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Abstract. Odd-dimensional Weyl and pseudo-Weyl spaces admitting almost contact, almost paracontact
and nilpotent structures are considered in this work. The results are obtained by means of the apparatus of
the prolonged covariant differentiation. A linear connection with torsion is constructed. With respect to this
connection the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl
spaces are found to be zero. The curvature tensor with respect to this connection is considered.

1. Introduction

Riemannian spaces with almost contact and almost paracontact structures have been studied in [1, 3, 5,
6,13-15]. In [11, 12, 16, 17] Weyl spaces are studied, and in [19] nilpotent structures have been considered.
In this paper, we study odd-dimensional Weyl and pseudo-Weyl spaces endowed with various struc-
tures: almost contact, almost paracontact and nilpotent. In our investigations we use the apparatus of the
prolonged covariant differentiation which is defined in [4] and developed in [18, 21, 22]. The affinors of the
considered structures are defined by means of 2 + 1 independent directional fields g" (o,a=1,2,..,2n+1)

and their reciprocal covectors 0y [2, 23, 24]. We pay special attention to the spaces with parallel structures
with respect to the Levi-Civita connection of the metric, i.e. the so called Kahler-like classes. For such
spaces we obtain a decomposition of three mutually orthogonal subspaces and also their line elements
(fundamental forms).

In the last section, we introduce a linear non-symmetric connection. With respect to this connection
the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl spaces are
proved to be zero. We study the curvature tensor corresponding to the introduced connection.

2. Preliminaries

A set of quantities that differ from each other by a non-zero factor is called a pseudo-quantity. A particular
quantity of this set is called a representative of the pseudo-quantity. The choice of a representative from a
pseudo-quantity is called normalization.
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Let A, be an n-dimensional space with an affine connection and the pseudo-quantity A € A,,.
The following definitions are given in [7, 10, 20]:

Definition 2.1. By a pseudo-quantity with weight k it is meant a set of objects A admitting a transformation
(renormalization) of the form

A= AkA, (1)

where A = A(th, th, ..y 1) iS @ nON-z€r0 function of the point, and k € R. We denote a pseudo-quantity with weight k by
Alk).

Definition 2.2. A normalizer is defined as a covector (1-form) T, which is transformed by the rule

dlnA

T0-=Tg+8o-lnA, (9011'1/\= W (2)

In [4], V. Hlavaty introduced the notion of prolonged derivative of a pseudo-quantity A{k} by
dA = ;A - kT,A. 3)

Because of (1) and (3) we have 954 = Af9%A from which it follows that the prolonged differentiation
preservers the weight of a pseudo-quantity. It is known that if A{p} and B{g}, then AB{p + g} and J%(AB) =
(d2A)B + A(9:B).

Definition 2.3. The prolonged covariant derivative of a pseudo-quantity Alk} is called the object [7, 10, 20]

VoA = VoA - kT A, (4)
where VA is the usual covariant derivative of A.

Let M2y+1(gag, Ts) be a (2n + 1)-dimensional smooth manifold with a Weyl connection V, a symmetric
pseudo-tensor g,s and an additional covector T,. The space M,+1(gag, T5) will be denoted by W5,,1 and
will be called a Weyl space. The coefficients FZ[; of the Weyl connection are given by [7](p. 154)

T2 = {0k = (Tadf + Tp0% — Tug""9ag), 5)

where {Zﬁ} are the Christoffel symbols of the tensor g,g.
According to [7](p. 152), the fundamental tensor g,s admits a transformation of the form

gaﬁ = Azgaﬁ/ (6)

12 20+l
where A = A(u, u, ..., W ), A # 0, is an arbitrary smooth function of the point.

By the renormalization (6) of g4, the additional covector T is transformed by formula (2) ([7], p. 152).
According to [7](p. 152), the following hold

Vogaﬁ =2 Togaﬁ/ ch]aﬁ =-2 ng“ﬁ/ (7)

where g,9"" = Og-
From (6) it follows that 7,5{2} and g*P{-2}. Then, according to (4) and (7), we obtain

Vaga[i =0, Vagaﬁ =0. 8)

Since the identity affinor has zero weight, i.e. 6’;{0}, then 606/; =0.
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Let us introduce the notations

a,B,v,01,v,0=12,.,2n+1;, pgqrt=12..,2n ©)
9

s klm=12,.,n j&klm=n+1n+2,.,2n.

