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Abstract. In the present paper, we derive several inclusion relationships and argument properties for
certain classes of multivalent analytic functions associated with a family of linear operators involving
the Srivastava-Khairnar-More operator. Furthermore, some invariant properties under convolution with
convex functions for these classes are investigated. Relevant connections of the results presented here with
those obtained in earlier works are also pointed out.

1. Introduction

Let A, denote the class of functions of the form

f@=2"+) @@ (peN=(1,2)), (11)
k=1
which are analytic and p-valent in the open unit disk
U={z:z€C and |z| < 1}.

For simplicity, we write A; = A.

Let f, g € A,, where f is given by (1.1) and g is defined by

g(z)=2"+ Z bkﬂ,zk*p .
k=1
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Then the Hadamard product (or convolution) f * g of the functions f and g is defined by

(f+9@ =2"+ Y aepbeny?™ = (94 )(2).
k=1

For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, if there

exists a Schwarz function w, which is analytic in U with
w(0)=0 and |w(z)| <1 (z € ),

such that
f(2) = g(w(z)) (z€ ).

We denote this subordination by f(z) < g(z). Furthermore, if the function g is univalent in U, then we have

the following equivalence (see, for details, [3,10]; see also [20]):
f(2) < 9(z) (zeU) < f(0)=g(0) and f(U) c g(U).

Let M be the class of functions ¢(z) which are analytic and univalent in U and for which ¢(U) is convex
with ¢(0) = 1 and R[¢p(z)] > 0 forz € U.

By making use of the principle of subordination between analytic functions, Ma and Minda [9] intro-
duced the subclasses S;(Q; ), Ko(0; ), Cplo, 0; ¢, ) and QC, (0, 0; @, ) of the class A, forp € N,0 < g,0 <p
and ¢, 1 € M, which are defined by

. 1 (zf'(2) .
S,,(Q?@ = {f €EA,: PTQ( @ - p) < ¢(z) in IU},
Ky(0; 0) = {f e A (1 ZJJ:(()) - @) <o@) in IU},

1 (Zf’(Z)

Cp(@,o;qb,ljz):{feﬂp: dg €S, (0 ¢) such that —o | 9@ —0)<¢(z) in IU},

and

1 (Ef@) ) . }
p—a( 7@ o|<yY(z) in Uyp.

We observe that, for special choices for the parameters p, g, 0, and the functions ¢ and ¢’ involved in these

QCy(0,0;0,9) = {f €A, : g€ K, (0;$) such that

definitions, we can obtain the well-known subclasses of A,. For example, the classes

S*( 1+z) S ( 1+Z)=‘K,
"1-z

1+z 1+z 1+z 1+z
1-z"1-2 1-z"1-2

which are starlike, convex, close-to-convex and quasi-convex function in U, respectively.

01(00 ) C, ch(oo ) ac

For parameters
a,beC and ce C\Z; (Z, =1{0,-1,-2,---}),
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the Gauss hypergeometric function »Fi(a, b; ¢; z) is defined by

2Fi(a,bc;2) = 2 (“(’;()Z:";, 12)

where (v); denotes the Pochhammer symbol defined, in terms of Gamma function, by
T(v+k) ~ 1 (k=0;,veC\{0}),
r(v)

Vi =
vv+1)---(v+k-1) (keN;ve).

The hypergeometric series in (1.2) converges absolutely for all z € U, so that it represents an analytic
function in U. Dziok and Srivastava [4] (see also [5,6]) considered the generalized hypergeometric function
4Fs (9,8 € N U {0}), which is a certain generalization of (1.2).

We now introduce a function fﬁlp(a, b, c)(z) defined by
fﬁ,p(ﬂl b,c)(z) = (1 — u+0)2F - 2F1(a, b;c;z) + (1 — 8)z[2” - 2F1(a, b; c;2)]’ + podz?[2F - 2F1(a, b; c; 2)]”

(zeU; u,6=0). (1.3)

We note that, for p = 1 and 6 = 0, we have fg/l(a, b,c)(z) = fu(a,b,c)(z), which was studied by Skukla and
Skukla [16], and for = 6 = 0 and b = 1, we obtain

k+p
7

/-\|A

£2,0,1,0@) = dyla,0(z) = Z
k=0

which was introduced by Saitoh [15].

