p(y) = b. We have that (2, b) € ey. We have thus proved
that B(a, ey) = Int p(xll)X. This shows that U generates the topology on Y = (G/H)s,.

Let us show that the quasi-uniformity U is normal. Take A C Y, U € N(e), and put C = p~1(A). Take an
open neighborhood V of e in G such that V2 C U. Denote by Bx(4, i) the U-neighborhood of A given by
the quasi-uniformity on X as in Theorem 2.2. Since Bx(A, ¢v) is open in X, we have that

—Y —XY XX X
A CIntxBx(A,ev) =IntxBx(A,ev) = Bx(A ev) )
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The quasi-uniformity in Theorem 2.2 is rotund, so it is normal. Then, we conclude that

— X X X Y
Bx(A,evy) CIntxBx(Bx(A, ev),ev) < Bx(A,eu) < Bx(A eu) )

— EE—
It follows from (1), (2) and the inclusion Bx(A, ¢y;) € B(A, ¢y) that AY C IntyB(A, €y) . This shows that
Uisnormal. [

Corollary 2.5. Let H be a subgroup of a paratopological group G such that G/H is Hausdorff. Then (G/H)s is
Tychonoff.

Proof. Itisknown that (X, )sr = X, forevery space X. So (G/H) is semiregular. By Theorem 2.4, the topology
on (G/H)s is induced by a normal quasi-uniformity. Finally, [2] implies that (G/H)s, is Tychonoff. [

3. Some Results on w-Admissible Paratopological Groups

According to [14], a paratopological group G with identity e is w-admissible if for every sequence
{U, : n € w} of open neighborhoods of e in G, there exists a subgroup H of G such that H C (,,c,, U, and the
quotient space G/H is submetrizable.

In Theorem 3.5, we will prove that every Hausdorff Lindelof paratopological group is w-admissible.
Before, we need to recall some concepts. Let G be a semitopological group with identity e. A subset V of
G is called w-good if there exists a countable family  C N(e) such that for every x € V, we can find W € y
with xW C V. The symbol N*(e) denotes the family of w-good sets of G which contains the identity. The
following lemmas are useful.

Lemma 3.1. ([15, Lemma 3.10]) Every paratopological group G has a local base at the neutral element consisting of
w-good sets.

Lemma 3.2. Let G be a semitopological group with identity e. Suppose that a family y C N(e) satisfies the following
condition:

(a) for every U € y and x € U, there exists V € y such that xV C U.
Then the set N = (WU N U™ : U € y} is a subgroup of G. Moreover, UN = U for each U € y.

Proof. 1t is clear that N = N~!. Let us show that N is a subgroup of G. Take a,b € Nand U € y. It
follows that a,b € U N U™'. By (a), there exists V € y such that aV C U. Hence ab € aN C aV C U. Since
b=l € U, by (a) again we can find W € y satisfying b™'W C U, that is, W™'b € U™!. Thus, we have that
ab € Nb € W™lb € U™! and, consequently, ab € U N U™! for each U € y. Therefore, ab € N. We have thus
proved that N is a subgroup of G.

Next, we show that UN = U for each U € . For this, pick up U € y and take a € U. By (a), we can find
V € y such thataV C U. It follows that aN C aV C U. This completes the proof. [

For a Hausdorff semitopological group G with identity e, the Hausdorff number of G, denoted by Hs(G),
is the minimum cardinal number x such that for every neighborhood U of e in G, there exists a family y of
neighborhoods of e such that ﬂVGy VV-1 C Uand |y| < « (see [16]).

We know that a paratopological group G with identity e is Hausdorffif and only if (e VIVV™! = {e}.
This motivates the next definition.