Letv(a=1,2,..,2n+1)be2n +1 independent directional fields over My,.1. The pseudo-vectors oP are
o

a
renormalized by the condition

gaﬁv“vﬁ =1. (10)
From (10) it follows that v¥{—1}. According to [7](p. 153) and (10), we have
Jap0™ P = cosw, (11)

where w{0} is the angle between the pseudo-vectors v* and oP.
Let the following conditions hold

ap — o B —
b ¢ 0, ap? 500 0 (12)

The net defined by the pseudo-vectors o is denoted by {v}. The pseudo-covectors ?)ﬁ are given by
a o
o= = v b, =&, (13)
g o

from which it follows that %ﬁ{l}.
We choose {v} to be the coordinate net. Then, from (10), (11), (12) and (13) we have

B L B 1 B 1 .
v (W,o,o,...,o),g (0, gzz,o,...,o),...,zgl (0,0,...,0, F) )
2n+1

9 (V711,0,0,..,0), 95 (0, y722,0, -,0) .., 0§ (0,0, .., O, yFzmri 2 -

In the parameters of the coordinate net {v} the matrix of the fundamental tensor g,4 has the following block

diagonal form

Jks 0 0
lgal| = 1| O s 0 , detgus #0, Gaa > 0. (15)
0 Jon+1 2n+1

Let us consider the pseudo-tensor 7,5 whose matrix has the following form in the parameters of the
coordinate net {v}:
[24

_ Gks 0 0
[Gagl| =[] O -g O (16)
0 Jon+1 2n+1
By (8), (15) and (16) we get
voﬁaﬁ = 2TJ%/3/ vo?ﬁ = _2Tcr§uﬁ/ (17)

where gagg*” = 67. According to (16) and gapg™® = o5, it follows that Japl2} and g*#{-2}. Then, by (4) and
(17) we obtain

VoGas =0, V3 =0, (18)
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The space Wy,41 (%ﬁ, T;) willbe denoted by Wzn+1 and will be called a pseudo-Weyl space with fundamental

tensor %ﬁ and additional covector T,. The coefficients of the connection of W, coincide with the
coefficients of the connection of the space Woy41.
From (10) and (16) it follows

Gapr" 0’ =1, Gyv'f =1, Gy v of=1 1
Gap 7 ! gaﬁ% E: ! b0y 0o (19)

. s 2n+1 —~ 2n+1
In the parameters of the coordinate net {0} it it easy to prove that g5 v * = 0 pand gup v ¢ = 0 g
a 2n+1 2n+1

The direction fields v* satisfy the following derivative equations [22]:

L] v L (o4
Voof =T, 0%,  V,05 = ~T, g, (20)
o a v v

where %G{O}.
o

Lemma 2.4. In the parameters of the coordinate net {v} the coefficients of the derivative equations (20) have the form:
[24

_ N9 vy
- = %rm, Y #aq,

(21)

Y e R

a _ 19%foa :
o =10 =25+ T, (no summation over a).

. 14
Proof. According to (4) and the first of the equalities (20), we have V,0f = V,0f + TyoP = T, 0P, from which we get
o o a a v

IS

sz = 8Ggﬁ + nggv + Tagﬁ. (22)

Having in mind (13), after contracting (22) with %;ﬁ, we obtain

')/
T, = 9,0° 0g +Th, 0" OF + T,5). (23)
a o a
By (23) we get
y B y B v g B @ B v & ;
Ty =050 vg+ T, 0" v, y#a, T, = d,vP vg + T, 0" vg + T, (no summation over a). (24)
o o o a a a

We choose {v} for the coordinate net. Then, according to (14), equalities (24) take the form (21). [
2

Let us consider the affinor field a’i defined by [2, 23, 24]

ai =f %a - vf 2”171[1. (25)
P

2n+1
By (13) and (25) it follows that aﬁag = 67. Hence, the affinor af; defines a composition X5, X X of the basic

manifolds X5, and X; [8]. The positions (tangent planes) of the basic manifolds X,, and X; are denoted by
P(X5,) and P(X1), respectively [8]. According to [8, 9], the affinors

1 14 2 2n+1
a =30 +a) =vPon, @ =30h-a) =0 P,
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.. . ... . . 1 2
are the projecting affinors of the composition X,, X X;. If P isan arbitrary vector, we have P = ug v +a

1 2 1 2
VP + V6, where VF = 0% € P(Xa,) and VF = 2 v* € P(X;). Obviously, v* € P(Xa,), and 0 @ € P(Xi). The
p n+

B —
a0 =

affinors aﬁ, 31'2, l%ﬁ have zero weights.