Next, we introduce the following family of linear operators I ﬁjl‘; (a,b,c): A, > A,, defined by
Tip(@,b,0f(2) = fu(a,b,0)(2) = f(2) (A > =p; p,620; z€ V), (1.4)

where fyA’f (a,b, ¢)(z) is the function defined in terms of the Hadamard product (or convolution) as follows:

fop@b,0)@) * fu(a,b,0)(2) = (A>=p; 1,6 20), (1.5)

( )A+p

where f? (a,b,c)(z) is given by (1.3).

We also note that the operator 7% (a, b, c) generalizes several previously studied familiar operators, and

Lp
we will show some of the mterestmig particular cases as follows.
(1) I AQ 1@b,e)=1 A ula, b,c), where I ﬁ (a,b,c) is the Srivastava-Khairnar-More operator [19];
(ii) Iy A (a b,c) = I,(a, b, c), where the operator 7 ,(a, b, c) was introduced by Noor [12];
(iii) 7, /\ O(a 1l,c)=1 ;} (a,c), where I ;} (a,¢) is the Cho-Kwon-Srivastava operator [1];
(

iv) I g’l (a,n+1,a) = I,, where I, is the Noor integral operator [11].

Since

P A
Ao - Z( Dkr (1> —p; z€ D), (L6)
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by using (1.2), (1.3) and (1.6) in (1.5), we get

1+ (k+p - 1)(ud(k o) (b = (A
Z[ + (k+p — Dotk +p) + p — O)l@( )kZ' Qj(a,bc)(z)zz( Z!P)kzw,

pr () k!
Therefore the function f; A, 5(a b, ¢)(z) has the following explicit form

(A + p(o)k

A, = k+
00,06 = L i eyt oo C €D

Combining (1.1), (1.4), together with (1.7), we have

A0 _ (/\ + p)k(c)k K+
falebOfE) =7 ; [+ Gt p = Dol + p) + = Ol 7" ¢

In particular, we have

I”(a A+p,a)f(z) = f(z) and I“’(a p,a)f(z) =

2f'@)
p
It can also be easily shown that

2[1)5@ b, f@)] = (A +P)I5(a,b,0f@) — AT, b,0)f(z)

and
z[Th@+1,b,0) f(z] =aZ}5(a,b,0)f(2) - (a - p) I} +1,b,0)f(2).

By using the operator I} y:p(a, b, c), we introduce the following subclasses Sﬁj‘; (a,b,c;0) (),
Kiy(a,b,c;0)(9), Cyio(a, b,c; 0,0)(¢, 1) and QCyyo(a, b, c; 0, 0)(¢p, ) of the class A:

up(” b, c; 0)(¢p) = {f EA,: Iﬁ;(a b,o)f(z) € S;,(Q,‘(P)},

Kin(a,b,c;0)@) = {f € Ay Thio(a,b,0f(2) € Ky(0:9)},
Cip(@,b,¢;0,0)9,9) = {f € Ay - Ti3@ b,0f (D) € Colo,0:6, 9},

and
QC(a,b,c;0,0)(@,¥) = {f € Ay : Ti(a,b,0)f(2) € QCy (0,036, )}

It is easy to verify that

f KM, 0)() = 2 2 e 813006, 0(0),
and ,
fe QCﬁjg(a, b,c;0,0) (¢, V) & pr(z) € CM(a b,c; 0,0) (¢, V).

As a special case, when p = 1 and 6 = 0, we obtain

S,1@,b,6,0)(9) = Si(a,b,;0)(@), K;7(@,b,¢;0)(9) = K@, b,c; 0)(¢),

1606

1.7)

(1.8)

1.9)

(1.10)

(1.11)
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Ca,b,¢;0,0)(@,¥) = Ci(a,b,6;0,0)(@,¥), QC,1(@,b,c;0,0)($, ) = QCy(@,b,c; 0,0)($, V),

which were introduced and investigated recently by Wang et al.[21]. Further, forp =1land p=6 =0 =0,

we have

8,1, b,6;0)(9) = Si(a,b,0)(9), K;1(a,b,c;0)(@) = K\ (a,b,0)(¢),

and

C\(a,b,¢;0,0)(¢, ) = Cya, b, )@, ¥),

which were introduced and investigated recently by Srivastava et al.[19].

