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Abstract. The cubic-quintic nonlinear Schrödinger equation emerges in models of light propagation in
diverse optical media, such as non-Kerr crystals, chalcogenide glasses, organic materials, colloids, dye
solutions and ferroelectrics. The first integral method is an efficient method for obtaining exact solutions
of some nonlinear partial differential equations. By using the extended first integral method, we construct
exact solutions of a fourth-order dispersive cubic-quintic nonlinear Schrödinger equation and the variant
Boussinesq system. The stability analysis for these solutions are discussed.

1. Introduction

Nonlinear Schrödinger (NLS) equation with more complex nonlinearities plays an important role in
various branches of physics such as nonlinear optics [1,2], water waves [3], plasma physics, quantum me-
chanics, superconductivity and Bose-Einstein condensate theory. In optics, the propagation of a picosecond
optical pulse in a monomode optical fiber is described by the classic NLS equation. For water waves, the
NLS equation describes the evolution of the envelope of modulated nonlinear wave groups. As well as
their cubic counterparts, such models are of interest by themselves, and may also have direct applications
[4]. In particular, glasses and organic optical media whose dielectric response features the cubic-quintic
(CQ) nonlinearity, i.e., a self-defocusing quintic correction to the self-focusing cubic Kerr effect, are known
[5-7].

The cubic-quintic nonlinear Schrödinger (CQNLS) equation emerges in models of light propagation
in diverse optical media, such as non-Kerr crystals [8], chalcogenide glasses [5-6], organic materials [7],
colloids, dye solutions and ferroelectrics [10-15]. It has also been predicted that this complex nonlinearity
can be synthesized by means of a cascading mechanism [13]. It should be noticed that, in the optics models,
evolution variable z is the propagation distance. The competition of the focusing (cubic) and defocusing
(quintic) nonlinear terms is the key feature of the CQNLS model, which allows for the existence of stable
multidimensional structures which would be unstable in the focusing cubic nonlinear Schrödinger (NLS)
equation [15-23].

Lattice models with saturable onsite nonlinear terms have been studied too. The first model of that
type was introduced by Vinetskii and Kukhtarev [24-30]. Bright solitons in this model were predicted in

2010 Mathematics Subject Classification. 02.30.Jr; 47.10.A-; 52.25.Xz; 52.35.Fp.
Keywords. Cubic-quintic nonlinear Schrödinger equation; Variant Boussinesq equation; The first integral method; Exact solutions
Received: 07 March 2015; Accepted: 08 April 2016
Communicated by Mića Stanković
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1D and 2D geometries. Lattice solitons supported by saturable self-defocusing nonlinearity were created in
an experiment conducted in an array of optical waveguides built in a photovoltaic medium. Dark discrete
solitons were also considered experimentally and theoretically in the latter model [31-40].

Usually, the nonlinearities of the NLS equations are cubic, but there are nonlinear systems which engen-
der cubic and quintic (CQ) nonlinearities [23-25]. The case of CQ nonlinearities opens new possibilities. For
example, in nonlinear optics and fibers [23], the CQ nonlinearities can be used to describe pulse propagation
in double-doped optical fibers, when the type of dopant varies along the fiber, with the value and sign of
the cubic and quintic parameters that control the nonlinearities being adjusted by properly choosing the
characteristics of the two dopants. In Bose-Einstein condensation [24-25], the CQ nonlinearities are used
to describe the two-body and three-body interactions among atoms. The aim of this paper is to find exact
soliton solutions of the cubic-quintic nonlinear Schrödinger (CQNLS) equation and the variant Boussinesq
system by the first integral method.

2. Problem Formulation

For laser beam propagating in a nonlinear optical medium, a stationary state of propagation is possible,
when linear diffraction is balanced by self-focusing due to a Kerr nonlinearity [1]. However, this stationary
state is well known to be unstable for two (space) dimensional laser beams,leading to monotonous diffraction
or catastrophic self focusing [2, 26]. It is also well known that different physical mechanisms may lead
to a saturation of cubic Kerr nonlinearity thus avoiding beam collapse [3-5]. The dynamics of the slowly
varying beam amplitude ψ in a PST-like medium is governed by the cubic-quintic nonlinear Schrödinger
(NLS) equation