Let X, X X (a+ b = 2n + 1) be an arbitrary composition in the space Wy,.1, and P(X,) and P(X}) be the
positions of the differentiable manifolds X, and X}, respectively. According to [9], the composition X, X X},
is of the type (c, c), i.e. (Cartesian, Cartesian), if the positions P(X,) and P(X;) are translated parallelly along

any line in the space My41.

3. Almost Contact and Almost Paracontact Structures in W,,,,1 and W2n+1

Let us consider the following affinor fields
W= x (vﬁ zﬁa —of %{7“), (26)
U k k

where % = 1,i (i = —1). According to (13) and (26), we have b’z L0 1”‘ = 0and bi 2”7;15 =0.
U n+ U
Let x = 1. From (13) and (26) we obtain llJi Ii,g =069 - 201" 2nz;r1a, i.e. the affinor lng defines an almost
n+

paracontact structure on Wo,1.

Let x = i. By (13) and (26) it follows that b{i bg = =05 + .0 o zngla, ie. b{i defines an almost contact
1 1 1

n+1
structure on Wy,,41.

Theorem 3.1. The affinor vh is parallel with respect to the Weyl connection V, i.e.
U
Vbl =0 (27)

if and only if the coefficients of the derivative equations (20) satisfy the conditions:

P 2n+1
s=T,=T,=T ,=0. (28)
2n+1 p

g w
X‘IHQ’:

Proof. Because of (4) and bi{O}, the condition (27) is equivalent to
AU

vggﬁ =0. (29)

According to (20) and (26), equality (29) has the form

v k k v v 2 k v
Ty 0?0y — Ty 0P vy — Ty P vy + Ty v v, = 0.
k v vk kv vk

If we write the sums over the index v in a more detailed form and regroup the addends, the last equality has the form

5 2n+1 k s 2n+1 % 5 s 2n+1
2T, P+ Ty v Plo,— (2T 0P+ T4 v Flog+| T ovP— T ;0% v ,=0. (30)
k § k 2n+1 k s k 2n+1 2n+l S 2n+1 s

The independence of the pseudo-covectors Da yields that (30) holds true if and only if the following equalities are valid:

3 2n+1 s 2n+1 5 s
2T, ¥+ T, vF=0 2T, o+ T, vh=0, T,oP— T ,0f=0. (31)
k S k 2n+1 k s k 2n+1 2n+1 § 2n+1 s
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S S
Since the pseudo-vectors vf are mutually independent, equalities (31) are valid if and only if Zg =T, =0and
v k
s 5 2n+1 2n+1 . . 14 2n+1
Ts=Ts,=Ts;= T ;=0. Because of (9) the latter conditions are equivalent to T ;= T ;= 0. Thus we
2n+1 2n+1 k k 2n+1 14

proved that equalities (31), and hence (27), are valid if and only if conditions (28) hold. [

Corollary 3.2. If V, bl =0, in the parameters of the coordinate net {v}, the coefficients I of the Weyl connection
A 24
satisfy:

I =T =I",  =Tx"=0. (32)

o2n+1

Proof. According to (21), equalities (28) imply (32). [

Let the space My,,+1 be a topological product of three smooth manifolds X,, X, and X, (a+b+c =2n+1),
i.e. let M,41 be the space of the composition X, X X, X X.. We denote by P(X,), P(X}) and P(X,), respectively,
the positions of the manifolds X,, X; and X..

Definition 3.3. The composition X, X Xy, X X, is said to be of type (c, c, c) if the positions P(X,), P(Xp) and P(X,)
are translated parallelly along any line in Way41.

Definition 3.4. The composition X, X X}, X X, is said to be orthogonal if the positions P(X,), P(Xy) and P(X.) are
mutually orthogonal.

Theorem 3.5. If V, bf, = 0, the space W41 is a space of orthogonal compositions X,, X X, x Xq of the type (c, c, c).
pAd

Proof. Let condition (29) hold true. Then, in the parameters of the net {v} the conditions (32) are valid. Let us consider
the composition Xa, X X1 defined by the affinor (25). According to [9], by (32) it follows that the composition Xa, X X3
is of the type (c, c). Hence, the position P(X1) of the manifold Xy (which is a curve) is translated parallelly along any
line in My, 41.