For the sake of convenience, we write

Ski(a,b,c; )(1:‘22) Skia,b,c;0;A,B) (-1<B<A<T),
’KM(a b, C'Q)(iigj) ’K“(a b,c;0,A,B) (-1<B<A<1),

1+Az_1+Az)_

e 2R _ oAd . . 1< <
M,(a b,c;o0 )(1+Bz' 1+ B2 Cupab,c00,A,B) ((1<B<AXL]),
and

QCQ(;(“ b,c;0,0,A,B) ((1<B<A<1).

1+Az 1+ Az

QCa 600 (1 g 5 ) =
In the present paper, we aim at proving various inclusion relationships among the classes Sﬁ:z (a,b,c; 0)(P),
7(/\ 5(11 b,c; 0)(¢), CA A@a,b,c; 0,0)(¢, 1) and QCA b(a b,c; 0,0)(¢, ¥) and argument results of p-valent analytic
functions, which are defined by the operator I} W(a, b, c). Some interesting applications involving these and

other families of integral operators are also derived.

2. Inclusion Properties Involving the Operator 1’ :’: (a,b,0)

The following lemmas will be required in our investigation.
Lemma 2.1. Let f,5(a,b,0)(z), for (@i, b, 0)(z2), for(a,bi,0)(z) and £} (a,b,c))(z) be defined by (1.7). Then, for
Ai > —p; a;,bi,ci e R\ Z; (Z; ={0,-1,-2,---}) (i=1,2) and u,6 > 0,

fi22(a,b,0)(2) = fi3(a,b,0)(2) * pp(A2 + p, M1+ P)(@), 2.1)

fi(a1,b,0z) = fir(a2,b,0)(2) * Pplaz, m)(2), 2.2)

(@, b1,0)(2) = fur (@, b2, €)(2) * Pp(ba, b1)(2), (23)
and

fada,b,c1)(@) = fi3(@,b,c2)(@) * Pplc1, ©2)(2), 2.4
where

B(a,B)(2) = Z Dz @ eu)
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Proof. From (1.7), we have

(A2 + p)il(c)k e+
5@, Z [T+ (c+p— (ol +p) + i — O)I@k(B) '

_ i (A1 + POk (A2 +pk e
[T+ (k+p—1)(uok+p)+u—0)]@®d) (A1 +pk
,Ltp ®(a,b,0)(z) * ¢p(A2 + p, A1 + P)(2)

and the assertion (2.1) is proved. The proof of (2.2)-(2.4) is similar to that of (2.1) and the details involved
may be omitted. O
Lemma 2.2 (see [13]). Let f € K and g € S*. Then, for every analytic function W in U,
(f = Wg)(U)
(f*9(U)
where col W(U)] denotes the closed convex hull of W(U).
Lemma 2.3 (see [18]). Let 0 < a < B. If p > 2 or a + B > 3, then the function

= (@)
L ()

c co[W(U)],

d1(a, B)(z) = L2441 (ze L)

belongs to the class K of convex functions.
We begin by proving our first inclusion relationship given by Theorem 2.1 below.

Theorem 2.1. Letp e N, 0 < o <p, 4,0 > 0and ¢ € M with
Rlp@)]>1- 1 (z e ). (2.5)
p-o
If Ai and a; (i = 1, 2) satisfy the following conditions:
(i) —p<A2 <A and A 2min{2 —p,3 -2p — Ay}, (2.6)

and

() 0<ay £m and a; > min{2,3 — ay}, (2.7)

then
Sy (a2, b,c; 0)(¢) € Si (a2, b, ¢; 0)() € Sy (ar, b, ¢; 0)(h).-

Proof. First of all, we will show that
Sii (a2, b,c; 0)(@) C S (az, b, c; 0)(h)- (2.8)
Let f e Sﬁfif’(az, b, c; 0)(¢). Then, by the definition of the class Sﬁflf(a, b, c; 0)(¢), we have

1 (Iﬁlp (612, b, C)f(Z))’ _
p—o| T2 bofG)

= ¢(w(2)),
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where ¢ is convex univalent with R[¢(z)] > 0 and |w(z)| < 1 in U with w(0) = 0 = ¢(0) — 1. Therefore,

2T (a2, b, 0) f(2))

T bofe O @9)
and 1 N
2[2 P (T (a2, b, 0) f(2)) Lis
2T @ b, 0 f(2) =(P-0P@@) +o-p+1<1— (2.10)