2ik
∂ψ

∂z
+
∂2ψ

∂x2 +
∂2ψ

∂y2 + 2kk0n2|ψ|
2ψ + 2kk0n3|ψ|

4ψ = 0, (1)

whereψ(x, y, z) is the complex wave function,∇2 is the two-dimensional (2D) Laplacian, and the last two
terms represent, respectively, the focusing cubic and defocusing quintic nonlinearities, and the refractive
index, n, in PTS is of the form n = n0+n2I+n3I2, where I is the beam intensity and n j are nonlinear coefficients

with n2 > 0, n3 < 0, k = w
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. Dimitrevski et al. deduced the two-dimensional NLS

equation in cubic-quintic nonlinear media

i
∂ψ

∂z
+
∂2ψ

∂x2 +
∂2ψ

∂y2 + |ψ|2ψ − σ|ψ|4ψ = 0, (2)

where σ is arbitrary constant.

3. The Extended First Integral Method

Consider the nonlinear partial differential equation in the form

F(u,ux,ut,uxx, .........) = 0, (3)

where u(x, t) = f (ξ) is the solution of nonlinear partial differential equation (3). The nonlinear partial
differential equation (3) is transformed to nonlinear ordinary differential equation as

G( f (ξ),
∂ f (ξ)
∂ξ

,
∂2 f (ξ)
∂ξ2 , ........) = 0. (4)

Next, we introduce a new independent variable

X(ξ) = f (ξ), Y =
∂ f (ξ)
∂ξ

, (5)
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which leads a system of nonlinear ordinary differential equations

∂X(ξ)
∂ξ

= Y(ξ),
∂Y(ξ)
∂ξ

= F1(X(ξ),Y(ξ)). (6)

By the qualitative theory of ordinary differential equations [41], if we can find the integrals to equation
(6) under the same conditions, then the general solutions to equation (6) can be solved directly. However,
in general, it is really difficult for us to realize this even for one first integral, because for a given plane
autonomous system, there is no systematic theory that can tell us how to find its first integral, nor is there
a logical way for telling us what these first integrals are. We will apply the Division Theorem to obtain one
first to equation (6) which reduces equation (4) to a first order integralable ordinary differential equation.
An exact solution to equation (3) is then obtained by solving this equation. Now, let us recall the division
theorem:

Division Theorem. Suppose that P(w,z) and Q(w,z) are polynomials in C[w,z]; and P(w,z) is irreducible
in C[w,z]. If Q(w,z) vanishes at all zero points of P(w,z), then there exists a polynomial G(w,z) in C[w,z]
such that Q(w, z) = P(w, z)G(w, z).

4. Application of the Methods

4.1. The Cubic-Quintic nonlinear Schrödinger equation
In this section, we use the transformation equation (4) into equation (2), using equation (5) we get

Ẋ(ξ) = Y(ξ) , Ẏ(ξ) =
1
2

(γ + α2 + β2)X(ξ) −
1
2

X3(ξ) +
1
2
σX5(ξ). (7)

According to the first integral method, we suppose the X(ξ) and Y(ξ) are nontrivial solutions of equation
(7) and

Q(X,Y) =

m∑
i=0

ai(X)Yi = 0,

is an irreducible polynomial in the complex domain C[X,Y] such that

Q(X(ξ),Y(ξ)) =

m∑
i=0

ai(X(ξ))Yi(ξ) = 0, (8)

where ai(X) (i = 0, 1, ...,m), are polynomials of X and am(X) , 0. Equation (8) is called the first integral to
equation (7). Due to the Division Theorem, there exists a polynomial g(X) + h(X)Y, in the complex domain
C[X,Y] such that

dQ
dξ

=
dQ
dX

dX
dξ

+
dQ
dY

dY
dξ

= (1(X) + h(X)Y)
m∑

i=0

ai(X) Yi. (9)

In this example, we take two different cases, assuming that m=1 and m= 2 in equation (8).
Case A: Suppose that m=1, by comparing with the coefficients of Yi (i = 0, 1, 2) on both sides of equation

(9), we have

ȧ1(X) = a1(X)h(X), (10)

ȧ0(X) = 1(X)a1(X) + h(X)a0(X), (11)

a1(X)
(1

2
(γ + α2 + β2)X −

1
2

X3 +
1
2
σX5

)
= 1(X)a0(X). (12)
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Since ai(X) (i=0,1) are polynomials, then from equation (10), we deduce that a1(X) is constant and h(X) = 0.
For simplicity, take a1(X) = 1. Balancing the degrees of g(X) and a0(X), we conclude that de1

(
1(X)

)
=2 only.