Definition 3.3. Let G be a Hausdorff paratopological group with identity e. The bilateral Hausdorff number
of G, denoted by BHs(G), is the minimum cardinal number « such that for every neighborhood U € N(e),
there exists a family y € N(e) such that (e, V7'VV~ C Uand [y| < «.
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It follows from the previous definition that Hs(G) < BHs(G) for every Hausdorff paratopological group
G. Clearly, if G is 2-oscillating, then we have the equality Hs(G) = BHs(G). It will be interesting to find a
Hausdorff paratopological group G such that Hs(G) < BHs(G). Recall that a paratopological group G is said
to be 2-oscillating if for every neighborhood U of the identity e in G there is a neighborhood V of e such that
V-1V c UU™!. Precompact and Abelian paratopological groups are 2-oscillating (see [3]).

By [16, Proposition 2.4], every Hausdorff Lindel6f paratopological group has countable Hausdorff
number. Using a similar argument, we can prove the following result.

Proposition 3.4. Every Hausdorff Lindelof paratopological group satisfies the inequality BHs(G) < w.

Proof. Take U € N(e). Since G is a Hausdorff paratopological group, for each x € G\ U there exists Vy € N(e)
such that VxxV§ N Vy = 0 or, equivalently, xV, N V7 1 V. V; 1 = (. The set G\ U is closed in G and the family
{xVy:x € G\ U} is an open cover of G \ U, so there exists a countable subset S C G \ U such that the family
{xV, : x € S} covers G \ U. It follows that (s V7'V, V! C U. Therefore, BHs(G) < w. [

Theorem 3.5. If G is a Hausdorff Lindelof paratopological group, then G is w-admissible.

Proof. Take a sequence {U, : n € w} € N(e). By Lemma 3.1, for each n € w there exists U, € N*(e) such that
U;, € U,. By induction, we will construct a sequence {y, : n € @} such that for every n € w:

(i) yn S N*(e) and ly,| < w;

(11) Yn € Vn+ls

(iii) y is closed under finite intersections;

(iv) for every U € vy, and x € U, there exists V € y,41 such that xV C U;
™) Nvey, VIVVEC Ny

Let o be the minimal family containing {U], : n € w} and closed under finite intersections. Suppose that
we have defined y,. Asy,, € N*(e), there exists a countable family A,,; € N*(e) such that for each U € y,, and
x € U, there exists V € A, satisfying xV C U. Since G is a Hausdorff Lindedf space, Proposition 3.4 implies
that we can find a countable family A, » € N*(e) such that for every U € y,,, we have My, , v-ivv-1lcu.

Let y,+1 be the minimal family containing y,, U (Uil An,i) and closed under finite intersections. Clearly, ;41
satisfies (i)—(v). This finishes our construction.

Put y = U,ep Vn- By construction, y satisfies condition (a) in Lemma 3.2. Thus, H=\{UN U : U €y}
is a subgroup of G. By item (v), H = N{UU™! : U € y}. It follows that H = "{U : U € y} = MNU:Ue vl =
A{Utuu—"': Ueyh

Let p be the quotient function from G onto G/H, the quotient space given by the left cosets. Let us show
that G/H is a Hausdorff space. Take x, y € G such that p(x) # p(y). Sox'y ¢ H. Since H = N{UU™! : U € y},
we can find U € y with x'y ¢ UU™L. Tt follows that xU N yU = 0. By Lemma 3.2, xUH N yUH = . Hence
p(xU) N p(yU) = 0. We have thus proved that G/H is Hausdorff. Corollary 2.5, implies that X = (G/H) is a
Tychonoff space. By [5, Theorem 5.1.2], X is paracompact.

Let us show that X has Gs-diagonal. Put W(U) = U e Intp(xU) X Intp(xU), for every U € y. Clearly, U(U)
is open in X X X and contains the diagonal Ax. Take a,b € G such that p(a) # p(b). It follows that b'a ¢ H =
MUTUU™ : U € y}. Therefore, there exists U € y such that b~'a ¢ U"UU'. Take V € y with V2 C U. We
claim that (p(a), p(b)) € U(V). Suppose the contrary. Then, we can find x € G such that p(a), p(b) € Intp(xV).
It follows from Lemmas 2.1 and 3.2 that Intp(xV) = Intp(W). Therefore, p(a) € Intp(W) C p(xVV~1) and
p(b) € Intp(xV) C p(xV~'V). Hence a € xVV'H C xVV2and b € xV'VH C xV-'V2 Tt follows that
bla € (V2VxY)(xVV~2) = V2V2V~2 C U~'UU!. This contradicts the choice of U. We have thus proved
that (Mye, WU) = Ax.