Applying (1.4), (2.1) and the properties of convolution, we obatin

2L a2, b, f @) (£ @2, b,0)« )]
I35 (az, b, 0)f (2) (fux(az, b, 0) * f)(z)
2l(fay(a2,0,0) * Gp(Aa +p, A1 +p) * @Y
(a2, b,0) % (A + p, M1 +p) N
_ & +p A +p)@) 2(fuy (@2, b,0) « AT
bp(Aa +p, A1+ p)(@) * (1 (a2, b,0) * f)(z)
 dp(Aa+p, A+ p)@) 2T (a2, b, 0 f(2))

- (2.11)
Pp(A2 +p, A1 +p)(2) + Ly (a2, b, 0) f(2)
Thus, by using (2.9) and (2.11), we get
1 (25 @ b,of@)Y )1 (@phatp i+ p)@) 2T b,AfE)
p=ol I3(a,b,0)f() P=o\ ¢pha+p A1 +p))* I, (a2, b,0)f(2)
_ 1 [Pt p M+ p)@) [~ 09w (@) + o1} (a2, b, ) f(2) ~ 2.12)
p-o Pp(A2+p, M+ p)@) * I3 (a2, b, 0) f(2) ' '

It follows from (2.5) and (2.10) that z' 7 I, o 5 (a2,b,0)f (z) € S*. Also, by Lemma 2.3, we see that z' ¢, (A, +
p,AM+p)z) e K.
Let us define
s(w(z)) = (p = 0)p(w(2)) + 0. (213)
Then, in view of (2.13) and Lemma 2.2, we have
(2" Pgp(A2 +p, A1 + )] s(@)2' P Ty (a2, b, ) fH(U)
{[z1PPp (A2 + p, Ay + p)] * 2! PIM, (a2, b, ¢) f}(U)

C cos[w(U)], (2.14)
because s is convex univalent function.
Combining (2.12) and (2.14), we conclude that

1 [pr(/\z + p, Al + P) * s(w)j‘up az, b C)f](U) _
pP=ol [¢p(A2+p, A1 +p)+ T35 (a2, b,0) f1(U)

< o(U),

and hence (2.12) is subordinate to ¢ in U, and that is f € SA2 ‘S(az,b c; 0)(¢). Thus, the assertion (2.8) of

Theorem 2.1 holds true. Moreover, by using the arguments similar to those detailed above with (2.2), we



Huo Tang, Guantie Deng, Janusz Sokét, Shuhai Li / Filomat 28:8 (2014), 16031618 1610

can prove the second part of Theorem 2.1 also holds true. The proof of Theorem 2.1 is evidently completed.
o
Theorem 2.2. Let 0 < p<p, A > —p, u,0 = 0and ¢ € M with (2.5) holds. If b; and c; (i = 1,2) satisfy the

following conditions:
(1) 0 < by < by and by > min{2,3 - by}, (2.15)
and
(i) 0 <c1 < ¢ and c; > min{2,3 — ¢y}, (2.16)

then
S, by, c2; 0)(9) € Syoa, by, c2; 0)(P) € Sy (@, by, c1; 0)().

Proof. Applying the same techniques as in the proof of Theorem 2.1, and using (2.3), (2.4), in conjunction
with Lemmas 2.2 and 2.3, we obtain the result asserted by Theorem 2.2. O
Theorem 2.3. Let 0 < o < p, u,6 > 0and ¢ € M with (2.5) holds. If A; satisfies (2.6), and a; satisfies
(2.7),i=1,2, then
K (a2,b, ¢ 0)(9) € K% (az, b, c; 0)(¢) € K3 (ar, b, c; 0) ().

Proof. In view of (1.10) and Theorem 2.1, we observe that

e KN (s, b,c; 0)(9) = ;f)

€ Sy (@2, b,¢; 0)(9)

_,J'0@
p

= f e K3 (a2, b,c;0)()

€ 8,5 (a2, b, ¢; 0)()

and
zf"(z)
f € Kl @, b,c; 0)() = fp € iy (a2,b,¢; 0)(@)
zf'(z2) _ on,
. fp € 8)2(a1, b, 0)(¢)
= fe 7(3;’6(011,17/0/' 0)(P),

which evidently proves Theorem 2.3. O
Similarly, we can derive Theorem 2.4 below by applying (1.10) and Theorem 2.2.
Theorem 2.4. Let 0 < o <p, A > —p, 1,6 > 0and ¢ € M with (2.5) holds. If b; satisfies (2.15), and c; satisfies
(2.16),i=1,2, then
Ko (@, b, 02 0)() € Ky (@, b, 2, 0)() € Koo (@, by, c1; 0)().
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Upon setting

1+ Az
-1< <1
P(z) = T+ B2 (-1<B<A<1,zel)

in Theorems 2.1-2.4, we have the following result.