Let us consider the following affinors

k 3 2n+1 k 3 2
cﬁzzﬁva—vﬁva— v 70, L =vbo,—vPv,+ v b nz;rla. (33)

% 2141 ‘T % 2141

By (13) and (33) it follows that & ¢y =0y and db, d° = 0. Hence, affinors & and d° define the compositions X, X Yy41

and )_(n X Zn41, respectively, where Y, and Z,.1 are smooth (n + 1)-dimensional manifolds. In the parameters of the
BB

coordinate net the affinors a,, ¢, and d have the form, respectively:
: oo 0 0 [
o 0 koo koo
(a’;>=(g o ) =[ 0 -5 o | @=|0 -5 o] (34)
0o 0 -1 0

By (34) it follows that Y 41 = X, x Xy and Zy.1 = X, X X3, therefore Wo,,41 is a space of the composition X, X X, X X1.
We denote by P(X,,) and P(X,,), respectively, the positions of the manifolds X,, and X,,. According to [9], equality (32)
yields that the compositions X, X Y41 and X, X Zy41 are of the type (c, c). Hance, the positions P(X,,) and P()_(n) are
translated parallelly along any line in Way41, i.e. we proved that the composition X, x Xx X, is of the type (c,c, c).
The projecting affinors of the composition X, x X, X X are:

B _

1 k 1 k
e =vP v, 4 = of v, a,= v F v,
k k 2n+1
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If wh is an arbitrary vector, we have
1 1 ’ 1 2 3
wP :cgw“+d§w“+aiw” = WP+ WP + WP,

1 2 1 _ 3 _
where WP = rlri w® € P(X,), W = d w® € P(X,,) and WP = czzf, w® € P(Xy). Because E{)“ € P(X,), v* € P(X,,) and
k

L0 1“ € P(X1), from (15) or (16) it follows that the positions P(X,), P(X,,) and P(X,) are mutually orthogonal. [
n+

We denote by ds? = gaﬁdﬁdft and ds? = %ﬁdﬁdft the fundamental forms of the spaces W41 and W2n+1,
respectively.

Theorem 3.6. If V, Vo =0, in the parameters of the coordinate net {v}, the fundamental forms of the space Woy41
U 2
and Wy are given by

2n+1

ds? = fgksdudu +fgksdudu +fgz,,+1 o1 d(Cu)?

35)

° 2n+1
ds? = fgksdudu fgksdudu +f92n+1 201d(TL ),
1

where

Ts = %85 h’lf = %()S h’lf, Ts- = %85— h’lf = %(95- h’lf, T2n+1 = %82,14_1 h'lf = %82n+1 h’lf,
2 3 1 3 1 2

a a a, o o i o 2n+1
and]; = ch(u),];= ch(u),];= J;(M), ks = gks(b]l), Ifs = 9ks(u) 92n+1 4l = 92n+1 e ) = duf.

Proof. Let condition (29) hold. Then, in the parameters of the coordinate net {v}, conditions (32) will be valid. From
2
(7), (17) and (32) we obtain

9i9is = 2T ks, djgan+1 2041 = 2T jG2n+1 2041, digks = 2Tgks, 9792141 2041 = 2T 192041 2041,
a21’L+1gks = 2T2n+1gk5/ 92n+191}5- = 2T2n+1g]}s'~
The truthfulness of the theorem follows after integration of equations (36). [

By (35) it follows that the positions P(X,) (or P(X,), or P(X7)) are in conformal correspondence under
parallel translation.
According to (14), a direction field w* defines an isotropic direction in Wy,,41 if %ﬁw wP = 0. Then, by

(12) and (19) it is easy to prove that the direction fields g{) + v and L0 1“ + v"‘ define isotropic directions in
n+

the space W2n+1.

Let the functions f, f and f involved in (35) satisfy the condition f = f = f. Then, T, = grad, and
12 3 12 3

according to [7](p. 157), the spaces Ws,41 and W2n+1 are Riemannian and pseudo-Riemannian, respectively,
which we denote by V3,41 and V3,41. After renormalization of the fundamental tensor g,z we get [7](p
157) Vogap = ggaﬁ = (. By (35) it follows that the line elements dS? and dS? of the spaces V41 and V2n+1
have the form, respectively:

dS? = gie(l)clidi + g ()i + 2011 201 CiEACH N2, (37)
ds? = gks(u)dudu - !7ks(u)dudu - G2,

Equalities (37) imply that the positions P(X,) (or P(X,), or P(X1)) are in conformal correspondence under
parallel translation.
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Theorem 3.7. Condition (29) is equivalent to the following conditions:
1 e 15 2 e 2ﬁ
oV, c, =0, d;Vaed; =0, ayVea, =0, (38)
11 2 o . L <
where ¢, d and al, are the projecting affinors of the composition X, X X, X Xj.