Finally, since every Hausdorff paracompact space with a Gs-diagonal is submetrizable (see [6, Corollary
2.9]), the space X is submetrizable. The topology on X = (G/H), is weaker than the topology on G/H and,
consequently, G/H is submetrizable. This completes the proof. [

Corollary 3.6. ([9],[12]) Every Hausdorff Lindelof paratopological group with countable pseudocharacter is sub-
metrizable.



I. Sdanchez, M. Sanchis / Filomat 31:6 (2017), 1721-1728 1726

According to [17] (also [18]), given a semitopological group G, the T;-reflection of G for i € {0,1,2,3} is
defined as a pair (H, ¢¢,;) where H is a semitopological group satisfying the T; separation axiom and ¢g;
is a continuous homomorphism of G onto H with the following property: for every continuous mapping
f:G — X to a Ti-space X, there exists a continuous mapping h: H — X such that f = h o ¢g,.

Similarly, a regular (Tychonoff) reflection of a semitopological group G is defined. As is customary, by
‘regular’ we mean ‘T; & T3’

Abusing of terminology, we will usually refer to To(G), T1(G), T2(G), Reg(G) and Tych(G) as the Ty-, T1-,
Hausdorff, regular and Tychonoff reflection, respectively, of the group G.

Problem 3.7. Let H be a subgroup of a regular Lindelof paratopological group G such that the space G/H is Hausdor{f
(regular) and it has countable pseudocharacter. Is G/H submetrizable?

Theorem 3.8. Let G be an w-admissible paratopological group. Then
i) Ti(G) is w-admissible for each i =0,1,2;
ii) T3(G) is w-admissible;
iii) Reg(G) is w-admissible;
iv) Tych(G) is w-admissible.

Proof. i) Fix i € {0,1,2}. Let {U, : n € w} be sequence of open neighborhoods of the identity in Ti(G).
According to [17] and [18], T;(G) = G/N, where N is a normal subgroup of G. Consider ¢¢;:G — T;i(G).
For each n € w, there exists an open neighborhood V,, of the identity ¢ in G such that ¢¢;(V,) € U,. Since
G is w-admissible, there exists a subgroup H of G such that H C (,,¢,, V» and the left quotient space G/H
is submetrizable. Then M = @¢i(H) € (V,e0 ©6,i(Vn) € Nyew Un- Let us show that the left quotient space
Ti(G)/M is submetrizable. Consider the quotient functions p: G — G/H and g4: T:(G) — Ti(G)/M. Since G/H
is submetrizable, there exists a bijective continuous function from G/H onto a metrizable space X. Since X
is a T; space, we can find a continuous function h: T;(G) — X such that h o ¢g; = f o p. We claim that there
exists a function g: T;(G)/M — X such thatgogo @g; = f op.

Indeed, take y € Ti(G)/M. There exists x € G such that q(pg,i(x)) = y. We have that f(p((p(‘;,ll.(q‘l(y)))) =

fplpgi(pc,i(xH)) = f(p(xHN)) = f(p(xNH)) = f(p(xN)) = h(¢,i(xN)) = {h(¢G,i(x))}. This proves our claim.

Since g o ¢, is open and f o p is continuous, the function g: T;(G)/M — X is continuous.

Let us show that g is injective. Take x, y € G such that q(¢g (%)) # 4(¢c,i(y)). This implies that y'x ¢ HN.
Hence y~'x ¢ H. So p(x) # p(y). Since f is injective, we have that f(p(x)) # f(p(y)). It follows that g is
injective.