Corollary 2.1. Letp e N, 0 < o <p, 1,6 > 0and

%(1+Az)>1—L (-1<B<A<1; zeU).
1+ Bz p—o0
If Ai, ai, bjand c; (i = 1,2) satisfy (2.6), (2.7), (2.15) and (2.16), respectively, then

Sﬁl (a2,b2,¢2;0;A,B) C SAzb(ﬂz, by, c2;0,A,B) C S (ﬂl,bz,cz, 0;A,B)

lp (ﬂl, bl/ C2, Q/A B) - S (alr bl/clr Q/A B)

and
K12 (a2, ba, 020, A, B) € K3 (a2, b, 02, 03 A, B) € K1 (a1, ba, 0250 A, B)
C (KM; (a1,b1,¢2;0,A,B) C lpé(lll,bhﬁ,'@A,B)-

To prove next theorems, we will use the following lemma.

Lemma 24. Letp € N, 0 < o < pand ¢ € M with (2.5) holds. If f € K and q € S,(0;¢), then
@)= q € Sp(0:9)-

Proof. If g € S;(0; ¢), then, from (2.13) and the definition of the class S},(¢; $), we know that

zq'(z) = q(2)[(p — 0)P(@(2)) + 0] = q(z)s(w(2)),
where w is a Schwarz function. Thus,

1 (Z[(Z”‘lf(Z)) “q@)I" ) _ 1 ((Z”_lf(Z)) ~zq'(z) )
@' f(2) *q() @ f(@) *q(2)
_ (f (2) *2' Pq(2)s(w(2)) )
p-o\ f(@+2'7q(2) '

By using similar method to those in the proof of Theorem 2.1, we deduce that (2.17) is subordinate to ¢ in
U, and hence (¥ f) g € S;(0;¢). O

Lemma 4 in [17] is a special case of the above Lemma 2.4.

Theorem 2.5. Let 0 < 9,0 <p, u,6 > 0and ¢,y € M, and let ¢, satisfy (2.5). If A; satisfies (2.6), and a;
satisfies (2.7),1i=1,2, then

(2.17)

Cii (a2, b,¢;0,0)(, ) € C3(aa, b, ¢ 0,0)(p, ¥) € Cl (a1, b, ¢; 0, 0)(, ).

Proof. We begin by proving that

Cii(a2,b,¢;.0,0)(, ) € Cil (a2, b, ¢; 0,0) (¢, ). (2.18)
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Let f € Cﬁ}f (a2,b,¢;0,0)(¢, ). Then, by the definition, we have

1 (2T (@2, b,0)f(2))
p-o q1(z)

-o|<Y(z) (zeU)

with g1 € S;(¢; ¢). We thus get that
2Ty (@2,b,0f @) = p@I(p - o) () + 0],

where w is a Schwarz function.

From Lemma 2.4, we know that

02(2) = Pp(A2 + p, A1 + p)(2) * q1(2) € S, (0; P).
Making use of methods of earlier proofs, we conclude that

1 (2T (a2, b,0)f(2))
-0
p-o 92(z)

L (92 tpda+p)@ 2Ty a2, b Of@)
p-o Pp(A2 +p, A1+ p)(2) * q1(2)

1 (zl-wpmz +p, M +p)E) = 2 P @)1 - o)) +o] 0)
Cp-o 2P ¢y(Aa +p, A1+ p)(2) * 2P u (2)

<Y(z) (zel).

Therefore f € Cﬁff (a2, b,¢; 0,0)(¢, ), which implies that the assertion (2.18) of Theorem 2.5 holds true. The
proof of the second inclusion is similar to that of (2.18). O

In view of (2.3), (2.4), together with Lemma 2.4, and by similarly applying the method of the proof of
Theorem 2.5, we can obtain the following result.