L1 kol k 2 2n+1 )
Proof. Since ¢ = 20 vy, d5 =v"vyandal = v ° v ,, we obtain

k 2n+1
. K ® 1 o 1 ke z . .
v, & = b, v, (vﬁ v) AoV, d = o7 b, V, (zgﬁ v) BV 8= v oM, va( v B2 1(,). (39)
k s k 5 2n+1 2n+1
By (20) and (39) we get
1. 1 3 2n+1 k 1 e 1 s 2n+1 k 2 e 5 14 2n+1
oV, = (Ta P+ T, 0 ﬁ)vv, AoV, db = (T P+ Ta 0 ﬁ)vv, aVed = T o870 ,. (40)
k § k 2n+1 ks k 2n+1 2n+l p

By (40) it follows that conditions (38) are valid if and only if conditions (28) are valid, too. Then, in accordance to
Theorem 3.1, conditions (37) are equivalent to (29). O

4. A Nilpotent Structure on Wy,;1 and W2n+1

Let us consider the affinor

=o', (41)
1

Obviously, ff {0} and hence %C, ff =V, f,f . By (13) and (15) we get ff fﬁ =0, i.e. the affinor ff is nilpotent.

In the parameters of the coordinate net {v} the matrix of ff is given by
a

VIn+1 n+1
0o .. 0 v 0 0 0
0 .. 0 0 V2 vz 0 0
g22
fal| = N2 2
v o .. 0 0 0 N 0
0o .. 0 0 0 0
0o .. 0 0 0 0

Theorem 4.1. The affinor ff is parallel with respect to V, i.e.
Vo fi =0 (42)
if and only if the coefficients of the derivative equations (20) satisfy the following conditions:

k
o= T ;=Ts=T;=0. (43)

Proof. Since %g ff =V, ff , and because of (20) and (41), equality (42) has the form

v n+s n+s v
T, 04— TyvPv,=0.
S v v S
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If we write the sums over the index v in a more detailed form and regroup the addends, the last equality is equivalent
to

n+k n+k n+k 2n+1 ,H_S n+k 2n+1
(T vﬁ)va—(T—T)vﬁ+TU v+ T, vfl o+ TooP| v =0 (44)
k n+k s 2n+1 2n+1  k

Because of the independence of the pseudo-covectors Va equality (44) is valid if and only if the following equalities
hold:

n+k n+k
s =0, T ,0v=0, (T—TU)Uﬁ+TgUﬁ+ Tgvﬁ—O
s k 2n+1  k s n+k S 2n+1

The independence of the pseudo-vectors of yields that the last equalities, and hence (42), are valid if and only if
conditions (43) hold true. [

Corollary 4.2. If V, ff = 0, the coefficients of the Weyl connection T o satisfy the following conditions in the
parameters of the coordinate net {v}:
[24

k _ 1k 2n+1 _
I =T =15 =0, (45)
m k VYIn+k n+k rn+k k _ 1 aagkk _T1n+k _ 1 augn+k n+k
Jss FUS Vn+s n+s Fon+5 - 0’ k # 5 rok 2 Jkk - r0n+k 2 In+k n+k (46)

Proof. According to (21), equalities (43) take the form (45) and (46). O

Proposition 4.3. IfV, ff = 0, in the parameters of the coordinate net {v}, the fundamental tensor g.g, the additional
24
covector T, and the coefficients of the connection I'y s satisfy the following conditions:

— o — Lo _1 _1
Jis = hgis, Pone1 2041 = NGons1 2041, Tj=3d;Inh, Tons1 = 50204110k, (47)
X _ 199k Xk _ 1 %wnkk Kk puek _ 199 1 9iuek ik
Fsk +Ts = 2 gu ! 1—‘211+1 kT Tone = 2 gu 1—'j_k rfnJrk T2 g 2 Gusk nek 7 (48)

a. o o J. o i 2n+1
where h = h(u), 9z = Jrs(1), Jons1 2041 = 92n+1 w1 (U, U).