Suppose that 1(X) = A1X2 + B1X + A0, then we find a0(X),

a0(X) =
1
3

A1X3 +
1
2

B1X2 + A0X + B0, (13)

where B0 is arbitrary integration constant.
Substituting a0(X) and g(X) into equation (12) and setting all the coefficients of powers X to be zero, then

we obtain a system of nonlinear algebraic equations and by solving it, we obtain

B0 = B1 = 0, A0 =

√
α2 + β2 + γ
√

2
, A1 = −

3

4
√

2
√
α2 + β2 + γ

, σ =
3

16(α2 + β2 + γ)
(14)

and

B0 = B1 = 0, A0 = −

√
α2 + β2 + γ
√

2
, A1 =

3

4
√

2
√
α2 + β2 + γ

, σ =
3

16(α2 + β2 + γ)
, (15)

where B0, γ, β and α are arbitrary constants. Using the conditions (14) in (8), we obtain

I) Y(ξ) = −
X

(
−X2 + 4(α2 + β2 + γ)

)
4
√

2
√
α2 + β2 + γ

, (16)

combining equation (16) with equation (7), we obtain

X(ξ) = ±
2
√
−α2 − β2 − γξ0√

e
(√

2
√
α2+β2+γξ

)
+ξ0

(17)

and the exact solution to Cubic-Quintic nonlinear Schrödinger equation can be written as

ψ(x, y, z) = ±ei(αx+βy+γz) 2
√
−α2 − β2 − γξ0√

e
(√

2
√
α2+β2+γ(x+y−2(α+β)z)

)
+ξ0

, (18)

where ξ0 is an arbitrary constant.
Similarly, in the case of equation (15), from equation (8), we obtain

II) Y(ξ) =
X

(
−X2 + 4(α2 + β2 + γ)

)
4
√

2
√
α2 + β2 + γ

, (19)

from equation (7), we obtain

X(ξ) = ±
2
√
α2 + β2 + γe

( √
α2+β2+γ
√

2
ξ

)
+ξ0√

−1 + e
(√

2
√
α2+β2+γξ

)
+ξ0

(20)

and then the exact solution to Cubic-Quintic nonlinear Schrödinger equation can be written as

ψ(x, y, z) = ±ei(αx+βy+γz) 2
√
α2 + β2 + γe

( √
α2+β2+γ
√

2
(x+y−2(α+β)z)

)
+ξ0√

−1 + e
(√

2
√
α2+β2+γ(x+y−2(α+β)z)

)
+ξ0

, (21)

where ξ0 is an arbitrary constant.
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Figure (1,2): Travelling waves solutions of equation (20) is plotted: the bright and dark solitary waves

Figure (1,2) shown that the travelling wave solutions with (α = 0.1 , β = −0.25 , γ = 0.4 , z = 0.1) ; in the
interval [−5, 5] and [−5, 1].

Case B: Suppose that m= 2, by comparing with the coefficients of Yi (i = 0, 1, 2, 3) on both sides of
equation (9), we have

ȧ2(X) = h(X)a2(X), (22)

ȧ1(X) = 1(X)a2(X) + h(X)a1(X), (23)

ȧ0(X) = 1(X)a1(X) + h(X)a0(X) − a2(X)
(
(α2 + β2 + γ)X − X3 + σX5

)
, (24)

a1[X]
[1
2

(α2 + β2 + γ)X −
1
2

X3 +
σ
2

X5
]

= 1(X)a0(X). (25)

Since ai(X) (i = 0, 1, 2) are polynomials, then from equation (22) we deduce that a2(X) is constant and
h(X) = 0. For simplicity, take a2(X) = 1. Balancing the degrees of g(X), a1(X) and a2(X), we conclude that
deg(g(X))= 2 only. Suppose that 1(X) = A1X2 + B1X + A0, then we find a1(X) and a0(X) as follows

a1(X) =
A1

3
X3 +

B1

2
X2 + A0X + B0, (26)

a0(X) = d + A0B0X +
1
2

(
−(α2 + β2 + γ) + A2

0 + B0B1

)
X2 +

(A1B0

3
+

A0B1

2

)
X3

+

1
4

+
A0A1

3
+

B2
1

8

 X4 +
A1B1

6
X5 +

−σ6 +
A2

1

18

 X6. (27)