Theorem 2.6. Let 0 < p,0 <p, A > —p, u,0 > 0and ¢, € M, and let ¢, satisfy (2.5). If b; satisfies (2.15),

and c; satisfies (2.16),1 = 1,2, then

Ciro(a, b2, c2;.0,0)(¢, 1) € Ci(a, by, c2;.0,0)(, 0) € CA(@a, by, c1; 0, 0)(, ).

By means of (1.11), and using the similar methods of the proofs of Theorems 2.3 and 2.4, respectively,
we get the following results. Here, we choose to omit the details involved.

Theorem 2.7. Let 0 < 9,0 <p, 1,0 =2 0and ¢,y € M, and let ¢, satisfy (2.5). If A; satisfies (2.6), and a;
satisfies (2.7),1 = 1,2, then

QC (a2, b,¢; 0,0) (¢, 1) € QT (a2, b, ¢; 0,0) (¢, 1) € QCy (a1, b, ¢; 0, 0)(b, ).
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Theorem 2.8. Let 0 < 9,0 <p, A > —p, 1,6 2 0and ¢, € M, and let ¢, satisfy (2.5). If b; satisfies (2.15),
and c; satisfies (2.16),1 = 1,2, then

QC5(a, by, 023 0;0)(, ¥) € QT (@, by, c2; 0;0)(p, 0) € QCo(a, by, c1; 0 0)(b, ).

By taking
1+ Az
0E) = ¥ = T

in Theorems 2.5-2.8, we get the following result.

(-1<B<A<1;zel)

Corollary 2.2. Under the conditions of Corollary 2.1, we have

C;‘t}p;é(pbl b2/ C2,0,0, A/ B) C/\Z

up (QZ/ bZ/ C2,0,0, A/ B) - C‘l/}?;;é(alr bZr C2,0,0, Ar B)

C Cyx(a1, by, c2;,0,0;A,B) C C% (a1, by, c1;0,0; A, B)

and

QC4 (a2, by, c2;.0,0; A, B) € QCI (a2, by, c2;.0,0; A, B) € QCI% (1, by, €3 0,0; A, B)

c QC)\2 6(611,171,C2/ 0,0;A,B) C QC/\Z 6(‘11rb1/61' 0,0;4,B).

Remark 2.1. (i) By puttingp =1, 0=0, A=A =AM =1(A 20)anda =a, = a; — 1 (a > 1) in Theorems 2.1,
2.3, 2.5 and 2.7, respectively, we have the results obtained by Wang et al.[21, Theorems 1-4, respectively].

(ii) By takingp =1, 0=0=0=0A=A =M -1A20)anda =a, =a1 -1 (a 2 1) in Theorems 2.1,
2.3 and 2.5, respectively, we get the results obtained by Srivastava et al.[19, Theorems 1-2, Corollary 3 and Theorems
4-5, respectively].

Remark 2.2. We note that, in [19,21] there are no results concerning inclusion relationships among the function
classes with respect to the parameters b and c. However, in this paper, we obtain some inclusion relationships with

respect to the parameters b and c, see, for details, the above Theorems 2.2, 2.4, 2.6 and 2.8.

3. Inclusion Properties by Convolution

In this section, we will show that the function classes Sﬁ:g (a,b,c;0) (), V(A 5(11 b,c; 0)(p),

Cﬁjﬁ(u, b,c;0,0)(¢,¢) and QCﬁ 2((1 b,c; 0,0)(¢, ) are preserved under convolution with convex functions.

Theorem 3.1. Letp e N, 0< g,0 <p, A > —p, 4,6 >0, g€ Kand ¢, € M, and let ¢, satisfy (2.5). Then
(i) f € Sip(a,b,c; 0)(@) = @ 7'g) * f € Sip(a, b,c; 0)(@),
(i)) f € Ky (@,b,c; 0)(p) = (Z7'g) » f € Ky (@, b, c; 0)(),

(iii) f € Cyp(a, b, c; 0,0)(, 1)) = (@'g) * f € Cyp(@,b,c; 0,0) (P, ),

(iv) f € QC;o(a,b,c;0,0)(, 1) = (Z ') * f € QCY5(a, b,c; 0,0)(, ).
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Proof.