Proof. By (7) and (45) we obtain
9igts = 2Tj9rs, P10k = 2Toni10ks  9jG2ns1 2041 = 2T jG2n41 2041 (49)
After integration of equations (49), we get (47). According to (45) and (49), equalities (46) imply (48). O

5. Transformations of Connections
Let us consider the connections
'Typ =Thg + Sig, 1rV =T+ s;ﬁ, (50)
where

3

v 2 v
S“ﬁ - \/ﬁ Z'Lml— Ua gps Z4k 1 Zs n+1 (zk)(S v¥ ZI? o), a1
2
SV = W ZTW{ Uq gﬁb Zk 1 Zs =n+1 (20 g gv Zs_]é)
Obviously, SZB{O}, S‘;ﬁ{O}.

We denote by 'V (15) and 'R (IR) the covariant derivative and the curvature tensor corresponding to
the connection I (FV ﬁ) respectively.
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Theorem 5.1. The fundamental tensors g,p and %ﬁ of the spaces Woy,+1 and I/~V2n+1, respectively, satisfy
Wogap =0,  'VoGag =0 (52)
Proof. By (4) and (50) we obtain
Voap = Volap = Ssaop = Sigars  Volfup = Vollup = Ssalfus = Siys- ©3)
Let us consider the tensors defined by
Taaﬁ = Sgagvﬁ/ F’faaﬁ = gg(x%ﬁ (54)
Obviously, Tyap(2}, Toapl2).
According to (50) and (54), we have
2n+1 T
Toap = Jomeees Lot Vo Jad Lima ) (szé?Sz v’ gé)gvﬁ/
) (55)
T Ml T~ S 5\ ~
Taaﬁ = \/ﬁ ZT”HI Ug gaé Zk_ Zs n+1 (E{]b Zs,)v - EC)V gb)gvﬁ
In the parameters of the coordinate net {v} we obtain
2n+1 T 2 Jakgps—Yasg,
Tgaﬁ m Z m Og Zk 1 Z§Zn+1 W’
chm — 1 22n+1 Tg Z Z%il Exk?ﬁg—%g%k (56)
B /—%M1 o CTE 1 k=1 Lss=n+1 \/ﬁ\/?: ’

from which it follows that

To@p =0, Toap =0

(57)
Then, (8), (18), (63) and (57) imply (52).

O

In the parameters of the coordinate net {v}, by (14) and (51) we obtain the following non-zero components
a
of the tensors S;ﬁ and SV

S] — _,S.]. — ‘/> Z s S] — Fsv] - _ \f Z s

Im Uit = G NGzt et S50+ gt Tin Tim \/yTVyZnﬂ 2 5=+l (gt

] _ _F-] Jms ]_ _ F-] — Gmk_
52n+1m - 52n+1m - \/gT Z‘S n+l \fgs’ Slm T Yim \/97\/92»:+1 2n+1 Z‘k 1 \au’ (58)
S]_ — .‘,]— — VI Zn Gmk ]_ — wa — Z Ik

Im Im VT VT2t 2ane1 —k=1 g’ 2n+1 m 2n+1 m k=1

!7k

In the parameters of the net {v}, by (32), (50) and (58) we obtain the following non-zero coefficients of
o
the connections T, and 'V :

11~{ zlf]' :l"j,

), =-T) =8, T =-T =5
ST =l T = 'To=1] ir] =1 rf = sf (59)
Im Im Im Im
1] _ 1T _ ol 117 17 _a
1q2n+1 mo 1q2n+1 1 SZn+1 m’ 2n+1m 1q2n+1 m =5

2n+1 m*
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By (59) and straightforward computations we get the following components of the curvature tensors

v 1
fo and Raﬁg
1 J _p j ool 1p J_p 7 j al
R Rskm +25 s|lSk]m’ Rs’_r?z skm + 2S[sllsk m’
1% J _ j ool 1% 7 _ J al
Rskm - skm -25 |lSk]m’ Rs__m - ‘km 2S[Sllsk
1p J _ j T 1p f
Rypir s = 28[2”“5 gt Sppilse Rouha sk 2‘9[2n+15 + 52n+1 I sk’
1% 7 _ j j I 1% 7
R2n+1 sk 28[2’”1 Ss‘ SZn+1lrsk’ R2n+1 sk = 20 2"+1S + S2n+1 1 sk’

where Raﬁg is the curvature tensor of the space Wy,1.
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