We have thus proved that T;(G)/M is submetrizable.

ii) Since G is a paratopological group, T3(G) = Gg. Let {IntU, : n € w} be a sequence of open neigh-
borhoods of the identity in G,. Since G is w-admissible, there exists a subgroup H C (), IntU, such that
G/H is submetrizable, that is, there is a condensation p from G/H onto a metrizable space M. Consider the
quotient maps 77 and 7, from G onto G/H and from G, onto G,/H, respectively. Notice that, as functions,
the equality 7; = m; holds and, consequently, we have p o 711 = p o 1p. Since p o 71 is a continuous function
from G onto a metrizable space, p o 7 is also continuous. The definition of quotient topology implies that
p is continuous as a function from G;,/H onto M. This proves ii).
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iii) By [17, Proposition 3.7], Reg(G) = To(T5(G)). It remains to apply i)-ii).

iv) The paratopological group Reg(G) is regular. By Corollary 2.3, the space Reg(G) is Tychonoff. So
Tych(G) = Reg(G). O

Following [13], we say that a semitopological group G has countable symmetry number if for every open
neighborhood U of the identity e in G, there exists a countable family y of open neighborhoods of ¢ in G
such that (e, vlcu.

The following result may be of interest in itself.

Proposition 3.9. Every w-admissible paratopological group G has countable symmetry number.

Proof. Let U be an open neighborhood of the identity e in G. Since G is w-admissible, there exists H < G
such that H € U and G/H is submetrizable. We have that G/H has countable pseudocharacter. This implies
that we can find a countable family ) of open neighborhoods of e in G such that (¢, p(V) = {H}, where p is
the quotient function from G onto G/H. It follows that (., VH = H. Therefore, [y, V-1 C H C U. This
completes the proof. [

Proposition 3.9 permits us to construct an example of an w-narrow paratopological group which is not
w-admissible. In addition, the next example answers in the negative [11, Problem 3].

Example 3.10. There exists an Abelian Tychonoff w-narrow paratopological group H which is not w-
admissible. In fact, H has uncountable symmetry number.

Proof. Let Z be the discrete group of integers and x an uncountable cardinal. For a finite set A C x, we
define a set Uy € Z* by

Up={xeZ":x(a) =0ifae Aand x(a) > 0if a € x \ A}.
The family U = {Ux : A C x,]A| < w} is a local base at the neutral element of Z* for a topology 7 such that
G = (Z¥, 1) is a completely regular paratopological group (see [16, Example 2.9]). Define the subset H of
Z* as follows: x € H if there exists a positive integer n, such that |x(a)| < n, for each o € x. Clearly, H is a
subgroup of G. Let us show that (H, 7|y) is w-narrow. Take a finite subset A of x and put V = H N U,. For
each r € Z Consider the subset

D, ={xeZ:x(a)=rifa ¢ A}.

It is easy to see that D, € H. Since A is finite and Z is countable, the subset D, is countable. Put
D = J,ez Dr. Clearly, D C H and D is countable.

Take x € H. Then, there exists a positive integer n such that |x(a)| < n for each a € x. Choosed € D_,
such that d(a) = x(x) for every a € A. Consider v € V such that v(a) = x(a) + n if @ € k \ A. Of course,
v(a) = 0if a € A. We claim that d + v = x. Indeed, d(a) + v(a) = —n + x(a) + n = x(a) if a € k¥ \ A. On the
other hand, d(a) + v(a) = x(a) + 0 = x(«) if « € A. We have thus proved that D + V = H.

We will prove that H has uncountable symmetry number. Put U = HNUy. Let {A, : n € w} be a sequence
of finite subset of x and put U, = H N Uy, for each n € w. The set A = [ J,,¢,, Ax is a countable subset of «.
Since « is uncountable, we can choose k € « \ A. Take x € H satisfying h(a) = 0if a # k, and x(k) = —1. Itis
easy to see that x € ., U;!, but x ¢ U = H N Uj. This shows that H has uncountable symmetry number.

Since H has uncountable symmetry number, Proposition 3.9 implies that H is not w-admissible. [
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