Substituting a0, a1 and g(X) in the last equation in equation (25) and setting all the coefficients of powers X to
be zero, then we obtain a system of nonlinear algebraic equations and by solving it with aid Mathematica,
we obtain

d = 0, σ =
3

16(α2 + β2 + γ)
, A0 =

√

2
√
α2 + β2 + γ, (28)

A1 = −
3

2
√

2
√
α2 + β2 + γ

, B0 = B1 = 0

and

d = 0, σ =
3

16(α2 + β2 + γ)
, A0 = −

√

2
√
α2 + β2 + γ, (29)
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A1 =
3

2
√

2
√
α2 + β2 + γ

, B0 = B1 = 0,

where α, β and γ are arbitrary constant. Using the conditions equation (28) into equation (8), we get

I) Y(ξ) =
X

(
−X2 + 4(α2 + β2 + γ)

)
4
√

2
√
α2 + β2 + γ

, (30)

combining equation (30) with equation (7), we obtain

X(ξ) = ±
2
√
α2 + β2 + γe

( √
α2+β2+γ
√

2
ξ

)
+ξ0√

−1 + e
(√

2
√
α2+β2+γξ

)
+ξ0

(31)

and then the exact solution to Cubic-Quintic nonlinear Schrödinger equation can be written as

ψ(x, y, z) = ±ei(αx+βy+γz) 2
√
α2 + β2 + γe

( √
α2+β2+γ
√

2
(x+y−2(α+β)z)

)
+ ξ0√

−1 + e
(√

2
√
α2+β2+γ(x+y−2(α+β)z)

)
+ξ0

, (32)

where ξ0 is an arbitrary constant. Similarly, in the case of equation (29), from equation (8), we obtain

II) Y(ξ) =
X

(
X2
− 4(α2 + β2 + γ)

)
4
√

2
√
α2 + β2 + γ

(33)

and from equation (7), we obtain that

X(ξ) = ±
2
√
−α2 − β2 − γξ0√

e
(√

2
√
α2+β2+γξ

)
+ξ0

(34)

and then the exact solution to Cubic-Quintic nonlinear Schrödinger equation can be written as

ψ(x, y, z) = ±ei(αx+βy+γz) 2
√
−α2 − β2 − γξ0√

e
(√

2
√
α2+β2+γ(x+y−2(α+β)z)

)
+ξ0

, (35)

where ξ0 is an arbitrary constant.

4.2. The variant Boussinesq equation
Consider the variant Boussinesq system

Ut + Vx + UUx + pUxxt = 0, Vt + (UV)x + qUxxx = 0. (36)

Applying the transformation U(x, t) = u(ξ), V(x, t) = v(ξ), where ξ = x − kt, convert equation (36) into a
system of ordinary differential equations as

−ku′ + v′ + uu′ − kpu′′′ = 0, (37)

−kv′ + uv′ + u′v + qu′′′ = 0. (38)

We can rewrite equation (37) in the form

v′ + uu′ − ku′ − kpu′′′ = 0. (39)
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Integrating equation (39), we derive

v = α + ku −
1
2

u2 + kpu′′, (40)

where α is an integrating constant. Now, inserting equation (40) into equation (38), yields

(q − k2p)u′′′ + 3kuu′ + (α − k2)u′ + kpu′u′′ −
1
2

u2u′ + kpuu′′′ − u2u′ = 0. (41)

Now, integrating of equation (41), gives

u′′ =
1

k2p − q − kpu
(
3k
2

u2
−

1
2

u3 + (α − k2)u + β), (42)

where β is an integrating constant. Introducing new variables X = u(ξ) and Y = u′. Convert equation (42)
into a system of ODEs

X′ = Y , Y′ =
1

k2p − q − kpu
(
3k
2

u2
−

1
2

u3 + (α − k2)u + β). (43)

According to the first integral method, assume that X = X(ξ) and Y = Y(ξ) are the nontrivial solutions to
equation (43) and Q(X,Y) =