(i) Let f € S# p(a b,c; 0)(¢) and g € K. Based on the same concept as the proof of Theorem 2.1, we have

1 (2h@bo@ 9 HE) | 1 (@ gE)*2Tn@bofE)
p=o( Iin@bo@'9+HE ) P=ol @g9@)*I@bofe)

_ 1 (@ 9@ s@) Ty b,0f @)
“r-ol @ 9@)*IihE bof ()

1 [g(z) *s(w)z! P Iyo(a, b, o) f(2)

T p-ol 9@ rIN@b,0f )

and we obtain (z#71g) * f € SA"S(a b,c; 0)(¢). O
(i) Let f € K}3(a,b,¢;0)(¢p) and g € K. Then, by (1.10), we know L& e S¥(4,b,¢; 0)(¢), and from

0 g y 5 0
(i), we have (271g(2)) + L& € S8}(a, b, ¢; 0)(¢)). On the other hand, (" "g(2)) » L& = % Also, by

applying (1.10), we get (#"1g) + f € K7 (a, b, c; 0)(¢).
(iii) Let f € Cﬁ:g(a, b,c;0,0)(¢, ) and g € K. Then there exists a function q € S;(g; ¢) such that

@) <¢(z) (zel)),

A5 /
v i o (Z(I#’p(aé(zl)(:)f(z» - 0] <) (zel),
that is, that
2L (e, b,0f(@) = [(p - O)P(w()) + 0l9(2)
where w is a Schwarz function. By Lemma 2.4, we have that (z7"1g) g € S,(0; D).

Since

1 [z ﬁﬁ(ﬂ b,o)(Z"1g) = f)(2)) - 1 (@ '9(2)*2z(I ﬁjﬁ(ﬂ, b,o)f(z))
p-o (z"19) * 9)(2) p-o (z9(2)) * q(2)

_ 1 (g(z) [(p — 0)Y(w(z)) + 0]zt 7g(z)
p-o 9(z) +z'77q(2)
and so that (zF71g) » f € Cﬁ:g(a, b,c;0,0)(¢,¥). O
(iv) The proof of (iv) follows from (1.11) and (iii). O
Corollary 3.1. Letp € IN, 0< g,0 <p, A > —=p, p,6 > 0and ¢, € M, and let P,y satisfy (2.5). Suppose also
that

- o) <Y (zel),

(o)

mE =Y, (%)zk E>-1;zeU), @3.1)
k=1
In(z) = 1 ] (log1=0; e| <1 (e # 1); z € U), 3.2)
and o 4
h(z) = Z — = ~log(l-2). (3.3)
k=1
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Then, for j = 1,2, 3, we have
() f € Syp(a,b,c;0(¢) = (@)« f € Syp(a,b,c; 0(),
(ii) f € K@, b,c; 0)() = (2" hj) « f € K (@, b, ¢; 0)(),
(i) f € Clip(a,b,c; 0,0)(, ) = (@ 'hy) » f € Ciip(a, b, 0,0)(, ),

(iv) feQC 2(abcg,cr)¢)1p)=>(z” 'hj) = fEQCM,(abcg, ), ).

Proof. The function /1; was shown to be convex by Ruschewyh [14], while h; and k3 are well known to
be convex in U. Thus, the assertions (i)-(iv) follow from Theorem 3.1. O

Remark 3.1. (i) By settingp =1, o = 6 = 0 = 0and j = 1,2 in the assertions (i)-(iii) of Theorem 3.1
and Corollary 3.1, respectively, we immediately derive the results obtained by Srivastava et al.[19, Theorem 7 and
Corollary 6, respectively].

(ii) By taking u = 0 =0, p=b =1, o0 =1, 0 = Band j = 1,2 in the assertions (i)-(iii) of Theorem 3.1
and Corollary 3.1, respectively, we have the results obtained by Cho and Yoon [2, Theorem 3.1 and Corollary 3.1,
respectively].

Remark 3.2. From (3.1), (3.2) and (3.3), we easily notice that, for f € A,

R = (o) = e [ o 6> )

(generalized Libera integral operator [8]),

6 =+ = [ 014,

zt

and .
HE) = (e = [ Hlar

are well-known operators. Also, forp = j = land o = 6 = 0 = 0, the applications of the assertions (i)-(iii) of Corollary
3.1 can be found in Srivastava et al.[19, Theorem 3, Corollary 5 and Theorem 6, respectively].

4. Argument Properties for the Operator I (a, b,c)

Now, we will obtain some argument results involving the operator 7’ ﬁ:;(a, b, c). Unless otherwise men-
tioned, we shall assume throughout this section thatp €N, 6 >0, y >0, t > 0and z € U.

Lemma 4.1 (see [7]). Let p(z) be analytic in U with p(0) = 1 and p(z) # 0. Further suppose that

|arg(P(Z) + T]ZP'(Z))| < g(@ + % arctan(n6)) (n,0 > 0),

then
|argp(z)( < g@.



Huo Tang, Guantie Deng, Janusz Sokot, Shuhai Li / Filomat 28:8 (2014), 1603-1618 1616

Theorem 4.1. Let f € Ay, and A > —p. If

g0 [ TE2@LSQ) | (Ti@b ISV T @b Of2)
7 Z 77%(,b,0f()

T 2 T
< E (6 + ; arctan [7/()\—-{-;0)9])'

]’/\,(5 ,b, Y
‘arg( o(a c)f(z)]

then

e
< =0.

zP 2

Proof. Define the function p(z) by

I, b,o)f))
p(z) = [—“ e = , 4.1)
where p(z) =1+ ¢1z + - - - is analytic in U with p(0) = 1 and p’(0) # 0.
Differentiating both sides of (4.1) logarithmically with respect to z and multiplying by z, we have
zp'(z) Z(Iﬁﬁ(ﬂr b, o) f(z)) 42)
vp@) Iy, b,0f() ‘
Using (1.8) in (4.2), we obtain
@)+ ——2/(2)
T
@, b,0fz)Y @, b,0f@)Y (I, b,0)f(z
:(1_1)[ wp( p )f()] +T[ wp( p )f(2) y;\pb( )f(2) . (43)
z z Tp(a,b,0)f(2)

Thus, by applying Lemma 4.1 to (4.3) with i = m, we readily get the assertion of Theorem 4.1. O
In view of (1.9), and using the similar method of proof of Theorem 4.1, we can get the following result.

Theorem 4.2. Let f € A, and a > p. If

arg [(1 Ly [Iﬁf;?(a +1,0,0f(2) ]V . [Iﬁj‘;(a +1,b,0f(2) ]V( T15(a,b,0)f(z) ]”

z z Iy a+1,b,0)f(2)

i 2 T
< — |6+ — arctan| ————0|],
2( m [y(a—p) ])

[Iﬁ;g(a +1,b,0)f(2) ]y
arg

zP

then

e
< =0.
2

If we set p =y = 1in Theorems 4.1 and 4.2, respectively, we obtain the following corollaries.
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Corollary 4.1. Let f € Aand A > 1. If
I/\Jrl,é

[(1—T)Iﬁjﬁ(a,b,6)f(2)+f e (a,b,c>f<z>] n
arg

2 T
< E (6 + ; arctan [m@]),

zZ

T
< =0.
2

then s
| [f#:p(a, b, c)f(z)]
ag| T

Corollary 4.2. Let f € Aanda > 1. If
Ao

1-1) I +1,b, T, b,
[( L@+ 1,b,0f (@) + L, C)f(z)] <g(6+%arctan[ﬁ6]),

arg

z

then
4

< =0.
29

- (Iﬁ;;j(a + i b,c) f(z)]

Theorem 4.3. Let f € A, and c > —p. If

el IYa,b,0)Fe(2) Y .. T35, b,0)F,2)) [ Thd(a,b,0)f(2)
2 2 T5(a,b,0)F(2)

Hp

i 2 T
< o) (9 + p arctan [WQ])’

then s N
‘Z- g (11, b/ C)F ,C(Z) '
arg [—W P < n 7]

7

zP 2

where the function F,(z) is defined by
c+ z
Fp(z) = Z_CP f t f(ydt.
0

Proof. Firstly, we find from the definition (4.4) that

z(I}5a,b, c)Pp,C(z))' = (c+p) I35, b,0)f(2) — cI)5(a, b, C)F,(2).
Let A0 Y
(2) = Iujp(a/ b, C)Fp,c(z)
p - Zp °
Then, by using (4.5), we easily get
T 7
z)+ zZp \Z
p(2) e+ p'(z)
_ (1 = | T D P2 " (L@@ ( Lipabafe
2 2 I35, b,0Fy(2) |

Finally, by applying Lemma 4.1 with 1 = e We immediately obtain the required result. O

1617

(4.4)

(4.5)
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