∑m
i=0 ai(X)Yi is an irreducible polynomial in C[X, Y] such that

Q(X(ξ),Y(ξ)) =

m∑
i=0

ai(X)Yi = 0 (44)

ai(X), i = 0, 1, 2, ....,m are polynomials of X, which am(X) , 0. Due to the division theorem, there exists a
polynomial T(X,Y) = 1(X) + h(X)Y in C[X, Y] so that

dQ
dξ

=
∂Q
∂X

∂X
∂ξ

+
∂Q
∂Y

∂Y
∂ξ

= (1(X) + h(X)Y)(
m∑

i=0

ai(X)Yi). (45)

Now, suppose that m=1 in equation (44). By equating the coefficients of Yi, i=0, 1, 2 on both sides of
equation (45), one can obtain

a′1(X) = h(X)a1(X), (46)

a′0(X) = 1(X)a1(X) + h(X)a0(X), (47)

a1(X)
(

1
k2p − q − kpu

(
3k
2

u2
−

1
2

u3 + (α − k2)u + β)
)

= 1(X)a0(X). (48)

Since ai(X) (i=0, 1) are polynomials, then from equation (46) one can deduce that a1(X) is a constant and
h(X)=0. For convenience, we consider a1(X) = 1. Now, by balancing the degree of g(X) and a0(X), we can
conclude that de1

(
1(X)

)
=1. Thus, by assuming that g(X)= A1X + B0 such that A1 , 0, from equation (47) we

have

a0(X) =
1
2

A1X2 + B0X + A0,

where A0 is an integrating constant. Substituting a0(X), a1(X) and g(X) in equation (48) and equating the
coefficient of each power of X to zero, a system of algebraic equations can be obtained, which after being
solved, we arrive at

α = −
β

k
, A0 = ±

β

k
√

q
, A1 = ±

1
√

q
, B0 = ∓

k
√

q
. (49)
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Setting equation (49) in equation (44) yields

Y ±
kX(X − 2k) + 2β

2k
√

q
= 0.

Now, by combining these equations with equation (43), two first-order ordinary differential equations are
derived, which by solving these equations and considering X=u(ξ) and U(x,t)=u(ξ), we obtain

U(x, t) = k ±

√
−k3 + 2β
√

k
tan[

√
−k3 + 2β

2
√

kq
(x − kt) + ξ0], (50)

where ξ0 is an arbitrary constant. Also, by considering the solutions of two first-order differential equations
and X=u(ξ) as well as the relations equation (40) and V(x,t)=v(ξ), we will obtain

V(x, t) = ∓
(k3
− 2β)

2kq
sec2[

√
−k3 + 2β

2
√

kq
(x − kt) + ξ0] (51)

.

∓q + p
√

k
√
−k3 + 2β tan[

√
−k3 + 2β

2
√

kq
(x − kt) + ξ0]

 ,
where ξ0 is an arbitrary constant.
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Figure (3) Travelling waves solutions of equation (50) is plotted: periodic solitary waves and Figure (4)
Travelling waves solutions of equation (51) is plotted: periodic solitary waves

Figure (3) shown that the travelling wave solutions with (k = 0.25 , β = 0.5 , q = 0.16) ; in the interval
[−1, 1] and time in the interval [0, 2].

The soliton solution of equation (50) is stable if:

k2
√
−k3 + 2β , 0, sec2[

√
−k3 + 2β

2
√

kq
] > 0,

k3
√
−k3 + 2β >

√
kq(k3 + β) sin[

√
−k3 + 2β√

kq
] − (2k3 + β)

√
−k3 + 2β cos[

√
−k3 + 2β√

kq
].

Figure (4) shown that the travelling wave solutions with (p = 0 , k = 0.25 , β = −0.5 , q = 0.16) ; in the
interval [−1, 1] and time in the interval [0, 3].

The soliton solution of equation (51) is stable if:

k , 0, q , 0, sec6[

√
−k3 + 2β

2
√

kq
] > 0,
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60(−q2 + kp2(k3
− 2β))(k3 + β)(k3

− 2β) − 60(q2 + kp2(k3
− 2β))(k3 + β)(k3

− 2β) cos[

√
−k3 + 2β√

kq
]

+2
√

kq
√
−k3 + 2β sin[

√
−k3 + 2β√

kq
]

.(−49k7p2 + 75k3q2 + 91k4p2β + 75q2β + 14kp2β2+

(7k7p2 + 15k3q2
− 13k4p2β + 15q2β − 2kp2β2)(6 cos[

√
−k3 + 2β√

kq
] + cos[

2
√
−k3 + 2β√

kq
])) > 0
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